
Schemata Bandits

Madalina M. Drugan1, Pedro Isasi2, and Bernard Manderick1

1 Artificial Intelligence Lab, Vrije Universitieit Brussels, Pleinlaan 2, 1050- B, Belgium

Madalina.Drugan,Bernard.Manderick@vub.ac.be
2 Computer Science Department, Carlos III of Madrid University, Spain

pedro.isasi@uc3m.es

Abstract. We introduce the schema bandits algorithm to solve binary combi-

natorial optimisation problems, like the knapsack problem, where potential solu-

tions are represented as bit strings. Schema bandits are influenced by two different

areas in machine learning, evolutionary computation and multi-armed bandits.

The schema theorem for genetic algorithms is a source of inspiration from the

first area and hierarchical bandits from the second one.

1 Introduction

Genetic algorithms (GAs) are powerful optimisation and search techniques that have

been applied with great success to a wide range of applications. The GA processes a

population of individuals by the successive application of fitness evaluation of these

individuals, selection of the better ones followed by recombination of the genotypes of

the selected individuals. According to John Holland, the schema theorem [3] explains

that success. It basically states that although the GA operates at the level of individuals

it implicitly and in parallel processes information about schemata, subsets of the search

space. Moreover, it samples the most interesting schemata called building blocks in a

near-optimal way. The latter argument is based on the analogy between schemata and

arms in the bandit problem. This brings us to the multi-armed bandit problem (MAB).

In the stochastic MAB-problem, there are K arms and each time an arm i, where

the set of arms in 1, · · · , i, · · · ,K, is selected, a reward ri is returned drawn according

to probability distribution with fixed but unknown mean µi. The goal is to maximize the

total expected reward. If the true means of all arms where known, this task would be

trivial. One selects the arm with the highest mean reward all the time. Since, the means

are unknown one has to allocate a number of trials over the different arm so that, based

on the obtained rewards, the optimal arm is identified as soon as possible and this with

(very) high confidence. To reach this goal a tradeoff between exploration and exploita-

tion has to be found. Exploration means that one tries a suboptimal arm to improve the

estimate its mean reward while exploitation means that one tries the best observed arm

which is not necessary the true best one. An arm selection policy determines what arm

is selected at what time step based on the rewards obtained so far. The research question

is what are (near)-optimal arm selection policies for the MAB-problem. An important

heuristic that has emerged is that good policies, e.g. variants of the upper confidence

bound (or UCB) policy, are optimistic in the face of uncertainty [4].

2

** * * *

1 1 * * * 1* * * *

1 1 0 0 0

* 1 0 * *

11 11

Fig. 1. An example of schemata net for a 5 dimensional strings.

Motivation. The MAB-problem is the focus of a lot of recent research and has

been applied successfully in many domains. One variant is the hierarchical bandit ap-

proach where the reward of one arm in the hierarchy is the reward of another one at one

level deeper in the hierarchy [4]. This approach is largely responsible for the success of

Monte Carlo Tree Search (MTCS) where other methods fail, e.g. the game of GO [2].

MTCS using UCB as arm selection policy is called Upper Confidence Trees (or UCT)

and it builds incrementally a search tree using random samples in the search space by

expanding the nodes selected by the arm selection policy [2].

The main contribution. In this paper we propose the schema bandits algorithm that

searches a l-dimensional hypercube for an optimal solution. Basically, it can be viewed

as hierarchal bandit where each arm is a schema. Next, we introduce the schema bandits

algorithm and present some preliminary results.

2 Schema bandits algorithm

Here, we focus on search spaces that are ℓ-dimensional hypercubes, i.e. Bℓ where B =
{0, 1} is the set of booleans and ℓ is the length of the bitstrings in the search space. A

schema H represented as H ∈ {0, 1, ∗} is a subspace of Bℓ that is also a hypercube.

The don’t care symbol ∗ can take on any value in B. The order o(H) of a schema H is

the number of instantiated values, i.e. either 0 or 1. Here, we will also use the dimension

d(H) of a schema H: it is the number of don’t care symbols and d(H) = ℓ − o(H).
There are in total 3ℓ schemata of which the most general schema ∗∗· · ·∗∗ has dimension

ℓ and of which all the 2ℓ the fully instantiated schemata, i.e. bitstrings of the search

space, have dimension 0. Note that the intersection of 2 schemata is again a schema.

Example 1. Let B5 be the 5-dimensional hypercube, see Figure 2. Then the schema

H1 = 11 ∗ ∗∗ has order 2 and represents the 3-dimensional hypercube of all bit strings

of length ∗ starting with 11, i.e. H1 contains 8 elements including 11001. And, H2 =
∗ ∗ ∗ ∗ 1 has dimension 4 and the schemata H1 and H2 share the element 11001.

Let H be a schema of dimension d = d(H). If we replace any don’t care symbol ∗
by either 0 or 1 then we obtain one of the 2d children of H . Each child has dimension d−
1. The fully instantiated schemata have no children. If we replace any of the instantiated

values 0 or 1 by a don’t care ∗ then we obtain one of the d parents (with dimension d−1)

of H .

3

Let f(b1), · · · , bi, · · · , f(bn) ∈ H be the values of function f (to be optimised)

in the bitstrings bi that moreover belong to a common schema schema H , i.e. bi ∈
H, i = 1, · · · , n. Then f(H) = 1/n

∑n

i=1 f(bi) is the estimated mean value of f on

the hypercube H and depends on the samples bi used. The variance of f(H) on H will

depend on its dimension d(H): the higher the dimension the higher the variance and if

the dimension is 0 then the variance is also 0.

The baseline schema bandits algorithm builds a tree where each node is a schema,

child and parent nodes are described above and the most general schema is the root. It

consists of three steps:

Selection: Starting from the root, select successively child nodes down to a leaf

node. As in UCT , we select each time the child node that expands the tree towards

the most promising parts of the search space. A node is expandable if it is unvisited. A

popular policy to select the next node to expand is UCB1, one of the upper confidence

bound policies [1]. UCB1 is simple and has appealing theoretical properties, e.g. it

gives an upper bound on the loss resulting from choosing non-optimal arms.

The reward corresponding with each schema H , the arms or bandits in UCT , is the

estimated mean f(H) over H based on all bitstrings b ∈ H generated so far. If a parent

schema H has dimension d, then it has 2d child schemata denoted as Hi, i = 1, · · · , 2d,

and ti is the number of times that Hi is evaluated so far. First we initialise all child

schemata Hi as follows: for each child schema Hi the number of trials is set to one,

ti ← 1, and the estimated mean value is set to its minimal value, fHi
← 0.01 and the

number of trials t of the parent schema H is set to t ←
∑2d

i=1 ti. UCB1 selects the

child node Hi with the maximum index
∑ni

i=1
f(Hi)
ni

+
√

t
ti

, where ni is the number of

times a complete solution that belongs to this schema is evaluated. Note that the mean

value of a more general schema will vary less than the mean value of a less general one.

Expansion: A child node that is not in the schemata graph, i.e. ti ← 1, is generated.

If the child node is in the schemata graph, the counters are incremented, ti ← ti + 1
and t← t+ 1, and a child of this schema is selected. The expansion is terminated with

the generation of a leaf node.

Propagation: Using each of the solutions generated, we update the counters and the

mean values of all the schemata in the schemata graph that contain that solution. This

means that, in the propagation step, the schemata (and thus the inner nodes) that contain

an individual solution are created if they do not already exists in the schemata bandits.

For h ≪ ℓ, there are considerable more schemas in a schemata bandits, 3ℓ−h+1, than

total number of individual solutions, 2ℓ.
Discussion. There are some important differences between the schema bandits al-

gorithm and the UCT -algorithm. We actually define a graph where each node is the

child of several parents. Because of the strong overlap between some of the schemata,

the rewards of the corresponding nodes are strongly correlated while UCT assumes

that the rewards independent. The creation of a schema can occur both during expan-

sion and propagation. Therefore one way to improve the performance of the proposed

algorithm is to prune the unpromising branches of the graph. The schema bandits al-

gorithm also relates to Estimation Distribution Algorithms since no genetic operator

is needed to generate new individuals. In addition, the schema bandits approach could

offer theoretical guaranties on the convergence to the optimal solution.

4

Trap nr block ℓ optim fit mean nr schema fun eval regret

5

1 5 1.00 ± 0 0.34 ± 0 210 ± 0 32 ± 0 58 ± 0

2 10 1.00 ± 0 0.34 ± 0 35870 ± 70 1024 ± 0.45 3598 ± 0

3 15 1.00 ± 0 0.34 ± 0 171104 ± 0 31818 ± 0 169063 ± 0

4 20 0.95 ± 0.05 0.34 ± 0.01 127019 ± 5 276017 ± 46 1926978 ± 8507

5 25 0.92 ± 0.04 0.34 ± 0.01 179329 ± 32 318433 ± 54 2786122 ± 10451

6 30 0.88 ± 0.02 0.34 ± 0.01 230715 ± 6 319954 ± 4 3312440 ± 31333

7 35 0.86 ± 0.03 0.33 ± 0.01 281795 ± 0 319998 ± 0 3865973 ± 35264

8 40 0.85 ± 0.05 0.33 ± 0.01 332736 ± 20 320000 ± 0 4434108 ± 35609

9 45 0.76 ± 0.01 0.34 ± 0.01 383740 ± 14 320000 ± 0 5025488 ± 26731

10 50 0.73 ± 0.01 0.34 ± 0.01 434779 ± 9 320000 ± 0 5483765 ± 48880

Table 1. Performance of the schema bandits for 10 trap functions.

3 Preliminary results.

The goal of this algorithm is to generate the optimal solution. To assess the quality of

the algorithm, we evaluate the number of times each algorithm found the optimal solu-

tion and the mean of the generated solutions. To measure its computational complexity,

we take into account the number of schemas generated and the number of function eval-

uations. To measure the performance of the UCB1-algorithm, we evaluate the regret

for each schema, that is the loss resulting from selecting suboptimal children of that

schema. In Table 1, we show the root’s regret.

As test functions, we concatenate deceptive trap functions of 5 bits. The maximum

value is for all bits 1s is 5, and the deceptive local maximum for all bits 0s is 4. If there

is only a single bit 1, the value is 3, for two bits 1, the value is 2, for three bits 1 the value

is 1, and for four bits 1 the value is 0. The trap functions are considered a difficult test

problem for GAs because the large basin of attraction of the deceptive local optimum.

The following table gives the values of the above enumerated performance mea-

sures. We run each experiment for 30 times and the schema bandits is iterated, i.e.

selection, expansion and propagation, for 104 times. A leaf node evaluates 25 solutions

and a value 0.80 of optimum fitness means that the algorithm reaches the deceptive op-

tima, and value 0.9 of optimum fitness means that 50% of the component tap functions

found the global optimum. Note that the deceptive optimum is (almost always) reached

in less than 320.000 function evaluations, and for ℓ ≤ 40 at least a quarter of the trap

functions reach their optimum.

References

1. P. Auer. Using confidence bounds for exploitation-exploration trade-offs. J of Machine Learn-

ing Res, 3:397–422, 2002.

2. C. Browne, E. Powley, D. Whitehouse, S. Lucas, P.I. Cowling, P. Rohlfshanger, S. Tavener,

D. Perez, S. Samothrakis, and S. Colton. A survey of monte carlo tree search methods. IEEE

Trans on Comp Intel and AI in Games, 4(1):1–46, 2012.

3. J.H. Holland. Adaptation in Natural and Artificial Systems. University of Michigan Press,

1975.

4. Rémi Munos. From bandits to monte-carlo tree search: The optimistic principle applied to

optimization and planning. Foundations and Trends in Machine Learning, 7(1):1–129, 2014.

