RL with function approximation
Discrete RL

- Finite, discrete state and action spaces
- Q-function can be represented as a table
- Representation is exact
- Not possible for very large/infinite state or action spaces
- No generalization across states/actions

<table>
<thead>
<tr>
<th>S = {s1, s2, ..., sk}</th>
<th>A = {a1, a2, ..., an}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q(s1, a1)</td>
<td>...</td>
</tr>
<tr>
<td>Q(s2, a1)</td>
<td>...</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Q(sk, a1)</td>
<td>...</td>
</tr>
</tbody>
</table>
The Problem

- Realistic learning problems tend to have very large / continuous state and/or action spaces
- Exact (tabular) RL methods need to store a value for each (s,a) pair
- Simple discretization may not be feasible

\[p \in [-1.2, 0.5] \]
\[v \in [-0.07, 0.07] \]
Function approximation

- Function approximation (neural networks, trees, kernel based, ...) is needed to represent value functions and/or policies.
- (Q-)Value function learning is now an (online) regression problem: using samples \((s,a,Q(s,a))\), train an approximator to predict \(Q(s,a)\) given \((s,a)\).
- 2 learning problems:
 - learn control from samples
 - minimize representation errors

Good ref: *Reinforcement Learning and Dynamic Programming Using Function Approximators* by Lucian Busoniu, Robert Babuska, Bart De Schutter, Damien Ernst. CRC Press, Automation and Control Engineering Series. 2010
Batch RL

- Many function approximators (decision trees, neural networks) are more suited to batch learning
- Batch RL attempts to solve reinforcement learning problem using offline transition data
- No online control
- Separates the approximation and RL problems: train a sequence of approximators
Fitted Q-iteration

- **Batch method:** either completely offline or limited system interactions
- **Expects training set of transitions as input**
- **Each step:** single Q-learning backup over all data
- **Retrains approximator on complete data (e.g. using backpropagation)**

input: set of samples (s,a,r,s')

\[Q := Q_0 \quad //\text{initialize approximator} \]

repeat

- Targets := $r + \max_a Q(s',a')$
- \[Q := \text{Train(samples,Targets)} \]

until finished
Fitted Q-iteration

- **Pros:**
 - Very sample efficient (less transitions needed than with learning online)
 - Can use powerful approximators & learning algorithms without online learning issues
 - Works well with neural networks, decision trees

- **Cons:**
 - No online control/learning
 - Training data must be representative (no exploration possible)
 - Often difficult to get data with naive policies (random policies)
Online algorithms

- Online SARSA(\(\lambda\)), Q(\(\lambda\)), actor-critic can also be extended to use function approximation
- Online training can lead to issues with function approximation (divergence, unbalanced trees …)
- Successful examples exist (TD-gammon)
- Typically, linear function approximation is used.
Linear Function Approximation

Function is represented as linear combination of a feature vector ϕ and learned weights θ:

$$Q_\theta(s, a) = \phi^{T}_{sa} \theta$$

or

$$Q_\theta(s, a) = \sum_i \phi_{sa}[i] \theta[i]$$

the vector ϕ consists of features (or basis functions) that describe (s,a). θ is a vector of weights updated by RL (replace Q-values)
Gradient descent

Online (linear) Gradient descent

\[\text{theta} := 0 \]

\textbf{repeat:}
- get sample \((x,f(x))\)
- \(\text{err} := f(x) - \phi(x)^T \text{theta} \)
- \(g_{\text{sq}_\text{err}} = -\text{err} \times \phi(x) \)
- \(\text{theta} = \text{theta} - \alpha \times g_{\text{sq}_\text{err}} \)

\textbf{until} convergence

- Simple algorithm to optimize parameters \(\theta\)
- Minimize squared error between target \(f(x)\) and estimated \(f_{\theta}(x) = \phi(x)^T \theta\)
- Each update of \(\theta\) take a step in direction of the gradient of the squared error
Example

- Target function:
 \[f(x) = 1.5x^2 + 3x \]
- \(\phi(x) = [x^2; x] \)
- \(\theta \) initialized to [0; 0]
- approximation:
 \[
 f_\theta(x) = \phi(x)^T \theta = \theta[0] x^2 + \theta[1] x
 \]
Basis Functions

- We need **feature representation** of states (and actions)
- We can **hand code** these representations for specific problems
- **generic** approaches exist that turn any continuous state into feature representations:
 - Fourier basis
 - Polynomial basis
 - **Tile coding**
 - **Radial Basis functions**
 - Kanerva coding
 -
Tile Coding

- Binary features
- State space is covered with **overlapping grids**
- ϕ_s is binary vector with 1 value for each tile
- In each grid only the tile in which state x falls is active
- ϕ_s is 1 for **active tiles**, 0 else
Tile Coding ctd.

Tiling 1

\[\theta_1, \theta_2, \theta_3, \ldots, \theta_{46}, \theta_{47}, \theta_{48} \]

\[\phi = [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0] \]

\[\theta = [\theta_1, \theta_2, \theta_3, \ldots, \theta_{46}, \theta_{47}, \theta_{48}] \]

\[Q = \phi^T \theta = \theta_5 + \theta_{25} + \theta_{42} \]
Tile Coding with Hashing

- Can drastically reduce memory requirements
- Typically only small part of state space needs high resolution approximation
- Maps noncontiguous, disjoint regions randomly spread throughout the state space to the same tile
- Often works well even with possible collisions

Hashing function $h(\ldots)$

fixed length parameter memory
Tile Coding resolution

- Tile coding learns piecewise constant approximation
- Resolution:
 \[r = \frac{\text{tile_width}}{\#\text{tilings}} \]
- Resolution can be increased by adding tilings or reducing tile width
- More tilings give better generalization
Radial Basis Functions

- continuous features
- select number of centers (prototype states)
- 1 feature per center
- features indicate how similar input is to each prototype
- smooth approximation

\[
\phi_s(i) = \exp \left(-\frac{||s - c_i||^2}{2\sigma_i^2} \right).
\]

\[
\begin{bmatrix}
0.3314, & 0.6455, & 0.0230
\end{bmatrix}
\]

\[
\begin{bmatrix}
\theta_1, \theta_2, \theta_3
\end{bmatrix}
\]

\[
Q = \phi^T \theta = 0.3314\theta_0 + 0.6455\theta_1 + 0.023\theta_3
\]
RBF vs Tiling

RBF: continuous activation

Tiling: on / off

State value
State vs state-action

- For continuous action spaces, actions can be added as another input dimension in the approximator.
- Q-learning and sarsa still usually need discretize to select greedy action.
- For discrete action sets, separate θ can be learnt for every action.
The Q-function approximation can be learnt by minimizing the squared error with gradient descent:

$$E = \frac{1}{2} [Q(s, a) - Q_\theta(s, a)]^2$$

Gradient descent learning of values:

$$\theta := \theta - \alpha \frac{\delta E}{\delta \theta}$$

With linear function approximation this becomes:

$$\theta := \theta + \alpha [Q(s, a) - Q_\theta(s, a)] \phi_{sa}$$
Approximating the Q-function (2)

During learning we estimate the true $Q(s,a)$ using an observed sample:

$$\theta := \theta + \alpha [Q(s,a) - Q_\theta(s, a)] \phi_{sa}$$

becomes (with bootstrapping):

$$\theta := \theta + \alpha [r + \gamma Q_\theta(s', a') - Q_\theta(s, a)] \phi_{sa}$$

or:

$$\theta := \theta + \alpha [r + \gamma \phi_{s'a'}^T \theta - \phi_{sa}^T \theta] \phi_{sa}$$

which we write as:

$$\theta := \theta + \alpha \delta \phi_{sa}$$
Estimate Q(s,a)

Several possible estimates can be used as target Q-function for gradient descent:

- full Monte Carlo return ($\lambda = 1$)
- bootstrapping 1 step backup ($\lambda = 0$)
- n-step return ($0 \leq \lambda \leq 1$)

Only the full return is an unbiased estimate that guarantees convergence to a local optimum, others will converge to some neighborhood of optimum.
Eligibility Traces

Traces can be used to implement n-step returns as in the tabular case. Trace values now indicate activation of features rather than state-action pairs:

\[e := \gamma \lambda e \]
\[e := e + \phi_{sa} \]

The update for \(\theta \) with traces becomes:

\[\theta := \theta + \alpha \delta e \]

where \(\delta \) is the again TD-error: \((r + \gamma V(s') - Q(s,a))\)
Gradient issues

\[\theta := \theta + \alpha \left[r + \gamma Q_\theta(s', a') - Q_\theta(s, a) \right] \phi_{sa} \]

target value

- Using bootstrapping means we use the parameters we’re learning in our learning target
- This is not a true gradient anymore
- Can cause stability problems, especially with off-policy updates
- Recent research: true gradient methods
Linear Sarsa(λ)

Initialize $\tilde{\theta}$ arbitrarily
Repeat (for each episode):

$\tilde{e} = \tilde{0}$
$s, a \leftarrow$ initial state and action of episode
$F_a \leftarrow$ set of features present in s, a

Repeat (for each step of episode):

For all $i \in F_a$:
- $e(i) \leftarrow e(i) + 1$ (accumulating traces)
- or $e(i) \leftarrow 1$ (replacing traces)

Take action a, observe reward, r, and next state, s

$\delta \leftarrow r - \sum_{i \in F_a} \theta(i)$

With probability $1 - \varepsilon$:

For all $a \in A(s)$:
- $F_a \leftarrow$ set of features present in s, a
- $Q_a \leftarrow \sum_{i \in F_a} \theta(i)$
- $a \leftarrow \arg \max_a Q_a$

else
- $a \leftarrow$ a random action $\in A(s)$
- $F_a \leftarrow$ set of features present in s, a
- $Q_a \leftarrow \sum_{i \in F_a} \theta(i)$
- $\delta \leftarrow \delta + \gamma Q_a$
- $\tilde{\theta} \leftarrow \tilde{\theta} + \alpha \delta \tilde{e}$
- $\tilde{e} \leftarrow \gamma \lambda \tilde{e}$

until s is terminal

- n-step return to estimate $Q(s, a)$
- gradient(-like) update to learn parameters θ
Linear Q(\(\lambda\))

Initialize \(\tilde{\theta}\) arbitrarily

Repeat (for each episode):

\[\bar{c} = 0\]

\(s, a \leftarrow \text{initial state and action of episode}\)

\(\mathcal{F}_a \leftarrow \text{set of features present in } s, a\)

Repeat (for each step of episode):

For all \(i \in \mathcal{F}_a: c(i) \leftarrow c(i) + 1\)

Take action \(a\), observe reward, \(r\), and next state, \(s\)

\[\delta \leftarrow r - \sum_{i \in \mathcal{F}_a} \theta(i)\]

For all \(a \in \mathcal{A}(s)\):

\(\mathcal{F}_a \leftarrow \text{set of features present in } s, a\)

\[Q_a \leftarrow \sum_{i \in \mathcal{F}_a} \theta(i)\]

\[\delta \leftarrow \delta + \gamma \max_a Q_a\]

\[\tilde{\theta} \leftarrow \tilde{\theta} + \alpha \delta \bar{c}\]

With probability \(1 - \varepsilon\):

For all \(a \in \mathcal{A}(s)\):

\[Q_a \leftarrow \sum_{i \in \mathcal{F}_a} \theta(i)\]

\(a \leftarrow \arg \max_a Q_a\)

\(c \leftarrow \gamma \lambda c\)

else

\(a \leftarrow \text{a random action } \in \mathcal{A}(s)\)

\(c \leftarrow 0\)

until \(s\) is terminal

- Off-policy updates can lead to divergence of estimates
- Counter examples exist
- Better off-policy methods exist e.g. GQ(\(\lambda\))