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Abstract

In the last years, canvases have shown promising results with regard to device fingerprinting. A
canvas is a HTML5 element, which allows an application or a user to draw an arbitrary drawing.
In this thesis, we develop new authentication methods that are seamless and based on canvases
and machine learning techniques. Seamless authentication means that a user can authenticate
without the need of requesting the credentials. Furthermore, the methods are developed with
the intent of weak authentication. This means that the developed authentication methods are
intended for non-sensitive services. They can also be part of a larger authentication chain, where
they are used as a light authentication test and have the other methods in the chain as fallback
for stricter authentication.

The outline of the developed authentication methods is as follows. First, the user is required to
register his device to the system by submitting his email and an amount of random canvases.
After the registration, the user is able to identify himself to the system with the registered device
by sending again his email and an amount of random canvases. The goal of this thesis is to
find working methods to decide whether or not a canvas originate from the given user. This is
a new problem, where no existing research is available. We approach this problem as a binary
classification problem, where we need to decide whether canvases come from the same device or not.

In total, three methods are developed and evaluated. The first method is based on a K-NN
classifier and is not suitable for canvas based authentication. It has a bad performance and it
does not scale for large datasets. The second method uses convolutional networks and is the
best performing method of all three. This method can distinguish canvases with a high accuracy,
but has the adverse requirement of training a new convolutional network, every time a new
device is added to the authentication system. The last and third method uses an autoencoder to
retrieve compressed representations of the canvases and uses these representations to calculate
distances between the canvases. The method makes use of a threshold related to the distance, to
decide whether or not the canvases are originating from the same device. This method offers the
flexibility to the security expert to choose the threshold freely and to define his own authentication
policy. Furthermore, it is a generic method. When a new device is added to the system, no new
training is needed. In this thesis, the authentication method is evaluated with different threshold
configurations and distance measures and shows reasonable results for the optimal configuration.
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Chapter 1

Introduction

Nowadays we can’t think of a world without the internet. Current statistics show that we
have more than 3.6 billion internet users today, which is around 40% of the world population
(Consortium, 2017). The impact of the internet is something we can’t oversee. It influences
our social life and how we communicate with each other, companies, the government and much
more. Authentication plays a central role in the use of the internet. How do we assure someone’s
identity via a device and how do we keep it simple for the user? Many methods have been
already developed, such as the use of a password or two factor authentication. Despite the already
developed methods, authentication is still an ongoing research.

With the introduction of HTML5, many new features were added. One of these features is
the canvas element. A canvas is a container on a webpage, which allows the application or the
user to make drawings. Canvases are used for visualisation, but also for web tracking. Research
has shown that is possible to define a sort of canvas fingerprint, with a high-entropy (Mowery
& Shacham, 2012). More over, 5% of the top 100000 websites are using canvases as a tracking
method (Acar et al., 2014). This finding inspired us to take the usages of canvases further and
use them for an authentication method. There are several reasons, why we would do this. First of
all the flexibility of canvases, the amount of possibilities that we can draw on a canvas is endless.
Further, it is supported by every modern web browser and it is easy to integrate in applications.
Overall is canvas fingerprinting showing a lot of potential. Mainly because the current techniques
are relatively simple and are performing well. Also, we see a rather unexplored domain, where we
combine machine learning with canvases.

Machine learning techniques learn a concept based on the given data. These concepts can
be very complex, which are not possible to code manually. We expect that machine learning will
allow us to extract very complex features of a canvas that are usable for authentication. We focus
mainly on deep learning, a subdomain of machine learning. Deep learning has the interesting
property of learning better with the more data. In the past deep learning has also shown to have
very good results in image classification (Krizhevsky et al., 2012) and we believe that the solution
towards our learning problem can be found in this subdomain.

In this research, we develop several new authentication methods by bringing canvases and
machine learning together.
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1.1 Problem Statement
The goal of this thesis is to develop a new authentication method, based on canvases. Currently
there is no research available towards this subject. Mainly, canvases are used for simple tracking
methods, but none of them offer the complexity needed for an authentication method. In this
research, we develop and evaluate several authentication methods that combine machine learning
techniques with canvases. The methods are developed for weak authentication. This means that
they are seamless and intended for non-sensitive services. The developed method could also be
part of a larger authentication chain, where other authentication methods activate when our
method fails. It could serve as an initial light weight authentication test, while the others serve
as a fallback for more stricter authentication.
Basically, we start from scratch with our authentication method. The only two things that are
given in this research are the design of the authentication method and the property of GPU
leakage in canvases. For the design of the authentication method, we work together with the
ICTM team at the UCLouvain. They delivered the outline of the method. Further, we have
the findings by Mowery & Shacham (2012). Their findings are the main motivation for this
research. They showed that canvas drawings can be separated because of differences in hardware
and software. This result motivates us to search for more complex features in the canvases and
we hope to find them with machine learning.

This thesis has some important challenges, which requires us to build up the whole method
from the ground up. First, we investigate if the canvas drawings are unique enough and contain
sufficient information. We are also responsible for the data collecting, since the canvases are not
predefined at the start of this thesis. Further, we experiment with different machine learning
techniques by starting with rather simple methods and continuing with more advanced methods,
such as deep learning. At the end of the experiments, we evaluate the tested methods and
investigate which techniques are eligible for authentication.

Our contribution consists of developing and evaluating seamless authentication methods that
make use of canvases and machine learning and are intended for weak authentication.

1.2 Thesis Structure
This thesis is gradually build up to give the reader a sufficient understanding of what our
contribution represents. In chapter 2, we describe authentication and how it is currently done.
Next in chapter 3, we provide background on canvases and their possibilities. Then, we continue
with machine learning in chapter 4. Chapter 5 is focusing on Artificial network and Chapter 6 is
extending the previous chapter by providing background on Deep learning. Eventually in chapter
7, we experiment with and evaluate several authentication methods. At last we draw a conclusion
and discuss future work in chapter 8. The contribution of this thesis is mainly in Chapter 7 and
8. They contain all the experiments and conclusions about the authentication methods we have
developed and tested.

6



Chapter 2

Authentication

Authentication can be done in many ways. If we want to develop an authentication method, it is
important to know what already exists and how authentication is currently done. In the chapter
we separate two types of authentication, namely explicit and implicit authentication. For every
type we take a closer look at the current authentication methods in use and we discuss on a high
level the working of the method, the advantages and the disadvantages.

2.1 The Definition
If we speak about Authentication, what do we exactly mean and why do we use it? Well, in this
research we define Authentication, related to computers, as (Dictionary, 2017):

The process or action of verifying the identity of a user or process.

When the authentication happens by human-to-computer interaction, we call it User Authentica-
tion (Rouse, 2014).
In general we use authentication to allow authorized people or processes to access certain resources
and disallow unauthorized people. This can go from logging in on Facebook to paying your
coffee with your smartphone. Both examples require authentication. How authentication happens
nowadays, will be explained in the following sections.

2.2 Explicit Authentication
Explicit authentication is an authentication mechanism, where the user is required to explicitly
give some unique identifiable information. Most of our modern day authentication methods fall
under this category. There exist several types of identifiable information. We tried to categorize
and discuss them in each subsection.

2.2.1 Password
Authentication by a password is probably the oldest and popular authentication method we
know. It is a simple method, which is easy to verify. The user has to state his identity and the
corresponding secret string or so called password to the authentication system. The system checks
if the given password matches the password for the given user and allows access if it is a match.
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Despite the fact that it is easy to verify and a simple protocol for the user, there are a lot of
disadvantages. First of all, the user has a big liability. If the user chooses a weak password,
which is easy to guess or brute forcible, the authentication is completely compromised. The
authentication system can try to obligate the user to choose a strong password by requiring
a certain length or certain type of characters. But all of this reduces the comfort of the user.
Secondly, we have also the liability of the authentication system. Nowadays, we see several data
breaches a year, where millions of passwords are stolen. As example, the site haveibeenpwned
1 keeps track of all the data breaches in the world and has currently the password information
of more than 3.7 billion people. At last, we have the fact that the password policy of a user
across different password based authentication systems, can compromise the authentication of
that user. If the user uses always the same password, only one authentication system needs to be
compromised to comprise all authentication systems for that user. There exists variants, who
try to solve these issues. One example is the use of an One-time Password Device (OTP-device),
which generate every time a different password. This changes the authentication factor from
knowledge based to possession based. The authentication does not require the user to have the
knowledge of a password, but does require the possession of an OTP device.

2.2.2 Inherent Authentication
Inherent authentication is authentication that requires integral features of the system or the
user. For user authentication, these are biometric features such as facial recognition, fingerprints
and irisscanning. All these features require the user to explicitly submit the identifiable feature.
Today, fingerprintscanners are widely integrated in most high-end smartphones and allow user to
authenticate to several platforms. Nevertheless have biometric features also drawbacks (Mokrohuz
& Kazymyr, 2014). First of all, biometric authentication mechanism are not applicable in all
devices. Technical restriction on for example mobile devices and the ethical consideration are here
the main reason. Secondly, it is still possible to circumvent the current biometric authentication
mechanism of today.

2.2.3 Two-factor Authentication
An upgrade of the two previous authentication methods is two-factor authentication. This method
has two layers of authentication instead of one and requires the user to explicitly identify two times.
This happens in two phases. In the first phase, the user identifies by giving a password or a integral
feature such as a fingerprint. In the second phase, the authentication system generates another
password and delivers it to the user via a device that is expected to be in the possession by the
user. In most cases, this is done by sending the user a text message to the associated phone number.

In summary, we have now seen several authentication methods, which require explicit par-
ticipation of the user, whether it is submitting a password or scanning a fingerprint. In the next
section, we will discuss implicit authentication, where a user is not required to explicitly identify
himself.

2.3 Implicit Authentication
Implicit authentication is mostly applied as a tracking method. On most websites nowadays, the
user gets assigned a cookie, which is used to track the behaviour of the user on that website. We

1https://haveibeenpwned.com/
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call this implicit authentication, since the user does not need to actively identify himself. The
authentication happens seamless. In section 2.3.2, we discuss several tracking methods. Although,
implicit authentication can also be used for access control, by looking at the behaviour. Behaviour
based authentication will be discussed in the next section.

2.3.1 Behaviour based Authentication
Behaviour based authentication is in an uplift, since the development of mobile devices. The
behaviour of the user can be considered as an unique fingerprint and the current mobile devices
allow us to track this. The generation of the behavioral fingerprints happens by the use of machine
learning. In 2008, Saevanee & Bhatarakosol (2008) suggested a user authentication mechanism
based on the touchpad acting of the user by looking at the keystroke dynamics and the finger
pressure. He was able to achieve an accuracy of 90 % or more. More recently, another company
called UnifyID announced on Techcrunch Disrupt 2016 to have developed a behavioral fingerprint
based on basically all sensor data of a mobile device, such as GPS, the accelerometer and much
more2. They claim to achieve a 99,9 % True rejection rate on these fingerprints. Google is also
doing actively research on this domain with projects as Project Abacus and the Trust API. These
projects involve the use of behavioral data to generate a trust score that can be used by Android
application to allow or restrict access or actions.3
Using behavioral data has two big advantages. To begin with, it is very difficult to recreate, which
makes it almost impossible to imitate a user. Secondly it is very user friendly, since everything
can be done automatically.

All these examples show that there is more and more research done towards authentication
and machine learning. More over, this indicates that there is a password-free future possible,
with machine learning as a key component.

Figure 2.1: A graph about the entropy of the fingerprints by Project Abacus. The multi-model
outperforms clearly the other modalities, with a false acceptance rate (FAR) of 1 in a million.

Source: Google I/O 2015
2Presentation RSA conference 2017: https://www.youtube.com/watch?v=2puy3GoXes8
3Google I/O Presentation: https://www.youtube.com/watch?v=8LO59eN9om4
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2.3.2 Tracking
We are all familiar with web tracking. Due the stateless internet, website are obligated to save a
sort identifier in your browser to make tracking possible. This all happens in the background,
without conscious user actions and can be considered as a sort of implicit user authentication.
Obviously, this is a very simple method, since the user can remove the cookies or alter them. But
we can draw inspiration from the more advanced tracking systems for the development of our
authentication system. In this section, we focus on prominent persistent user tracking systems,
since these are more fitting for an authentication system. With persistent, we mean tracking
systems, which are able to circumvent the user’s tracking preferences. They are also advanced in
a sense that they are hard to detect, control, block or remove (Acar et al., 2014).

Evercookies is a tracking mechanism, which respawns HTTP cookies by using multiple storage
vectors, such as Flash cookies, local storage, session storage and ETtags (Ayenson et al.,
2011). This allows trackers to identify users, even if the HTTP cookie is deleted or the
user is using a different browser. Evercookies mainly work because the deletion process
in browser is often incomplete and never deletes all storages vectors, which enables the
trackers to restore the cookies.

Cookiesyncing is a tracking method, where third-party domains share pseudo User ID's, stored
as a cookie, to keep track of the user’s browser history. This happens in the backend, where
a graph with connected websites is constructed. Note that, once the users clears its cookie,
a new pseudo user ID is generated and a new user history graph is constructed. But if
one of the sites is able to respawn its cookies, the old pseudo user ID is sent to the cookie
syncing tracker and the old and the new graph are merged. This makes cookie syncing a
powerful and persistent tracking mechanism.

Canvas fingerprinting is a rather new technique. It was introduced in 2012 by Mowery &
Shacham (2012). They showed that is was possible to invisible extract a rather unique
fingerprint by drawing text and using WEBGL scene on HTML5 <canvas> elements. Later
in 2014, Acar et al. (2014) discovered that over 5% of the top 1000000 Alexa sites was using
this technology. More about this technique, will be discussed in chapter 3

Overall, we have seen in this chapter different methods of authentication, explicitly and
implicitly, which gave us a good overview on what is currently going on in the landscape of
authentication. Now, we continue with the next chapter, which is completely focused on canvases,
a key component of this research.
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Chapter 3

Canvases

What are canvases, how are they created and why do we use them? All of these question will be
answered in this chapter.

3.1 Definition
We define a canvas as a browserdrawing, created with the <canvas> element of HTML5. the
<canvas> element is a container, which can be used for graphical drawings. It is similar to the
canvas of a painter artist, but then for your browser. Basically, there are almost no limits to the
graphical possibilities of the canvas. It can drawn everything in 2D, from shapes and gradients to
text and images. All modern browsers support canvases. The only requirement is the enabling of
javascript, since this is needed to draw on the canvases. Note that, the <canvas> element does
not require to be visible in the browser. A canvas can be drawn by and extracted from a device,
while being completely invisible for the user. This feature made canvases a tool of interest for
tracking and device fingerprinting.

3.2 Canvas fingerprints
The first mentions about canvas fingerprinting where made in 2010, during the discussions on
the WebGL mailing list. There were some different opinions on whether or not to make the
GPU and driver information available for the javascript WebGL render engine. Steven Baker
(Baker, 2010) disputed that he was able to identify the GPU without any extra information.
He suggested that it was possible to build up a database with benchmarks, such as the vertex
measure performances, and successfully distinguish different hardwares. Later added Benoit
Jacob (Jacob (2010)) that GPU rendering analysis is also an option, since most rendering, also
WebGL, goes through the GPU and has config-based differences. Eventually, Mowery & Shacham
(2012) introduced a system that made canvas fingerprinting possible and experimentally applied
the theoretical assumptions of Baker and Jacob. They showed that it was possible to identify
hardware and software, due the leakage of GPU-based rendering. More over, they did this with
only the use of text rendering and WebGL scenes. The setup of the system was very simple.
They rendered a pangram on the canvas in a certain font and compared these canvasdrawings
pixel wise. A pangram is a sentence that contains all the letters of the alphabet at least once.
Empirical results showed small differences between different operating systems, concerning the
text rendering of for example the 30-year old font Arial. As a conclusion, they calculated a
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distribution entropy of 5.73 bits for the fingerprints generated by their system and believed there
was still room for improvement.

Summarized, Canvases are drawings from the <canvas> element of HTML5 and can be grossly
distinguished by using a few simple tests.

Figure 3.1: Mowery & Shacham (2012) discovered that it was possible to see differences in the
text rendering. Here do we see how 3 different operating systems render 20pt Arial in 13 different
ways.
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Chapter 4

Machine Learning

Machine learning is a well known field of study in Computer Science. The exact definition, how
research is done in this field and several relevant techniques for our research will be discussed in
this chapter.

4.1 What is Machine Learning
Sometimes we are not able to handwrite a program for a complex problem as for example detecting
malicious credit card transaction. There are so many small rules that we need to combine and tune
that it is almost impossible to have a complete reliable program. Also do we need to update the
program regularly over time, because fraude is a moving target. As a solution people came up with
machine learning. Instead of manually write a task-specific program, we try to collect as much
concrete examples of our task and let the machine learning algorithm figure out how to execute
the required task. In case of our example with the credit card fraud detection, we would collect
examples of fraudulent and legitimate transactions and give that to the machine learning algorithm.

If we look at the literature, there exists no clear formal definition about machine learning.
Although many people have tried it, for example Samuel (1959) defined machine learning as:

Field of study that gives computers the ability to learn without being explicitly programmed.

Later defined Mitchell (1997) a well-posed learning problem as

A computer program is said to learn from experience E with respect to some class of tasks
T and performance measure P, if its performance at tasks in T, as measured by P, improves with
experience E.

Let’s explain this with an example, for instance checkers. The experience E can be described as
the input, received by the computer program. With checkers the experience is equal to the data of
thousands of games, which includes every move of the player and opponent of each game. The task
T of the computer program is playing checker. The ability to play checker gets evaluated based on
the performance measure P. In our case the goal is to win the checkers game, so the performance
P is winning or losing the game. Based on the performance, the computer program can learn from
the data and evaluate which moves are good and which are bad during a game. This can be done,
based on a probability and a score function. The score function measures the accuracy of the
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predictions. Every prediction gets rated by the score function. The higher the score, the higher
the accuracy of the prediction. During the learning, the computer program will take the prediction
with the highest score to improve its chances on winning the game. By taking the prediction
with the highest score, the computer program takes the most accurate prediction. Eventually if
we update after every move, selecting every time the move with th highest chance on victory, the
program will learn itself to play checkers. Mitchell (1997) has defined this example more formal as:

A computer program that learns to play checkers might improve its performance as measured by its
ability to win at the class of tasks involving playing checkers games, through experience obtained
by playing games against itself.

In general we can describe machine learning as the field of study that does research and develop-
ment towards self-learning algorithms. Overall is research in machine learning done in 3 steps:
datacollection, pre-processing and the learning.
Within the field of machine learning, we make in general three distinction in the types of learning
tasks (Russell & Norvig, 1995), namely supervised learning, unsupervised learning and reinforce-
ment learning. In this research we will discuss the group of supervised and unsupervised learning.
These groups contain algorithms which we will use during our research.

4.2 Workflow of a Machine Learning Experiment
Now that we have a better understanding of what machine learning exactly is, we will continue
with the workflow of a general machine learning experiment, which is the methodology we followed
for our research. A general machine learning experiment exist out of three important phases: the
data gathering, the pre-processing and the learning phase.

The first phase is the data gathering. This may seem trivial but this is not the case. Be-
fore we even start to collect data we need be conscience on what we want to collect and on what
to do with it. For example ‘How do we label the data?’, ‘Are we able to label the data?’ and
‘Where do we get this data from?’ are all important questions we need to ask ourself during this
phase. Note that, the collected data is a representation of the problem we want to learn. If the
data is collected or labeled bad, it influences the whole experiment. Often it is the case at the
start of a machine learning project that the data is already given, but for our research this was
not the case. So caution is needed.
Once we have collected the data, we continue with the pre-processing phase. In this phase we try
to represent the data as efficient as possible. By doing this, we try to optimise the performance
of our self-learning algorithm. Crone et al. (2006) has shown that there is a significant impact of
pre-processing on datamining. In section 7.9.2, we will discuss Principle Component Analysis, a
technique that allows us to extract the most informative features of a dataset.
At last we have the learning phase, where why try to learn a certain problem, for example playing
checkers. In this phase, we feed the pre-processed data to our algorithm and the algorithm tries
to learn from this data and solve the problem. Machine learning tasks and there algorithms are
divided in three broad categories, based on the type of ‘signal’ or ‘feedback’ that is available.
As mentioned previously, these categories are reinforcement learning, supervised learning and
unsupervised learning and we focus only on the latter two.
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Figure 4.1: Schema of the different categories in the type of tasks in machine learning

4.3 Supervised Learning
Most of the time we have a dataset available in machine learning, with examples of the concept
we want the algorithm to learn. We speak of supervised learning, when an algorithm is presented
with examples of the concept, namely the given inputs and the desired outputs, and it tries to
learn a general rule for the mapping of the inputs to the outputs. We also call this ‘general
rule’ the hypothesis of an algorithm. With this hypothesis, for example y = f(x1, x2, ..., xd), the
algorithm can predict the output y for the given input features xi, even if the algorithm has
never encountered the input. The goal is to achieve the highest possible prediction accuracy.
Although we must be careful with this ambition, because we can encounter overfitting or the
opposite underfitting. We will discuss this later in more detail.
Under Supervised learning we group several types of problems such as a classification problem
and a regression problem. A classification problem is a problem where we try to construct a
hypothesis for a small set of possible output values y. For example a spamfilter, with spam and
non-spam as possible output.
Another type of problem is a regression problem. In contrast to a classification problem, we
construct for a regression problem a hypothesis for the output value y, where y is part of a very
big or infinite set of output values. An example of such type of problem is the prediction of the
rent, based on the surface.
In the next section we continue by focussing on the classification problem. This is the problem
we need to solve during our research.

4.3.1 Classification Problem
A classification problem is one of the well-known type of problem in supervised learning. When
we have to construct a hypothesis, where the possible set of output values are rather small, we
speak of a classification problem. As an example we have a spamfilter where spam and non-spam
are the possible output values. If we try to describe the example by the definition of Mitchell
(1997) is experience E the dataset v with labeled emails. The task T of the spamfilter is to decide
which email must be labeled as spam and which as non-spam. The performance P will be decided
based on the accuracy of the spamfilter. This is the precision of correctly labeled emails.
One of the many supervised learning classification algorithm is K-Nearest Neigbors, which will be
discussed in next section.
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4.3.2 K-Nearest Neighbors
The K-Nearest Neighbors algorithm, also know as the K-NN algorithm, is an algorithm used
for classification in supervised learning. It is an algorithm that uses previous trained instances
from the memory to decide on new instances. This kind of learning is also called instance-based
learning. The K-NN algorithm is one of simplest algorithms in machine learning (Mitchell, 1997)
and is very intuitive. The algorithm takes n input values and corresponds these to points in a
n-dimensional space IRn. It assigns a value to a new instance by looking at the most common
value amongst the k nearest neigbors of that new instance. Notice that the K-NN algorithm is a
non-parametric algorithm, which means it is making no assumptions about the functional form of
the problem being solved.
To find the k nearest neighbors of an instance, a certain distance measure is used. For the distance
measure there are a lot of options. The Euclidean distance measure is one of the most popular
distance measure. More precisely, let us describe an arbitrary instance x as

〈a1(x), a2(x), ..., an(x)〉

with ar(x) the rth attribute of instance x.

The Euclidean distance d(xj , xj) of the instances xi and xj can then be described as

d(xi, xj) =

√√√√ n∑
r=1

(ar(xi)− ar(xj))2

Although, the Euclidean distance is the most popular, other distance measure can be used too.
Such as the hamming distance, where we calculate the distance between the binary vectors. For
example the hamming distance between the binary vectors 1011101 and 1001001 is 2. Another
distance measure is the Manhatten distance. This is a distance measure equal to the sum of the
absolute differences of their Cartesian coordinates.

d(xi, xj) =
n∑
r=1
|ar(xi)− ar(xj |

At last we have also the Minkowski distance, which is a generalisation of the Euclidian distance
and the Manhatten distance.

d(xi, xj) =
(

n∑
r=1
|ar(xi)− ar(xj)|p

) 1
p

Overall the Minowski distance is used in most K-NN algorithms. Note that, if we have P = 1
we get the Manhatten distance and with P = 2 the Euclidian distance.

4.4 Unsupervised learning
Unsupervised learning is another category within the machine learning. With supervised learning
in 4.3, we saw that we have labeled data containing examples of the mapping between the
input values and the output values. With unsupervised learning this is not the case, where
the algorithm has to figure out the mapping from the input values to the output values by its
own. The algorithm has no extra information in the training set and has to try to construct a
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hypothesis in another way. An example of an unsupervised learning technique is clustering, where
the algorithm tries to group the data. An example of clustering is shown below.

Figure 4.2: Identificatie bij clustering (Source: http://home.deib.polimi.it)

One of the unsupervised learning techniques we will use during our research are autoencoders.
autoencoders are used for deep learning and are a special configuration of an artificial neural
network. More about autoencoders will follow in section 6.3.

4.5 Underfitting and Overfitting
In section 4.3, we briefly mentioned something about the fact that during the training of a
classifier, we must be careful with the ambition of achieving the lowest training error as possible,
since we have the risk of overfitting. Mitchell (1997) defined overfitting as:

Given a hypothesis space H , a hypothesis h in H is said to overfit the training data if there
exists some alternative hypothesis h′ in H, such that h has smaller error than h′ over the training
examples, but h′ has a smaller error than h over the entire distribution of instances..

Summarized, this means that we make the model too specialised on our training data and
it is not able to classify other unseen data correctly. Overfitting occurs because of two problems:
not enough data and noise. The trainings data can not be considered perfect and is certainly not
enough to represent the real world. It is just an approximation. More specifically, if we are training
our classifier until zero errors, we are including the noise in our model. As a result will the classifier
perform perfectly on the trainings data, but very poor on other non-training data. The opposite
of overfitting is underfitting, where our model is too general and has insufficient representational
power. It will perform bad on the training- and test data. Note that, an underfitted model still
can perform better on unseen data than an overfitted model. As a researcher, it is important to
find a balance in the generalisation and specialisation of the model. In practice, we like to define
this equilibrium as the point just before the error of the training and test data starts to increase.
Figure 4.3 and 4.4 are examples of an overfitted and underfitted model on the same data. The true
function is the model we try to obtain. Figure 4.5 shows the equilibrium between generalisation
and specialisation of the model. This is an example of a well trained model.
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Figure 4.3: Overfitted model

0.0 0.2 0.4 0.6 0.8 1.0

x

1.5

1.0

0.5

0.0

0.5

1.0

1.5

y

Model

True function

Samples

Figure 4.4: Underfitted model
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Figure 4.5: A perfectly trained model

4.6 Bias and Variance
Previously, we have seen that the training error of a model is not guaranteed to be the same as
the generalisation error or out-of-sample error, which is the prediction error on the unseen data.
In this section, we discuss how we can understand the error of a model better. We will do this by
decomposing the error of a model in two components: error due Bias and error due Variance.
The relation between Bias and Variance and quantifying them, allows us to better understand the
error of a model. The Bias of a model is defined as the difference between the predicted values
and the expected values:

Bias(x) = E[f̂(x)]− f(x) (4.1)

with f̂(x) the model and f(x) the true function.

We speak of a model with a high Bias when the model is not specific enough and lacks in
complexity. As a result, we get a big difference between the predicted values and the expected
values. It is clear that we try to achieve a Bias as low as possible. Secondly, we have the Variance,
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which is quantified as the variability between the model’s predictions:

Variance(x) = E[(f̂(x)− E[f̂(x)])2] (4.2)

The Variance tells us how much a certain point x varies for different model configurations. This
can we see in direct relation with overfitting, where we will see a high variance, because the model
is adapting every time to the noise. As a consequence, we try also to achieve the lowest variance
possible.
Now that we have defined these two components, we can bring them together to define the
out-of-sample error (Friedman et al., 2001):

Err(x) = E[(Y − f̂(x))2] (4.3)

If we rewrite this with the components we get:

Err(x) = (E[f̂(x)]− f(x))2 + E[(f̂(x)− E[f̂(x)])2] + σ2 (4.4)

The last term σ represents the noise on the data, which is irreducible.

By taking a closer look at equation 4.4, it is clear that there is a bias-variance-tradeoff. Once
we want the decrease the bias, we increase the variance and visa versa. This can be brought in
relation with what we discussed in section 4.5, regarding the balance between generalisation and
specialisation of the model. Figure 4.6 illustrates this bias-variance tradeoff and allows us to
define this sweet spot in terms of Bias, Variance and model complexity:

∂Bias

∂Complexity
= − ∂V ariance

∂Complexity
(4.5)

Figure 4.6: This plot visualises how bias and variance are contributing to the general error.
(Source: http://scott.fortmann-roe.com/)
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Note that, we are not able to calculate the real out-of-sample error, but always use an approx-
imation. More on model validation will be discussed in section 4.7.

To conclude this section, we like to end with the dartboard analogy by Claude & I. (2011)
in figure 4.7. This analogy is a good summary on how we could see Bias and Variance. The red
bulls eye represents the target value. The goal is to have the predicted values as close as possible
to the bulls-eye. As we can see, results a low bias in predicted values close to the bulls-eye, while
a high bias causes the predicted values to position away from the bulls-eye. This is also what is
happening with overfitting, where the model is to specialised and is eventually going away from
the true function we want to learn. The effect on variance is also clearly visible. The predicted
values are spread out with a high variance, while a low variance results in a concentration around
a certain point. At last do we see that the left upper dashboard is the one we like to achieve.
Unfortunately this is not possible, due the bias-variance-trade-off.

Figure 4.7: Dashboard analogy by Claude & I. (2011)

4.7 Model Validation
When we evaluate the performance of a trained model, we do this based on the generalisation error.
Although, as earlier mentioned in section 4.6, it is not possible to calculate the generalisation
error and we are only able to approximate it. How this is done, will be explained in this section.
Earlier we saw that the trainings set is definitely not a good choice to estimate our generalisation
error, since this is completely biased. If we would use the training set as approximation and
we would try to minimise it, our model would be overfitted. Another better solution is to split
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Figure 4.8: 5-fold cross-validation, illustrated by ?

the data in a training-, validation- and test set and learn in three phases. The first phase is the
training phase, where we use the training set to train our model. Afterwards we continue with
the validation phase, where the validation set is used during the model selection. The error of
this set will be used to tune the parameters of the model. In the last phase, we use the test
set to evaluate our model. The error of the test set is considered to be a good approximation
of the generalisation error. Note that, the test set is not used for tuning the model. It is very
important to keep the test set separate from the validation or training set, otherwise would the
approximation be too optimistic (Friedman et al., 2001).
Strictly defined rules about splitting the dataset do not exist. Empirically it is shown that the
more training data you have, the better results you get. Also does the size of the validation set
need to be big enough to be a good representation of the data distribution. In practice there are
rules of thumb applied, for example 60%/20%/20% or 50%/25%/25% for training/validation/test.
Unfortunately, our dataset is sometimes too small and the training data too valuable. Cross
Validation allows us to still make a fair approximation, despite the small dataset.

4.7.1 K-fold Cross Validation
K-fold Cross Validation allows us to make a good approximation of the generalisation error of a
model, despite a small dataset. The validation method splits the dataset in K parts and takes
each iteration i, part i as a validation set and the other K-1 parts as training set. K-fold cross
validation repeats this in total K times. After K iterations, our prediction error is defined by the
cross-validation error:

CV (f̂) = 1
N

N∑
i=1

CVi (4.6)

A disadvantage of K-fold cross-validation is the increase in computational time. The bigger K,
the longer the computational time, since we need to repeat the learning K times. Nevertheless, we
must be careful when choosing the value K, because it can have an influence on the cross-validation
error. If we take K too small, we may end up with a high bias, since the chunks are too big and
the training data is too small. On the other hand, using a big K would likely result in a high
variance. In general are 5-fold and 10-fold cross validation suggested (Kohavi et al., 1995).

4.8 Principle Component Analysis
Principle Component Analysis (PCA) is a statistical procedure, which allows us to extract the
most informative features or principle components of a dataset. This is done by looking for
the directions with the highest variance. The general idea behind it, is that in those directions
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the data varies a lot and gives us the most useful information. Mathematically this is done
by calculating the eigenvectors with the highest eigenvalues. An eigenvector can be seen as a
direction and its corresponding eigenvalue as the variance for that direction. In machine learning,
PCA is commonly used for dimensionality reduction. Formally, this can be done as follows:
Suppose, we want to reduce an n-dimensional dataset to a k-dimensional dataset. The first step
of the reduction process is calculating the covariance matrix Σ:

Σ = 1
m

m∑
i=1

(x(i))(x(i))T (4.7)

with x(1), x(2), ..., x(m) the samples of the dataset.

The next step is the calculation of the eigenvectors. This can be done with Singular Value
Decomposition, a operation from the linear algebra. With this technique, we factorize a real or
complex matrix M in:

M = UΣV T (4.8)

With U and V the left- and right singular values of M and Σ a rectangular matrix with on
its diagonal the eigenvalues of M .

By applying the Singular Value Decomposition on Σ (from equation 4.7), taking the k first
columns of U and multiplying these with sample x(i), we get as a result the dimensional reduced
sample x(i)

k . We will not go deeper into the mathematics of PCA.

Overall it is important to know that PCA can be used for dimensionality reduction and this can be
done mathematically by calculating the covariance matrix and use Singular Value Decomposition.

In this chapter, we discussed machine learning in general and explained the K-Nearest Neighbors
algorithm. In the next chapter we continue with another machine learning algorithm, called
Artificial Neural Networks.
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Chapter 5

Artificial Neural Networks

The concept of artificial neural networks is inspired by the biological brain. The biological brain
is built of complex webs of interconnected neurons, where each neuron receives input from other
neurons and the effect of each input line of a neuron is controlled by synaptic weights. These
synaptic weights are also adapting and give the brain the ability to learn something. This biologi-
cal structure is also visible in artificial neural networks. Note that, an artificial neural network
is not an artificial copy of the human brain but is inspired by. For example the communication
between the neurons is completely different. Where an individual artificial neural outputs a
single constant value, outputs a biological neuron a complex time series of spikes. Especially the
ability of the human brain to process visual complex content in less than a second, encouraged
researchers to use the human brain as an inspiration for a learning algorithm.
The switching speed of a neuron in the human brain is known to be around the order of 10−3

seconds, which is rather slow compared to the computer switching speed of 10−10 seconds. Surpris-
ingly, the human brain is capable to visually recognise for example our mother in approximately
10−1 seconds. A very impressive result if you take the complexity of the problem and the switching
speed of the biological neuron in account. A 100 inference steps to make such a complex decision
doesn’t seem enough. Based on these observation, researchers were convinced that the impressive
processing abilities of the biological neural network was the result of highly parallel computations
on the data, distributed over different neurons. This is also reflected in the artificial neural
network.
In general, we define an artificial neural network as a learning method that provides a general and
practical method to learn real-valued, discrete-valued and vector-valued functions from examples.
Artificial neural networks are very useful and effective for certain types of problems, especially
the type of problems where we need to interpret real-world complex sensor-data (Mitchell, 1997).
For example the learning of recognising handwriting (Y. LeCun et al., 1989), speech (Lang et al.,
1990) and face recognition (Cottrell, 1990) are a few of the many problems, where artificial neural
networks have achieved great results and emphasize the effectiveness of this learning method on
complex real-world sensor-data.
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Figure 5.1: A natural neural network (Source:http://www.alanturing.net)

5.1 Building Blocks
An artificial network can be decomposed in different buildings blocks. In general, an artificial
neural network consists of units, which can be grouped in layers. A unit is similar to a biological
neuron. Each unit can have direct connections with other units. Also, each incoming connection
has an associated weight. This real-value determines the contribution of the input signal to
the output of the unit. By tuning the weights based on the performance of the neural network
and favoring certain input signals, the artificial neural network is able to solve certain complex
problems.
If we look at it from a higher level, we can group these units in layers. There exist three types of
layers: an input layer, a hidden layer and an output layer. The input layer consists of the units
that receive the input data for the neural network and has only outgoing connections. The output
layer consists of units with only incoming connections and delivers the output of the artificial
neural network. At last we have the hidden layer, this layer consists of units with incoming and
outgoing connections. Figure 5.1 illustrates all the components of an artificial neural network.
The displayed network is also called a fully-connected neural network. This means that all units
from one layer are connected with all the units from the next layer.

HIDDEN LAYER

OUTPUT LAYER

INPUT LAYER

Figure 5.2: A fully-connected neural network with one hidden layer
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As we said before, a unit outputs a single constant value. Although, we do see in figure 5.1,
that it has multiple input signals. Well, a unit achieves this by applying a propagation function,
often the weighted sum, on the input signals and transforming it to one constant value with an
activation function. Every unit from a non-input layer has such an activation function. More on
activation functions can be found in the next section.

∑wixi

x1
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Figure 5.3: A unit with as propagation function the weighted sum

5.2 Activation Functions
An activation function is a function that transforms the multiple input signals of a unit to one
constant output signal. This is the reason why the output of a unit is also called ‘the activation’.
As an equation, we write the activation function φ as:

o = φ(−→w · −→x ) (5.1)

with o the output.

An activation function can be linear or non-linear, but mostly a non-linear version is used.
The non-linear activation functions introduce non-linearity and allow the network to solve com-
plex problems, which are linear non separable (Y. A. LeCun et al., 2012). Popular non-linear
activation functions are the Sigmoid, Hyperbolic Tangent and the Rectified linear unit (ReLU).
We will discuss these in the following subsections, but first we talk about a special type of unit,
called a perceptron.

5.2.1 Perceptron
The perceptron is a special kind of unit designed by Rosenblatt (1958). This kind of unit
transforms the input values to only two possible output values, namely 1 and -1. It calculates the
weighted sum of the input values and if this sum is bigger than a certain threshold the output
value of that unit is 1 and otherwise -1. Formally we can write this down as:
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o(−→x ) =
{

1 if−→w · −→x > 0
−1 otherwise

(5.2)

where −→x is a vector with the input signals and −→w the corresponding vector with the weights for
the input signals.

The behaviour of a perceptron results in the creating of a hyperplane decision surface, which
deviated the input signals in two groups. Unfortunately, not every output of the perceptron is
differentiable and for certain optimisation algorithms this is a requirement. Take for instance
the backpropagation algorithm in section 5.3. Luckily, we can solve this by using a non-linear
activation function, such as the Sigmoid.

∑wixi

x1

x2

xn

w1

w2

wn

Output

Step
functionWeighted SumInput

Figure 5.4: A Perceptron

5.2.2 Sigmoid
The Sigmoid function is a non-linear activation function and is differentiable for the whole output
domain. The output value range of the sigmoid function is from 0 to 1. The difference of the
sigmoid with the perceptron lies in the smooth transition when going to the extremes. This
smooth transition makes the whole output domain differentiable and allows us to use optimisation
algorithms, which require differentiability. Also, if the sigmoid is used as activation function for
the units, we are able to process non-linear data, because of the non-linearity of the function.
Formally we write the sigmoid function (denoted σ(x)) as follows:

σ(x) = 1
1 + e−x

(5.3)

In general, it is known that an artificial neural network may learn faster when the units use an
antisymmetric sigmoid activation function instead of a symmetric sigmoid activation function
(Haykin, 2004). An activation function ϕ(x) is antisymmetric when:

ϕ(−x) = −ϕ(x) (5.4)
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As you can see in figure 5.2.2 is the sigmoid function symmetric, but with small modifications we
can make it antisymmetric. The Hyberbolic Tangent is such a antisymmetric variation of the
sigmoid function.
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Figure 5.5: The Sigmoid Function

5.2.3 Hyperbolic Tangent
the Hyperbolic Tangent (denoted htan(x)) is a non-linear activation function and is a shifted and
stretched version of the sigmoid function. The activation function is defined by:

ϕ(v) = aϕ(bx) (5.5)
with a en b two constants. Suitable values for a en b can be found in Y. LeCun et al. (1989).

If we take for simplicity the a = 1 and b = 1, we derive:

ϕ(x) = htan(x) = 1
1 + e−2x + 1 (5.6)

The following figure illustrates this Hyperbolic Tangent function, where the output is in the
range of -1 and 1.
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Figure 5.6: The Hyperbolic Tangent Function

5.2.4 Rectifier
At last, we have a Rectifier. A unit with a rectifier as activation function is also known as a
Rectified Linear Unit or RELU. A basic rectifier can be defined by:

f(x) =
{

0 for x < 0
x for x ≥ 0

(5.7)

A rectifier is, as from 2015, the most popular activation function used in deep network learning
(Y. LeCun et al., 2015). The main reason is the research by Glorot et al. (2011), where it is shown
that supervised training of very deep neural networks is much faster if the hidden layers are
composed of ReLU’s, instead of a units with an activation function as the sigmoid or Hyperbolic
Tangent. This discovery was really a breakthrough for deep network learning. The research
showed that RELU’s allowed us to do purely supervised learning with deep learning networks and
achieved good results, where before it was deemed that for unsupervised learning pre-training was
needed (Larochelle et al., 2007). Another advantage of RELU’s is the introduction of sparsity,
which is naturally done by the RELU’s by producing zeroes for every input value less or equal to
zero. Sparsity is really a concept of interest in machine learning. Especially because it closes the
gap between artificial and biological neural networks. Studies have shown that the information
encoding in a biological brain happens in a sparse and distributed way (Attwell & Laughlin, 2001).
Only 1 to 4 % of the neurons are active at the same time (Lennie, 2003). Sparsity has already
been the key for research towards deep learning networks (Lee et al., 2008; Ranzato et al., 2006).
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Figure 5.7: The activation function of a Rectifier Linear Unit

5.3 Gradient Descent and Backpropagation
In this section we talk about Gradient Descent and the Backpropagation algorithm. Gradient
Descent is a general approach to minimise the error E of a learning algorithm. The Backpropaga-
tion algorithm is a gradient descent algorithm that is commonly used to update the weights and
to minimise the errors of an artificial neural network.
When we want to minimise the error of a learning algorithm, we see the error as a surface.
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The surface, also called error surface, is the look of an algorithm’s error E, in function of its
parameters. When we are using gradient descent, must the error surface be differentiable. This
means that every point on the surface, corresponding with a parameter configuration, must be
differentiable. Visually this means that there can be no gap in the error surface. Figure 5.3 is an
example of a differentiable error surface.
Despite the requirement of differentiability, we still see a bad performance of gradient descent on
an irregular error surface. The irregularity results in a lot of local minima in the error surface,
which causes the gradient sign to change often. Further is finding the global minimum not assured
with gradient descent.
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w2

E
rr

(w
)

Figure 5.8: An example of an irregular error surface

5.3.1 Gradient Descent
Gradient descent or steepest descent is an optimisation algorithm, that works very intuitively.
The gradient descent algorithm starts at a random point on the surface and moves across by
following the path with the steepest slope. In the case of a learning algorithm’s error, where we
try to find a minimum, gradient descent will follow the path with the steepest slope downwards.
Note that, every point on the surface is a different configuration of parameters (or weights) for
the concerning learning algorithm. So every time we are following the steepest slope, we are
adjusting the parameters of the learning algorithm. Because gradient descent is always following
the steepest slope, we call it a greedy algorithm.
As stated before, gradient descent requires differentiability. This means that the algorithm’s error
E must be derivable for the whole domain. Formally we can write the derivative or gradient of
error E in function of its weights −→w and with length n as follows:

∇E(−→w ) =
(
∂E

∂w0
,
∂E

∂w1
, . . . ,

∂E

∂wn
,

)
(5.8)

If we take a closer look to the derivative ∇E(−→w ), we see that ∇E(−→w ) is a vector describing a
size and direction and represents the steepest slope. This is a very powerful property. If we want
to know the steepest slope for any point in the domain, we only need to calculate the derivative.
Note that, this gradient describes the steepest slope increasing E, in function of the parameters
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−→w . We want to minimise the error, so we want the steepest slope to decrease E. This can be
done by taking the negated gradient −∇E(−→w ). Now, the weight update or training rule can be
defined as follows:

−→w ← −→w +∇−→w

with

∆−→w = −η∇E(−→w ) (5.9)

In the equation, we do not subtract the complete gradient but we take a certain rate of the
gradient. This rate η represents the learning rate. The learning rate is used to tune the step size
of the algorithm and varies between the value 0 and 1. The choice of the learning rate has an
impact on the performance of gradient descent. Smaller values for η, let the algorithm converge
much slower, while larger values introduce the risk of overstepping a local minimum. It is also
know for gradient descent to ‘zigzag’ in convex valleys (Mitchell, 1997). As a solution, we can
introduce an adaptive learning rate, which is changing over time. By doing this we have the best
of both worlds, bigger step sizes in the beginning prevent a slow convergence and the smaller
steps makes it less susceptible to overstepping or zigzagging.
Next, we want to describe gradient descent as a practical algorithm. This means we need to
find an efficient way to calculate the gradient for each step and iteratively update the weights.
Fortunately, this seems not too difficult. To show this, we must first define the algorithm’s error
E. During the training of the learning algorithm, we can use the training error as an indication
on how the algorithm is performing. There exist a lot of error measures to define the learning
algorithm’s error E w.r.t −→w , we use the following:

E(−→w ) ≡ 1
2
∑
d∈D

(yd − ŷd))2 (5.10)

With D the dataset, ŷd the predicted value for d, yd the expected value for d. The reason
why we choose this equation will follow later.

Now that we have the error E, we can obtain the vector of ∂E
∂wi

derivatives by differentiat-
ing E from equation 5.10. For the simplicity of the algebraic derivation we take for the learning
algorithm f the linear unit:

f(−→x ;−→w ) = −→x · −→w

We could take a more sophisticated f , but this would make the algebraic derivation and calculations
more complex and for this example a linear unit is sufficient. Eventually, we describe the partial
derivative by:

∂E

∂wi
= ∂

∂wi

1
2
∑
d∈D

(yd − ŷd)2

=
∑
d∈D

(yd − ŷd)
∂

∂wi
(yd −−→w · −→xd)

=
∑
d∈D

(yd − ŷd)(−xid)

(5.11)
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Where xid denotes the single input component xi for training example d.

Note that, the choice of E in equation 5.10 and the linear unit fmakes the calculation very
convenient. For completion, we rewrite the update rule for a single component, based on equation
5.9, as:

∆wi = η
∑
d∈D

(yd − ŷd)xid (5.12)

In summary, we describe the gradient descent algorithm for the linear unit by first initialising
the weights randomly. Then for each iteration we update the weights by applying the learning
algorithm on every training example and compute ∆wi for each weight, according to equation 5.12.
This process is repeated until the termination condition is met, for example a certain amount of
passes of the training set or a sufficiently small error value. Because we update all the weights
with respect to the whole training set, this vanilla version of the gradient descent algorithm is also
known as Batch Gradient Descent. A big disadvantage of this implementation is the inefficiency
for very large datasets, where it can take a long time before the weights are updated. This is
the reason why sometimes Stochastic Gradient Descent is preferred, an incremental approach of
gradient descent.

5.3.2 Stochastic Gradient Descent
Stochastic Gradient Descent or Incremental Gradient Descent is a common variation of Batch
Gradient Descent. Instead of updating the weights with respect to the whole training set, we
update the weights every time with respect to a single training example. As stated earlier, the
standard gradient descent has some difficulties. First of all the the slow convergence towards the
local minimum and secondly finding the global minimum is not assured. Stochastic Gradient
descent is known to alleviate these difficulties (Mitchell, 1997).

Now that we have seen gradient descent as a optimisation method and know how to min-
imise the error of a function. We continue by discussing the actual learning method of an artificial
neural network, which is done by using backpropagation.

5.4 Backpropagation
The backpropagation algorithm or just backprogation is a learning method, used to train an
artificial neural network. It is in general considered as a supervised learning method, although
it can be used sometimes in a unsupervised way, for example in section 6.3 with autoencoders.
In section 5.1, we already mentioned that learning of an artificial neural network, happens by
tuning the weights. The backpropagation algorithm will try to tune these weights in function of
minimising the error of the artificial neural network. The tuning itself happens by using gradient
descent. The measurement for the error of an artificial neural network is defined as the squared
error of the difference between the output and and target values. Formally written down as:

E(−→w ) ≡ 1
2

∑
(xj ,yj)∈D

∑
k∈outputs

(ykj − ŷkj)2 (5.13)

where ŷkj is the predicted output value by the kth output unit for input value xj and ykj is
the target value for unit k.
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Because backpropagation is using gradient descent, differentiability is also required (see sec-
tion 5.3.1). This means that all units must use an activation function, which is differentiable
for the whole output domain. Backpropagation does not work with perceptrons for example.
Note that, there exist several types of neural networks, the backpropagation algorithm we discuss
in this section is applicable on a feedforward neural network. This is an artificial neural
network, where the data moves from the input layer through the hidden layer(s) to the output
layer. Other types are for example recurrent neural networks and radial basis function networks,
but these will not be discussed.

The goal of backpropagation is to minimise the total error of the network, defined by equation
5.13. To achieve this, we need to update each weight wji in a way that the predicted output
value of unit j is closer to the target value. wji presents the weight of the signal, going from unit
i to unit j. Earlier in section 5.3.1, we have seen that this can be done with gradient descent. So
for every weight-update, we need to calculate the partial derivative ∂E

∂wji
and use the negative

gradient. We use ∂n to describe all partial derivatives w.r.t the error of unit n. Pay attention, ∂n
is different for outer units and hidden units. The reason is that the output of an hidden unit has
an impact on the output unit and thus on the error. The ∂k for outer unit k is defined by:

∂k = ψ(ok)(yk − ŷk) (5.14)

Where ψ is the derivative of activation function φ and (yk − ŷk) the difference between the target
value and predict value of unit k.

The ∂h for hidden unit i is defined by:

∂h = ψ(oi)
∑

k∈outputs

wki∂k (5.15)

where oi is the output of hidden unit i and wki the weight of the signal, going from unit i to
j. Note that, the ∂h defined in equation 5.15, is the formula for the unit right before the output
unit. It is easy to extend this equation and generalise it for other units in deeper layers. We
will not go deeper into these equations. Mainly, it is important to understand that there is a
difference in the delta calculation for a hidden unit and an outer unit.

Now, we have everything in place to describe the backpropagation algorithm. The first step of
the algorithm is randomly initialising the weights of the neural network with small zero-centered
numbers for example between -0,5 and 0,5. Next we iteratively propagate each training example
xj through the neural network and calculate the predicted value ŷj . Afterwards we check how far
each unit is off of the target value by calculated the delta’s. Once the delta’s are calculated, we
can update the weights of the network. This is repeated until a certain termination condition is
met, for example an amount of iteration. The propagation of the weights through the network is
also called the forward pass and the calculations of the delta’s the backward pass.

We update the weights by following equation 5.9 of gradient descent (See section 5.3.1). Only we
define ∆wji slightly different by:

∆wji = η∂jxji (5.16)

where η is the learning rate, xji the training example and wji the weight of the signal, going
from unit i to unit j.
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As with gradient descent, we have also to possibility to update the weights after propagat-
ing the whole dataset and use the sum of all ∆wji’s to update the weights. This is also known as
Batch backpropagation. Although, this is unpopular in practice, because of the long learning
time when having a large training set.

5.5 Other Gradient Descent Variants
To summarize, we have seen the general outline of a neural network, the optimisation method
gradient descent and the gradient descent learning algorithm backpropagation. Previously, we
stated that there are some important challenges with gradient descent. First of all, we are not
assured that we will reach the global minimum. It is possible that the algorithm gets stuck in a
local minimum. Another challenge is the choice of the learning rate. In section 5.3.1, we briefly
discussed the issue with the learning rate, where a big learning rate value causes overstepping and
possible zigzaging near the local minimum and suggested the solution of an adaptive learning rate.
This might help, but we have still the issue of predefining the adaptation schedule. The schedule
is not dependent on the characteristics of the dataset and must be set manually. Moreover, it
would be more interesting to have a different learning rate for every parameter, instead of for all
parameters the same.
In the following subsections, we will discuss four Gradient Descent variant, which will all try to
tackle the above mentioned challenges.

5.5.1 Momentum
Adding momentum is a common extension of Gradient Descent and is believed to help against
local minima. The idea of momentum is analogous of seeing the gradient descent as a ball on
the error surface. Once you put the ball on the error surface, it tends, just like gradient descent,
to roll or move with the greatest descent downwards. Once the ball starts rolling, it gets some
momentum and wants to keep rolling in the same direction. This allows to ball to sometimes
escape certain local minima and this is exactly the idea we try to achieve. By taking in account
the previous weight updates and give them some momentum, we hope to escape certain local
minima. If we look at equation 5.9, we can add momentum by changing ∆wji to:

∆wji(t+ 1) = ηδjxji + α∆wji(t) (5.17)
with α the momentum.

5.5.2 Adagrad
Adaptive gradient or Adagrad, is another variant of Gradient Decent. It has an adaptive learning
rate, depending on the importance of the parameter or weight. The learning rate adapts itself
based on how sparse the feature is. If the parameter is very sparse, it is considered to be from
great interest and the learning rate will be big. If the parameter is not sparse, the learning
rate will be small. As a result, Adagrad performs much better on sparse datasets than other
non-adaptive gradient descent algorithms (Duchi et al., 2011).

Before we describe the gradient descent update rule, we set gti as the shorthand for the gradient
of the error of the weight θi at timestep t.

gt,i ≡ ∇θE(θi) (5.18)
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With this shorthand, we can define the weight update rule by:

θt+1,i = θt,i − η · gt,i (5.19)

Next, we introduce a diagonal matrix Gt, ii such that:

θt+1 = θt,i −
η√

Gt,ii + ε
∗ gt,i (5.20)

The diagonal matrix Gt,ii is a matrix, where each element i, i corresponds to the sum of squares
of the gradients w.r.t. the weight θi up to timestep t. Gt,ii can be written down as:

Gt,ii =
t∑

τ=1
gτ,ig

>
τ,i (5.21)

At last, we can vectorize equation 5.20 and define it by:

θt+1 = θt −
η√

Gt + ε
� gt (5.22)

with � the element-wise matrix-vector multiplication.

Note that, the ε is a small non-zero value, which is added to avoid devision by zero. As a
result of the adaptive gradient, we don’t need to predefine a schedule for our learning rate η
anymore, which is an advantage. Although, using Adagrad has also some drawbacks since there
is an accumulation of the positive gradients in the denominator. During the training, this sum
gets bigger and bigger since the positive terms. Eventually, the learning rate η becomes infinitely
small and the algorithm learns nothing anymore. Also, it is still required to manually define a
global learning rate η. The next gradient descent variant Adadelta, tries to resolve these issues.

5.5.3 Adadelta
Adadelta is another gradient descent variant with an adaptive learning rate and can be seen
as an extension of Adagrad (Zeiler, 2012). We have seen in section 5.5.2 that Adagrad has
two drawbacks. First of all the continuous decay of the learning rate and secondly the need to
manually predefine the learning rate. Adadelta solves the issue of the continous decay of the
learning rate by restricting the past gradients that are accumulated to a fixed window of size
w. By introducing this window, we get a local estimate instead and the denominator will never
accumulate to infinity. As a result, the algorithm will keep learning, even after many iterations.
The fixed window is introduced by defining a decaying average of all past gradients:

E[g2]t = γE[g2]t−1 + (1− γ)g2
t (5.23)

where γ is a decay constant, for example 0.9 .

Considering this decaying average E[g2]t, the general gradient descent weight update rule (Equa-
tion 5.9) and the parameter update vector of Adagrad in Equation 5.22, we can describe the
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parameter update vector for Adadelta as:

∇θt = − η√
E[g2]t + ε

∗ gt (5.24)

Next we can replace the denominator with the shorthand of the root mean squared (RMS) error
criterion of the gradient:

∇θt = − η

RMS[g]t
∗ gt (5.25)

In Zeiler (2012), the authors mention that the units in equation 5.25 do not match. They give
the example that if the parameter had some hypothetical units, the changes to the parameter
should be changes in those units as well. To match the units, we introduce another exponentially
decaying average but this time with squared parameter updates:

E[∇θ2]t = γE[∇θ2]t−1 + (1− γ)∇θ2
t (5.26)

and thus the RMS of ∇θ is:

RMS[∇θ]t =
√
E[∇θ2]t + ε (5.27)

Note that, RMS[∇θ]t is not available. As a solution we use an approximation, namelyRMS[∇θ]t−1.
By using RMS[∇θ]t−1 instead of the learning rate we have the final weight update rule of Adadelta:

θt+1 = θt −
RMS[∇θ]t−1

RMS[g]t
∗ gt (5.28)

Because the learning rate η is replaced by RMS[∇θ]t−1, we do not need to predefine it.

5.5.4 RMSProp
RMSProp is an unpublished gradient descent variant and was introduced during lecture6a of
a Coursera course (2002) by Geoff Hinton (Geoffrey Hinton, 2012). RMSprop and Adadelta
were indepedently development during the same time period, both with the goal to resolve the
continuous decay of the learning rates in Adagrad. As a result is RMSprop the same as equation
5.25 from Adadelta with the suggested value γ = 0.9:

θt+1 = θt −
η

RMS[g]t
∗ gt (5.29)

with
E[g2]t = 0.9E[g2]t−1 + 0.1g2

t (5.30)

Hilton also suggests to use value 0.001 as the learning rate η.
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Chapter 6

Deep learning

Deep learning is currently one of the most popular research fields in machine learning. Mostly
because of the major breakthroughs in the past years. For example DeepMind, later acquired by
Google, made a major breakthrough in handling complex learning problems such as game playing
by combining deep learning techniques with reinforcement learning (Silver et al. (2016)). Maybe
the most recent example is the development of Alpha Go, where the program was able to defeat
the world champion Lee Sedol in Go (Moyer (2016)).

Deep learning can be considered a study of artificial neural networks. The term is used, when the
learning involves an artificial neural network, with more than one layer and a lot of data. Jeff
Dean, a Google Senior, made in 2016, during his talk, the following comment on deep learning
(Dean, 2016):

When you hear the term deep learning, just think of a large deep neural net. Deep refers
to the number of layers typically and so it's kind of the popular term that's been adopted in the
press. I think of them as deep neural networks generally.

The reason why deep learning is currently so popular is because we now have the comput-
ing power and the huge amounts of data available. The improvements in algorithms, better
insights and improved techniques help us to achieve better results. Not only are the current
breakthroughs with deep learning encouraging, the scalability of deep learning is even more
promising. The more data we have available the better results we can achieve. Andrew Ng,
Standford professor and co-founder of Google Brain, emphasised this fact during his talk on Ex-
tractConf 2015 (Ng, 2015). He stated that the performance of the traditional learning algorithms
will plateau, while deep learning algorithms are the first class of algorithms that are scalable.
Scalable in a sense that the performance of deep learning algorithms will just keep getting better
as we feed them more data. As an illustration in his talk, Andrew Ng included the following
cartoon, which emphasizes the power of deep learning algorithms:
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Figure 6.1: Cartoon on ‘What data scientists should know about deep learning’ by Andrew Ng
during his talk on ExtractConf 2015 (Source:https://www.youtube.com)

The increase in network size allows us to model much more complex data and feed for example
raw input as image- or audiofiles to the network. It does not restrict us to sorted or tabular
input data. This allowed Yann Lecun to introduce a new neural network architecture, named
Convolutional Neural Networks (CNN) (Y. LeCun et al., 1995). This technique shows great
success in object recognition in images.

6.1 Convolutional Neural Networks
Convolutional Neural Networks (CNN), also called Convnets, were first introduced by Y. LeCun
et al. (1995) and are now the standard technique for image classification. An contemporary
example is the automated photo tagging by Facebook (Taigman et al., 2014), which is using
CNN’s at its core. A CNN is able to learn specific features from a raw image without any extra
information. It allows also hierachical feature extraction by stacking the convolutional layers.
Concrete, this means that a layer connected to the input layer can identify edges and the deeper
layers can identify other higher-level features such as eyes. The inspiration of the Convolutional
Neural Networks came from an animals visual cortex, where you have simple cells and complex
cells. The simple cells serve as an edge-detector. They have a small receptive field and are very
responsive to edges. The complex cells on the other hand have a larger receptive field and respond
to much more specific impulses. An interesting feature of these complex cells are the spatial
invariance. No matter where the specific impulse is located, the complex cells are still able to
detect the impulse. Convnets have also this property of spatial invariance and perform very
well in capturing local spatial patterns. In 2000, Simard et al. (2000) were able to increase the
performance of Convnets even more by introducing an invariance for simple transformations, such
as scaling, rotation and squeezing. As we will explain the architecture of Convolutional Neural
Networks in the next section, we will be mainly inspired by the LeNet-5 network by Y. LeCun et
al. (1995). A Convnet developed to recognise hand-written digits.
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6.2 Building Blocks
Convolution Neural Networks are, as the name suggests, mainly based on convolution. In this
section we will discuss the main components of a CNN.

6.2.1 Convolutional Layer
Convolutions layers are the core component of Convolutional Neural Networks. Let us consider
the input of the Convnet to be an image for the remainder of the text. A convolution layer is a
layer in the neural network, which is able to extract features from the image by using convolution.
Although, we will see that the internal structure of a convolution layer is different than we have
seen in chapter 5. Let us first consider convolution.

Convolution in image processing serves as a general purpose filter effect (Ludwig, 2013). An
image can be represented by a 3 dimensional matrix with pixel values and size w × h× d with d
the amount of channels. For example an RGB image has 3 channels, namely red, green and blue.
To explain convolution, we consider grayscale images. These images have only one channel.

Convolution can be seen as sort of filtering. It is applied by sliding a matrix over the in-
put image and output a modified filtered image. We call the matrix sliding over the image, the
kernel or mask. Determining the pixels of the filter image happens by calculation the value of the
central pixel by adding the weighted values of all its neighbours together. Mathematically we can
describe convolution by:

Dest[i, j] =
Kw∑
k=0

Kh∑
l=0

Kernel[k, l]Source[i+ k, j + l] (6.1)

with Kw and Kh the kernel width and height. Figure 6.2.1 illustrates the method.

Figure 6.2: Illustration on how convolution works. The destination value gets calculated by taking
the weighted sum of its neighbours and itself. The weight for each neightbour is defined by the
value on the corresponding position in the kernel.
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What makes convolution so great, is the ability to extract several features by simple changing
the kernel values. Figure 6.2.1 illustrated how it is possible to do edge-detection by using specific
kernels.

KERNEL

CONVOLUTION

KERNEL

CONVOLUTION

Figure 6.3: Convolution allows us to extract features. This example illustrates how it is possible
to do edge-detection by using a specific kernel. We can tune the sensitivity of the detection by
changing the values of the kernel.

Now, how do we integrate convolution in a Neural Network? Well, each neuron of a convolutional
layer is connected to a small region of the input. All the neurons together form a filter, which
covers the whole input. This filter uses convolution to represent a flat 2D representation for a
single feature of the input. The output is also called the Feature map or Activation map. Of
course, we would like to extract multiple features from the input. By stacking the filters we can
achieve this. Eventually, we can describe a convolutional layer as a stack of filters, which outputs
different feature maps.
Important to note is that each filter represent as single feature and each exists out of a set of
different neurons, which cover each a small region of the input. To be able to extract the same
feature with the set of neurons, the weights have to be shared. These shared weights make
convolution possible and allow us to extract a specific feature, wherever it is located in the input.
The configuration of these weights is actually what the Convnet will try to learn. It will try to
specific the features that are important to solve the problem. Despite the automatic configuration,
we are still required to decide on several hyperparameters
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Figure 6.4: A convolutional layer connected to the input of 32x32x3. A row of neurons (5 in
total) is connected to the small region of the input. Every neuron is part of a different filter and
looks for another feature. The neurons that are all looking at the same region, are also called a
fiber (Source: http://cs231n.github.io/)

Hyperparameters

Convolution Neural networks are tricky to train, since they have more hyperparameters than a
normal Neural Network. After constructing the general architecture of the network, we are still
required to set the amount of filters, size of the filters, stride and padding for each convolution
layer.

Amount of filters The amount of filters decides how many feature maps we produce with the
convolution layer. The more filters, the more features we can extract. But we need to keep
in mind that the cost of a single convolution filter is rather high.

Tile size The size of the tile that we slide over the input is also a parameter. This really depends
on the dataset and vary greatly in the literature.

Stride The stride determines the spacing between the receptive fields. It is the amount of pixels
you slide your field or tile over the input. For example, if you have stride one, you shift
your tile one pixel at the time. Depending on the size of your field and the stride, we get
overlap of the receptive fields. When there is overlap, our feature map will have a larger
spatial size. Only when the stride is equal to the size of the receptive field, there will be no
overlap and is the spatial dimension equal. A very large stride is also possible, but it is less
popular in practice.

Padding Sometimes it is the case that the input is too small to complete the convolution. A
reason can be the size of the tile or the combination of the tile and the stride. As solution
is zero-padding, which allows us to complete the convolution.

6.2.2 Non Linearity
In the explanation of the convolution layers, we left out an important detail about the feature maps,
namely the application of non linearity. Since Convnets are also a neural networks, they are also
able to introduce non linearity. So in general, the neuron of a convolutional layer first convolutes
the input, which is a linear function, adds a bias and then applies a non-linear function such as
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the ReLU or Tanh (see section 5.2.4). Mathematically we can describe the k-th feature map hk by:

hkij = tanh((W k ∗ x)ij + bk). (6.2)

with hkij the pixel on the ijth position in the feature map.

6.2.3 Pooling Layer
Another important component of Convolutional Neural Networks are Pooling layers. Pooling
layers are commonly used in-between two convolutional layers. The goal of pooling is to reduce
the computation and overfitting. This is done by reducing the size of the representation. An
important idea behind the pooling is that the activation of a feature and its relation towards
others is more important than the location of the feature. But note that the relative location of
the features is preserved. A very popular type of pooling is MAX-pooling, demonstrated in figure
6.2.3.

Figure 6.5: Max pooling with a 2x2 filter and stride 2. The filter is sliding over the input
and takes the max value as outputvalue for the pooling. (Source: http://cs231n.github.io/
convolutional-networks/#pool)

So far convolution layers. We’ve discussed convolution, the different building blocks of the network
and the two most important aspect of Convnets: location invariance and compositionality. Next,
we continue by briefly discussing autoencoders, another interesting Neural Network architecture.

6.3 Autoencoder
So far, we have seen Neural Networks, which apply to supervised learning. An autoencoder is a
special neural network architecture, which applies to unsupervised learning, since they don’t need
labeled data. An autoencoder is an neural network, which tries to reconstructs its input values,
by doing backpropagation on the output values. An example of an autoencoder is:
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Figure 6.6: figure
Example of an autoencoder (Ng, 2011)

The autoencoder tries to learn the function hW,b(x) ≈ x and to approximate the identity
function. It may seem trivial that we want to learn the identify function, but it allows us also to
discover interesting structures in the data. We can force the autoencoder to learn a ‘compressed’
representation of the data by limiting the amount of hidden units. When the input data is
completely random, it is very difficult for an autoencoder to learn a compressed representation.
But when there is a certain structure in the data, it could let us discover some interesting data
structures (Ng, 2011). The low-dimensional representation is mainly the reason why researchers
are interested in autoencoders (Vincent et al., 2010). It allows them to replace the handcrafted
features with features, generated by the autoencoder in an unsupervised way.

6.3.1 Stacked autoencoders
Even if we don’t limit the amount of hidden units, it is possible to learn a compressed representation.
We do this by imposing a ‘sparsity’ constraint ρ on the hidden units. Even if the amount of
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hidden units is large, this will still allow us to discover interesting data structures. When we
explicitly impose a sparsity constraint on autoencoders, we speak of sparse autoencoders

6.3.2 Denoising autoencoders
Another way to retrieve a good representation is denoising. Vincent et al. (2008) introduced
this technique with the idea that a good representation is one that can be obtained from a noisy
input and allows the autoencoder to reconstruct to the original noise free input. In figure 6.7 is
the architecture of a denoising autoencoder displayed. Denoising an autoencoder requires only a
small adjustement to the classical autoencoder. The inputvector x is converted to inputvector
x̃, by a stochastic mapping x̃ ∼ qD(x̃|x). The mapping makes x corrupt by masking certain
inputs with zero. An example of a stochastic mapping is Gausian Noise. After the corruption,the
autoencoder tries to do two things. First, it tries to transform the corrupted input x̃ to a good
presentation y. Subsequently it tries to use this good representation y to reconstruct the original
input, with as a result the reconstruction z. The autoencoder does the reconstruction by capturing
the statistical dependencies between the inputs. Note that, the reconstruction error LH(x, z) is
measured between the original input x and z

Figure 6.7: figure
Architecture of a denoising autoencoder (Vincent et al., 2008)

6.3.3 Stacked Autoencoders
Another interesting variant of autoencoders are stacked autoencoders. These architectures are
found to be useful to capture hierarchical grouping or part-whole decomposition. A stacked
autoencoder can be defined as a neural network consisting of multiple layers of autoencoders in
which the outputs of each layer is wired to the inputs of the next layer. Let us explain this with
an example. Consider the stacked autoencoder in figure 6.10. The first hidden layer outputs the
compressed representation of the input and serves this to the next layer (see figure 6.8). In the
second hidden layer, we see the same structure only this time outputs the layer the compressed
representation of the input by the first hidden layer (see figure 6.9). Eventually, we can connect
this layer to a dense output layer to do classification. Because we have for each hidden layer
an autoencoder, we introduce a hierachical feature extraction. The first hidden layer extracts
low-level features, where deep hidden layers are extracting high-level features.

43



Figure 6.8: First hidden layer of Stacked
autoencoder in figure 6.10 (Source: http://
ufldl.stanford.edu/)

Figure 6.9: Second hidden layer of Stacked
autoencoder in figure 6.10 (Source: http://
ufldl.stanford.edu/)

Figure 6.10: Stacked autoencoder architecture (Source: http://ufldl.stanford.edu/))
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In summary, we have seen that deep learning is a term for very big multi-layered neural
networks. An important property of deep learning algorithms is that the increase in performance
goes together with the increase in data. Also, we described Convolutional Neural Networks and
several types of autoencoders, two deep learning architectures. Convolutional Neural Network are
the standard for image classification and have the important quality of being location invariance
and compositionality. Autoencoders are mainly used to retrieve, in a unsupervised way, deep
representations of data.
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Chapter 7

Experiments and Results

7.1 Problem Statement
In section 3, we described canvases and how they are used to identify a device. Pixel wise
comparison was mainly the method suggested in the literature. In this research, we approach it
in a more advanced way. Our goal is to develop a new authentication method. A method that
uses the combination of machine learning algorithms and canvases to identify a device. We see
this in the context of an authentication mechanism, where we register a device to the system
and subsequently the device can be identified by our method. As we said before in chapter 2,
the use of machine learning is nothing new for authentication mechanisms and is currently very
popular. What our research explores is the combination with canvases. There is not much research
available about the authenticity of canvases and especially on how they perform in combination
with machine learning. So, we don’t know if it is even possible to create an authentication method
with this combination.
For this research, we work together with the Université Catholique de Louvain (UCLouvain).
They developed a very simple canvas based authentication method, which we will use as the
starting point for our authentication method.

The rest of this chapter is organized as follows. First we describe the starting point, deliv-
ered by UCLouvain. Then, we specify the construction of the canvases. Next, we continue
with describing the collected data and the data gathering process. After this, we run several
experiments, which are all sequentially. In section 7.8, we get familiar with the collected data
and do an initial exploration. This will give us an idea on how to approach things. Thereafter,
we empirically evaluate several ideas of possible authentication methods. Eventually we describe
in section 7.10 and 7.11 two final authentication methods.

We ran all the experiments on the HPC-Cluster of the AI lab at the VUB and each exper-
iment had approximately a runtime of 7 to 10 days.

7.2 Starting Point
Like we said, we do not start from scratch. The starting point is a authentication system, delivered
by the ICTM team at the UCLouvain. They constructed a simple authentication method, based
on canvases. We use their conceptual model for our authentication method and consider the
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performance of their method as our baseline.

The conceptual model is as follows. First, the user has to register his device to the system. This
is done by sending a big amount of random canvas drawings and the user’s e-mail address to
the system. Once the registration is completed, the user can identify himself to system with the
registered device by submitting the registered email and a new set of random generated canvases.
Note that, the user does not see the canvas drawings and has only to submit an email. Figure 7.1
illustrates the conceptual model. As stated before, we use the same conceptual model for our
authentication method.

Figure 7.1: Conceptual model of the authentication method.

Of course, the essential work happens in the backend, where the canvases are analysed by
an algorithm and an unique fingerprint is generated. The authentication method, delivered by
UCLouvain, uses a very simple algorithm. It defines a threshold based on the pixel values of the
collect canvases during the registration. This threshold is defined by calculating the variance of
the non-zero pixel values in a canvas. If the canvases, sent during the authentication attempt,
falls within the interval of the average pixel value for the canvases of that user and two times the
variance, the authentication is accepted. Formally we write this down as:

authstatus = |PClogin − PCregister| < 2 ∗ V arianceregister (7.1)

With PClogin the average amount of non-zero pixels in a canvas that is sent during the authen-
tication. PCregister is the average amount of non-zero pixels in a canvas that is sent during
registration and V arianceregister is the variance of these pixel counts.

This method is very simple, but it is performing very bad. It performs the same as an au-
thentication method that would accept users randomly. Later in section 7.7, we will explain
the performance of this method in more detail. Our goal is to develop a new more advanced
method in the hopes to increases the performance significantly. In the next section we continue
by discussing how we can evaluate the performance of our authentication method.

7.3 Task and Performance Measure
We want to develop a new authentication method that works well. But how do we evaluate
the performance? First, we define the task T as: Given the user’s identity, his device and the
knowledge of a labeled set of canvases, make a correct judgement about the origin of the unknown
canvases with regard to the user’s device. The judgement consists of saying if a canvas originates
from a certain device. This means that there are only two possible outcomes, namely ‘Yes, the
canvas originates from the device’ or ‘No, the canvas originates not from the device’. This means
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that we see our authentication method as a binary classification. Subsequently, we define the
performance P as the percentage of good judgments by the authentication method.

Figure 7.2: The performance of an authentication method is evaluated, based on its ability to
decide if the canvas is from the user’s device or not.

So, we have stated our task T , performance P and the general outline of our method, but we are
still missing the construction method of the canvases.

7.4 Canvas Fingerprint
In chapter 3, we already described the many possibilties that can be drawn on a <canvas>
element. For this research, we use the drawing technique developed by UCLouvain.
This drawing technique is very simple and follows for each canvas the same steps. It draws a
random composed string multiple times on a slightly different position. The parameters: size,
string length, position, font and color are all predefined. The drawn string is the only variable for
each canvas. Figure 7.3 is an example of a canvas generated by this technique.

The following javascript code is used to generate a canvas:

Listing 7.1: Construction of a canvas
func t i on generateRandomCanvas ( txt ) {

var canvas = document . getElementById ( " canvas " ) ;
var ctx = canvas . getContext ( "2 d " ) ;

i f ( txt == nu l l )
txt = generateRandomText ( 2 5 ) ;

ctx . c l ea rRec t (0 , 0 , 300 , 150 ) ;

ctx . f ont= "18px ’ Ar ia l ’ " ;
ctx . t e x tBa s e l i n e = " a lphabe t i c " ;

// s t a t i c c o l o r s and s t y l e
ctx . f i l l S t y l e = "#069";
ctx . f i l l T e x t ( txt , 2 , 50 , 350 ) ;
ctx . f i l l S t y l e = " rgba (102 , 204 , 0 , 0 . 7 ) " ;
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ctx . f i l l T e x t ( txt , 4 , 54 , 350 ) ;
ctx . f i l l S t y l e = "#069";
ctx . f i l l T e x t ( txt , 2 , 58 , 350 ) ;
ctx . f i l l S t y l e = " rgba (102 , 204 , 0 , 0 . 7 ) " ;
ctx . f i l l T e x t ( txt , 4 , 62 , 350 ) ;
ctx . f i l l S t y l e = "#069";
ctx . f i l l T e x t ( txt , 2 , 66 , 350 ) ;
ctx . f i l l S t y l e = " rgba (102 , 204 , 0 , 0 . 7 ) " ;
ctx . f i l l T e x t ( txt , 4 , 70 , 350 ) ;

}

In words, this means that we specify a canvas as a 300× 150 container of 6 strings with all
the same color and font Arial with size 18px. Also, every string has a slightly different position.
This is the specification of a canvas, we will use throughout the research.

We also considered more advanced drawing techniques, since there is not really a reference
on how we should draw a canvas, suitable for authentication. For example, we could add different
shapes or fonts. All these extra's would add more information to the canvases. But we decided to
stay with this simple technique, because it shows, later in the experiments, to be informative
enough and it can serve as a reference for more advanced drawing techniques in future research.

Figure 7.3: Example of a canvas drawing, generated by the code in snippet 7.1.

7.5 Data Gathering
If we want to use machine learning, we need data. At the start of this research, there was no
data available, so we needed to collect it. We did this by building a data collecting website. The
canvases where constructed with the code described in snippet 7.1 and from each device were
2000 canvases collected. We also labeled each canvas with meta-data, so that we could keep
track of the origin of the canvases. We collected the data by asking friends, family and fellow
students on campus to register all their available devices to the system, such as a smartphone,
tablet or PC. We assured that users could not register their device multiple times by using the
fingerprintjs21 library. This is a browser fingerprinting library, which uses all the available public
browser data to generate a unique fingerprint.

1https://github.com/Valve/fingerprintjs2
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The following table and pie charts show use some information about the collected data:

#
Devices 80
Users 49
Canvases 147387

Table 7.1: Amount of collected users, devices and canvases.
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Figure 7.5: Pie chart with the different types
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Figure 7.6: Partioning between mobile and non-mobile devices

Mobile
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Not Mobile
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In total, we have collected 80 devices. This seems enough, since we have 147387 canvases to
learn from. Note that, the uneven amount of canvases is caused by uncompleted registrations.
Still, 87,5% is a decent completion rate. The information about the origins of the canvases are
rather informative and less important, considering the fact that normally we do not know our
data and only gain knowledge from the canvases.
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7.6 The Dataset
In machine learning, we learn a concept to a learning algorithm by feeding it data. This makes
the dataset an important part of our experiments. How do compose the dataset and how do we
assure that the learning algorithm learns our desired concept? All these questions are answered
in this section.

As we said earlier, we want to learn an algorithm to recognize if a given canvas originates
from a certain device or not. We do this by training the algorithm specifically for one device.
Consider, we want to learn a learning algorithm to recognize the canvases of device A. The
desired behaviour of the learning algorithm would be to output ‘Yes’, when the given canvas
originates from device A and ‘No’, when the given canvas originates from a device that is not A.
To learn this concept, we compose our dataset with canvases from device A, labeled with ‘Yes’
and canvases that are not from device A, labeled with ‘No’. In the context of our authentication
method and the experiments, we have the following scenario: A user registers his device to our
authentication system by sending an amount of canvases. The authentication system receives the
canvases and composes a dataset for the learning algorithm. The dataset consists of the received
canvases with the label ‘Yes’ and other canvases from other devices with the label ‘No’. The
‘No’-canvases are selected from the authentication system’s database, where other canvases from
other registered devices are stored. This dataset of canvases with ‘Yes’- and ‘No’-labels is than
used to train the algorithm. At last, whenever the user tries the authenticate with the registered
device to the authentication system by sending his canvases, the system will verify these canvases
by feeding it to the trained algorithm, associated with the user's device. If the algorithm predicts
‘Yes’ for the canvases, the user is successfully authenticated. Note that, the ‘No’-labeled canvases
are as important as the ‘Yes’-labeled canvases. This is because the canvases of the originating
device are not informative enough. If we would feed only ‘Yes’-labeled canvases to the learning
algorithm, the algorithm would learn nothing. The information in the ‘No’-canvases is as essential
as in the ‘Yes’-canvases to learn the concept.

The above mentioned composition is the composition of the dataset we use for all experiments.
More over, we always compose a balanced dataset for the experiments. This means that the
amount of ‘Yes-labeled’ canvases is equal to the amount of ‘No’-labeled canvases in the dataset.
The size of the dataset is always the same for all experiments. It has always a total size of
4000 canvases, with 2000 ‘Yes’-labeled canvases and 2000 ‘No’-labeled canvases. How we use the
dataset for training, testing and evaluation, is discussed in each experiment separately.

7.7 Baseline Experiment
The first experiment is a baseline experiment. We take as the baseline the performance of the
developed system by UCLouvain. We evaluate this system by using the defined performance
measure P in section 7.3. As explained in section 7.2, UCLouvain’s authentication method
calculates a threshold to decide whether a canvas originates from a given device or not. The
system calculates for each device a corresponding threshold. The threshold is obtained by taking
two times the variance of the non-zero pixels in the canvases that are sent during the registration
of the device. If the user authenticates with his registered device and sends in a canvas, the
system will calculate the variance of the non-zero pixels in that canvas and compare this with
the threshold. If the value is smaller than the threshold, the canvas is considered to be from the
same device. If the value is bigger, it is considered to be from another device.
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In this experiment, we simulate this scenario by taking 80% of the ‘Yes’-canvases in the dataset
to calculate the threshold. This 80% represents the canvases that are sent during the registration.
Further, we use 20% of the ‘No’-canvases and the remaining 20% of the ‘Yes’-canvases to evaluate
the performance of the authentication method. This simulates the tries of the authorized user
and the unauthorized users. Authorized users are users that the system should accept and
unauthorized users are the users the system should deny. Note that, we use a balanced set of
‘Yes’-canvases and ‘No’-canvases to evaluated the method. This simulates that the amount of
tries of the authorized user is equal to the amount of tries of unathorized users. This allows us
to use the accuracy of a random authentication system as a baseline for this experiment, which
is 50%. A random authentication system is an authentication system that accepts and denys
authentication attempts with an equal probability. The results of this experiment are the average
of 10 runs, where every time another dataset is used.

2*var-Threshold 1*var-Threshold
Accuracy 0.5 0,49
Std 0 0,02

Table 7.2: Results Baseline Experiment

Based on the results, we can say that UCLouvain’s method is not working. We tested it with
the delivered threshold of two times the variance and even tried it with a stricter threshold of
one time the variance, but both give the same result. If we take a look at the confusion matrix
in figure 7.7, we see that this method allows every canvas. This means that every authencation
attemp gets accepted, no matter from which device the canvases are coming. For the rest of the
experiments, we will consider the baseline of 50% on a balanced set, which is also the performance
of a random authentication system.

Figure 7.7: Confusion Matrix of Baseline experiment with 2*Var
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7.8 Data Exploration
There is not much research available about canvases and how to use them as fingerprints. It is
useful to do some explorational experiment to see what is possible. Remember, we have 2000
canvases per device available and each canvas is 300× 150 pixels.
A good first step is converting the canvases to a flat matrix. Then reduce it to two features
and visually plot it on a 2D surface. This allows us to see if it is possible to visually separate
the canvases of two devices. We do this by taking the RGBA value for every pixel, and use
PCA from section 7.9.2 to reduce the dimensions. After doing this for a few random pairs of
devices, we discovered that we can group the plots in two groups. One group of plots shows that
it is possible to separate the canvases, while the other group shows on big chaos. This is very
surprising. Especially because we are reducing a canvas from 180000 features to 2 features. This
is a massive reduction in information. Overall, this is already an interesting and encouraging
finding and it is a good indication for the next experiments. Figure 7.8 shows examples of the
groups of plots we encountered.

Figure 7.8: Samples of the two kind of plots that we could observe during the data exploration

7.9 K-NN
Our first idea is to use a K-Nearest Neighbors Classifier. As earlier mentioned in section 4.3.2,
the K-Nearest Neighbors Classifier is an instance-based learning algorithm, which uses samples
from the memory to decide on other samples. It is an easy method and often undervalued for
image classification (Boiman et al., 2008). We discuss in this section three approaches, all related
on how we pre-process the data, before we feed it to the K-NN Classifier. In section 7.9.1, we
start very simple and feed the raw form of the canvases to the classifier. Next, we try in the two
following sections to reduce the dimensionality of the canvases, by using PCA and autoencoders.

7.9.1 Raw
To evaluate, what is exactly possible with the K-NN Classifier, we start very simple. We do
not pre-process the canvas and we feed it in its raw RGBA-matrix form to the K-NN Classifier.
Note that, this is actually very unusual to do, since the classifier has to work in an 1800000
dimensional space. Before we actually perform the experiment, we need to tune the classifier.
The K-Nearest Neighbors Classifier has two hyperparameters , namely the number of neigbors K
and their weights. For the weights, we have the choice between the uniform and distance weight
types. If we choose uniform weights, all the neighbors are weighted equally. If we use distance as
a weight type, the weight point of the neighbors are equal to the inverse of their distance. This
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results in a greater influence for closer neighbors and less influence for neigbors further away. We
evaluate each setting with 10-fold cross-validation.

Figure 7.9: Tuning of number of features for PCA

Overall, the ‘distance’ weights have the best performances and for this configuration seems
K=10 the optimal configuration.

Now if we run the tuned configuration, K=10 and weight type distance, for 10 runs, we get the
following result:

Figure 7.10: Box plot with the results of the K-NN with RAW input

Accuracy
Mean 0.67
Std 0.08

Table 7.3: Results RAW K-NN Classification
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The K-NN Classifier performs better than the baseline, with an average accuracy of 67%. But
we see that the data is widely spread. It would be better if we see a more constant accuracy.

Overall it is a good start, but there is still room for improvement. Currently we feed too
much information per canvas to the classifier and this results possible in overfitting. As an
adjustment, we reduce these 1800000 features to a smaller and more efficient representation.

7.9.2 PCA
We saw already in section 7.8 that a reduction with PCA to two dimensions can work and indicates
that it is possible to reduce the canvases to a more efficient representation. When we take into
acount the results of the previous experiment, it is interesting to investigate the combination of
PCA and the K-NN Classifier on our dataset. We continue by using the optimal configuration of
the previous experiment, which is a 10-Nearest Neighbors classifier with weight type distance.
First, we decide on the number of features to reduce. We evaluate this again by using 10-Fold
Cross-Validation.

Figure 7.11: Tuning of number of features for PCA

We see in figure 7.11 that there is a stagnation after an amount of 4096 features. We take
this as the new number of features to represent our canvases. Now, we run the experiment for 10
runs, where the canvases get reduced to 4096 features by applying PCA before they get classified
by the 10-NN Classifier.

Accuracy
Mean 0.65
Std 0.08

Table 7.4: Results of combination PCA and K-NN

The first thing we notice is that the box plot for PCA is more compressed. This means
that the performance lies closer to each other. Although, this seems only to be the case for the
upperbound. The lowerbound has not moved and is for both experiment 55%. As a result, the
mean accuracy is also slightly lower. Overall, we can say that this setup does not show the results
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Figure 7.12: Box plot of Accuracy by PCA and RAW

we hoped for. For the next experiment, we still stay with the K-NN classifier, but we are going to
look for a non-linear approach by using autoencoders.
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7.9.3 Convolutional Autoencoders
The next thing we try are autoencoders. An autoencoders is a special variant of a neural network,
where the network tries to reconstruct its own input. The interesting thing about autoencoders is
that they allow us to extract new features (Vincent et al., 2008) and this is what we will use.
We have seen in section 6.3 that an autoencoder first reduces the input to a certain amount of
features and than starts to reconstruct the original input, based on these features. The idea of this
experiment is to extract the reduced representation and use these features as the representation
of a canvas for the K-NN classifier. This reduced representation is located in the most hidden
layer, the so called ‘bottle neck layer’.

Figure 7.13: Simplified schema of the autoencoder

Since our canvases are images, we can use convolutional layers in our autoencoder. The layout
of the autoencoder looks as follows:

Figure 7.14: Architecture of the autoencoder

We try two approaches for this experiment. With the first approach, we let the autoencoder
learn a reconstruction for all canvases from all devices in the training set. The second approach
is slightly different. We train the autoencoder only with the canvases from one device. In this
way, we can extract a specialised device-specific representation. Both methods get evaluated over
10 runs. In each run, we let the autoencoder train for 100 epochs.

Accuracy Std
General 0.62 0.03
Device Specific 0.71 0.13

Table 7.5: Results of combination with autoencoders and K-NN
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Figure 7.15: Box plot of all the results with K-NN

In table 7.5, we see that the device-specific approach works the best. The idea of a device-
specific representation seems to work. We see some higher classification results. Although, the
data seems still to vary a lot. Sometimes we have very good results and sometimes bad results.
Also the consistent performance of the general autonencoder approach is interesting to see. Based
on these results, we say that autoencoders are a good addition to our authentication method.
Still, we have not the performance we like to see. Also, we leave the idea of the K-NN classifiers
for a canvas based authentication method, since it is rather limited in scaling for large datasets.
We believe that we should use the full potential of a neural network. This is why we continue in
the next section with convolutional networks.

7.10 Convolutional Network
In section 7.9, we experimented with a K-NN classifier and several pre-processing techniques.
Mainly autoencoders showed promising results. We build further on these findings by constructing
a convolutional network, based on the architecture of the autoencoder in figure 7.14. Convolutional
networks are know to perform very well for image classification (Krizhevsky et al., 2012) and we
hope by using them to achieve also good result.
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Figure 7.16: Architecture of the Convolutional Network

The convolutional network is constructed by removing the reconstructing layers of the au-
toencoder and replacing them with a dense layer and an output layer. The size of the dense
layer can be anything. 200 seems us a good size, because it’s halving the size of the compressed
representation in the layer before. As a result, the architecture allows us to do classification.

7.10.1 Artificial Simulation
Again, we evaluate the performance of the network, by taking the average of 10 runs. In each run,
we train the network for 100 epochs and we partition the dataset in 80/20 for the training and
test set. We also normalize the dataset with min-max normalisation. Normalisation is a simple
technique, which is shown to be very effective (Al Shalabi et al., 2006). Min-max normalization
scales down the feature values to a fixed range of [0, 1]. An advantage of the fixed range is a
suppression of outliers in the dataset. Especially with neural network, this can influence the
performance. Mathematically, we write min-max normalization down as:

Xnorm = X −Xmin

Xmax −Xmin
(7.2)

where X is the original feature value.

Min-Max normalisation applied to the canvases, results in dividing each pixel value by 255.
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Mean Accuracy 0.94
Std 0.03
Loss 0.20

Table 7.6: Results of Convolution Network

Figure 7.17: Confusion Matrix of Convolutional Network

Figure 7.18: Box plot of the accuracy of the Convolutional network

The results are significantly better. The convolutional network clearly outperforms the
previous results, with an average accuracy of 94%. Also, it performs well on a constant basis. In
box plot 7.18, we see that the lower bound over the 10 runs is around 93%. That’s very good,
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especially if you compare it with the lowerbound of 55% in section 7.9.3. It is also interesting to
look at the confusion matrix in figure 7.17. If we want to use this architecture for authentication,
it is important to have a low false positive rate. The false positive rate indicates how much
unauthorized users are accepted by the system. A false positive rate of 9% is certainly not bad.
Of course, we want to have 0%, but overall we are content since the system is developed for weak
authentication. Further, figure 7.19 and 7.20 show that the network is able to learn quite fast.

Figure 7.19: Accuracy of the Convolutional Network during the learning

Figure 7.20: Loss of the Convolutional Network during the learning

Based on the results, we say that the convolutional network is a useful algorithm to use for
authentication with canvases. But we must be aware that we evaluated this and the previous
experiments in an artificial environment. The experimental setups were not a real representation
of what the authentication method could encounter in the real world. Let us explain by showing
figure 7.21:
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Figure 7.21: Artificial Environment vs Real World Environment

In the current setup, we did not consider devices that are completely unknown to the system.
Let us explain. In section 7.6, we discussed how we constructed the dataset. The ‘Yes’-labeled
canvases are the canvases from the device we want to learn and the ‘No’-labeled canvases are
canvases from random other devices in our database. The fact that we use canvases from our
database can introduce a bias. Consider the following example: We want to learn to recognize
canvases from device A. The authentication method constructs the dataset by labelling the
canvases from device A with ‘Yes’ and other randomly selected canvases from other devices in
the database with ‘No’. Assume that two canvases s1 and s2 are part of the ‘No’-labeled canvases
and are both originating from the same device S. Now in this experiment we split the dataset
in 80/20 for training and testing. Assume now that s1 is in the training set and s2 in the test
set. Now, If we train the convolutional network with the training set and evaluate it with the
test set, our results are slightly biased. The reason is that s1 might contain information that
biases the decision on s2. If we put this in the perspective of an actual authentication system,
it comes down to the fact that we are only evaluation our authentication system on authorized
and unauthorized attempt from users registered to the system. Although, in the real world it
might be the case that there are unauthorized attempts of users that are not registered to the
system, for example hackers. This is what we will take in consideration in the so called ‘Real
World environment’. Note that, there is for the artificial and real-world simulation no difference
in how we train the convolutional network. The difference lies in the evaluation. In the artificial
simulation, we only considered authorized and unauthorized attempts from registered users. In
the real world simulation, we evaluate unauthorized attempts from unregistered users.

7.10.2 Real-world Simulation
Before we describe the experimental setup for the real world simulation, we introduce the terms
White Device and Black Device. A device is considered a white device, when it is a registered
device and it has some canvases that are used as ‘No’-labeled canvases for training and testing.
A black device is a unregistered device that is used to simulate the unauthorized requests from
an unregistered device. For the experiment, we pick 10 black devices from the database. Then
we compose a dataset with the remaining devices, following the method described in section 7.6.
We apply again a partitioning of 80/20 for the training- and test set and train the algorithm.
Next, we test the algorithm. This happens differently than in the artificial environment. Instead
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of using only the 20% of the dataset, we add extra canvases from the black device to the test
set. In total 400 canvases of each black device. This ‘enriched’ test set is used to evaluate the
experiment. Again we evaluate the experiment by taking 10 runs and train the convolutional
network for 100 epochs.

Mean Accuracy 0.93
Std 0.01
Loss 0.25

Table 7.7: Results of convolution network in a real world environment

Figure 7.22: Box plot of the accuracy of the Convolutional network in a real world environment

Figure 7.23: Confusion Matrix of the perfor-
mance by convolutional network in a real world
environement for the White Devices

Figure 7.24: Confusion Matrix of the perfor-
mance by convolutional network in a real world
environement for the Black Devices
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Figure 7.25: Confusion Matrix of the overall performance by the convolutional network in a real
world environment

We see a similar result. The accuracy is 1% lower, compared to the artificial simulation, but
we see in figure 7.22 that the box plot has a serious outlier. An outlier, where the performance is
drastically lower. After checking this run for bugs and looking at the composition of the dataset,
nothing special could be found. Although, we found a deviant behaviour in the performance of
this run. All the Black devices were classified as false positives. For the white devices is the
behaviour similar to the other runs. This confirms our theory of the artificial environment and the
introduction of a small bias. Overall, we conclude that this architecture is a good authentication
method that has a good performance. Also for a real world environment.

7.11 Autoencoders and Semantic Hashing
The encouraging results of autoencoders, inspired us to develop another authentication method.
Earlier, we saw that we could learn a compressed representation with authoencoders. Our idea is
to force these compressed representations to binary representations and use them for semantic
hashing. Salakhutdinov & Hinton (2009) introduced semantic hashing by mapping documents to a
memory address in such a way that semantically similar documents are located at nearby addresses.
The resembles with our research is that he did this also with autoencoders. An encoded document
in his research represented also the memory address of that document. We try to introduce the
same idea in the authentication method of this experiment. The authentication method uses an
autoencoder to retrieve a compressed representation of every canvas it receives. These compressed
representations are seen as memory addresses and allow the system to calculate distances between
the canvases. The idea is that canvases that are originating from the same device are mapped to
memory addresses that lie close to each other. This also applies the other way around. Canvases
that are not originating from the same device are mapped to memory addresses that lie far
apart. The authentication method verifies the origin of a canvas by considering a distance-related
threshold. The threshold is calculated by using the reference canvases. The reference canvases are
the canvases that are sent during the registration of a device to the authentication system and are
all originating from the same device. The system will calculate the threshold by considering the
mutual distances between the memory addresses of the reference canvases. A example threshold
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would be the mean distance between two reference canvases. To continue with the example, if
the system wants to verify the origin of a canvas s, it calculates the mean distance of canvas s
with each reference canvas and compares this with the threshold. If the value is smaller than the
threshold, canvas s is considered to come from the same device as the reference canvases. If the
value is larger than the threshold is considered to originate from another device. Note that, the
threshold does not need to be dynamic such as in the example but can be manually configured by
the security expert. The threshold defines how the distance between an unknown canvas and the
reference canvases should relate. How this is done can be completely decided by the security expert.

In this experiment, we consider the hamming and euclidean distance as two distance mea-
sures. We evaluate two types of thresholds. First we use the ‘Mean-Threshold’. This is the
mean distance between two reference canvases as a threshold. Next, we use as a threshold the
variance of the distances between two reference canvases, which we call the ‘Variance-Threshold’.
The architecture of the autoencoder to convert the canvases to a compressed representation is
slightly different than the one in 7.14. We add a Gaussian noise signal just before the bottle neck
layer. This will push the activation functions to extreme values and results in binary compressed
representation for a canvas. We test also different group sizes. This mean that we use multiple
canvases instead of one canvas, to verify the authentication attempt of a device. Each canvas in the
group is compared with the reference canvases and the average distance of that group is compared
with the threshold. All results are the average of 10 runs. The performance is measured with the
accuracy of the authentication system. We test if it accepts the authorization attempts, when the
canvases come from the same device and if it denies them when they come from another device.
Figure 7.27 illustrates the working of the authentication system. The authentication method in
the figure is configured with the Mean-Threshold and groupsize = 1. Groupsize = 1 indicates
that the user authenticates himself only with one canvas to the system. The authentication in
figure 7.27 starts with submitting an email and one canvas to the system. The system uses the
autoencoder to convert the canvas to a binary compressed representation. Next, the reference
canvases from the user’s device are queried from the database and the distance value of the canvas
is calculated. We have configured the authentication system with the Mean-threshold. So, the
distance value of the canvas is equal to the mean distance between the canvas and the reference
canvases. The threshold is the mean distance between the reference canvases. If the distance
value is smaller than the threshold, the system accepts the authentication. If the distance value
is greater than or equal to the threshold, the system denies the authentication.
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Figure 7.26: Architecture of the autoencoder with noise

Figure 7.27: Illustration of authentication method with as configuration the Mean-Threshold and
groupsize=1.

Group size Mean-Threshold Std Mean-Threshold Variance-Threshold Std Variance-Threshold
1 0.73 0.15 0.52 0.02
20 0.52 0.23 0.31 0.33
40 0.54 0.23 0.22 0.29
50 0.5 0.2 0.36 0.36
100 0.57 0.23 0.36 0.37
400 0.61 0.24 0.44 0.39

Table 7.8: Accuracy on all authentication attempts with the euclidean distance as distance
measure
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Group size Mean-Threshold Std Mean-Threshold Variance-Threshold Std Variance-Threshold
1 0.55 0.0 0.03 0.05
20 0.74 0.0 0.31 0.21
40 0.78 0.0 0.24 0.19
50 0.8 0.0 0.33 0.22
100 0.84 0.0 0.33 0.24
400 0.82 0.0 0.29 0.29

Table 7.9: Accuracy on unauthorized attempts with the euclidean distance as distance measure

Group size Mean-Threshold Std Mean-Threshold Variance-Threshold Std Variance-Threshold
1 0.9 0.3 1.0 0.0
20 0.3 0.46 0.3 0.46
40 0.3 0.46 0.2 0.4
50 0.2 0.4 0.4 0.49
100 0.3 0.46 0.4 0.49
400 0.4 0.49 0.6 0.49

Table 7.10: Accuracy on all authorized attempts with the euclidean distance as distance measure

Group size Mean-Threshold Std Mean-Threshold Variance-Threshold Std Variance-Threshold
1 0.52 0.25 0.5 0.27
20 0.67 0.24 0.48 0.39
40 0.64 0.25 0.46 0.38
50 0.75 0.23 0.41 0.36
100 0.77 0.23 0.41 0.35
400 0.56 0.23 0.62 0.37

Table 7.11: Accuracy on all attempts with the hamming distance as distance measure

Group size Mean-Threshold Std Mean-Threshold Variance-Threshold Std Variance-Threshold
1 0.55 0.0 0.19 0.14
20 0.74 0.0 0.46 0.29
40 0.78 0.0 0.51 0.27
50 0.8 0.0 0.53 0.25
100 0.84 0.0 0.52 0.25
400 0.82 0.0 0.54 0.29

Table 7.12: Accuracy on unauthorized attempts with with the hamming distance as distance
measure

Group size Mean-Threshold Std Mean-Threshold Variance-Threshold Std Variance-Threshold
1 0.5 0.5 0.8 0.4
20 0.6 0.49 0.5 0.5
40 0.5 0.5 0.4 0.49
50 0.7 0.46 0.3 0.46
100 0.7 0.46 0.3 0.46
400 0.3 0.46 0.7 0.46

Table 7.13: Accuracy on authorized attempts with the hamming distance
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Figure 7.28: Accuracy of the authentication system with the Mean-Threshold configuration

Figure 7.29: Accuracy of the authentication system with the Variance-Threshold configuration

From table 7.8 to table 7.10, we present the results of the authentication method with as
distance measure the euclidean distance. From table 7.11 to table 7.13, we present the results
of the authentication method with as distance measure the hamming distance. The tables 7.8
and 7.11 show the results of the authentication method for all the authentication attempts. We
speak of an authentication attempt, when a user tries to authenticate himself to the system. We
consider an attempt unauthorized, when a user tries to authenticate as someone else. When the
user tries to authenticate as himself, we speak of a authorized attempt. The tables 7.10 and 7.13
show both the results for authorized attempts and the tables 7.9 and 7.12 show the results for
unauthorizated attempts.

In each table, we show every time the accuracy and standard deviation of the accuracy for
the Mean-Threshold and the Variance-Threshold. As we said earlier, the Mean-threshold repre-
sents a configuration where a threshold is calculated by taking the mean distance between two
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reference canvases. the Variance-threshold is a configuration where the threshold is calculated by
taking the variance of the distance between the reference canvases.

Let us consider the overall results in tables 7.11 and 7.13. We plotted these tables in fig-
ures 7.28 and 7.29 to get an overview of the results. From the plots, we can derive several things.
First of all, the hamming distance seems to be the best distance measure. For both threshold
configurations, the hamming distance performs mainly better. We say that the hamming distance
is a more fitting distance measure for the binary compressed representation of the canvases.
Further, we see that the Mean-threshold configuration achieved the highest accuracy with an
overall accuracy of 77% for a group size equal to 100. If we take a closer look at the accuracy in
the Mean-Threshold column for the authorized (tables 7.10 and 7.13) and unauthorized attempts
(tables 7.9 and 7.12) , we see that the difference in performance between both distance measures
is caused by the performance on the authorized attempts. The performance on unauthorized
attempts is identical for both distance measures, but the accuracy on authorized attempts is higher
for the hamming distance as distance measure. This means that the hamming distance is better
in measuring the relation that canvases from the same device are lying closer to each other than
canvases the are originating from different devices. In Figure 7.29, we see the Variance-Threshold
is performing bad. It performs for all group sizes equally or under the baseline. The only excepting
is groupsize = 400 with the hamming distance, where we see an accuracy of 62%, but this still
doesn’t weigh up against the performance of the configuration with the Mean-Threshold.

Other metrics to consider the performance of the algorithm are the false positieve and false
negative rate. The false positive rate is the percentage of users that try to authenticate to the
system as someone else and get accepted. The false negatieve rate is the percentage of users
that gets unfairly denied by the authentication system. The perfect authentication system would
have a false positive and false negatieve rate of 0%. This is not the case with our authentication
system, but we should aim to have the lowest percentage possible. If we consider the tables
from 7.14 to 7.17, we see that again that the authentication system with the hamming distance
as distance measure and the Mean-threshold is performing the best. With the best resuls for
groupsize = 100, where we have a false positive rate of 18% and a false negative rate of 30%.

Group size False Positive Rate False Negative Rate
1 0,45 0,1
20 0,26 0,7
40 0,22 0,7
50 0,2 0,8
100 0,16 0,7
400 0,18 0,6

Table 7.14: False Positive and False Negatieve Rate of an authentication system with the Euclidean
distance as distance measure and the Mean-Threshold.
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Group size False Positive Rate False Negatieve Rate
1 0,97 0
20 0,69 0,7
40 0,76 0,8
50 0,67 0,6
100 0,67 0,6
400 0,71 0,4

Table 7.15: False Positive and False Negatieve Rate of an authentication system with the euclidean
distance as distance measure and the Variance-Threshold.

Group size False Negative Rate False Positive Rate
1 0,5 0,45
20 0,4 0,26
40 0,5 0,22
50 0,3 0,2
100 0,3 0,16
400 0,7 0,18

Table 7.16: False Positive and False Negatieve Rate of an authentication system with the hamming
distance as distance measure and the Mean-Threshold.

Group size False Positive Rate False Negative Rate
1 0,81 0,2
20 0,54 0,5
40 0,49 0,6
50 0,47 0,7
100 0,48 0,7
400 0,46 0,3

Table 7.17: False Positive and False Negatieve Rate of an authentication system with the hamming
distance as distance measure and the Variance-Threshold.

At last, we included in figure 7.30 a few examples of the reconstruction by the autoencoder in
the authentication system. As we can see, the reconstruction looks very similar for all inputs. It
is clear that the autoencoder is not able to make the reconstruction perfectly.

As a conclusion for this authentication method, we can say that it shows promising results
and has a lot of potential for further research. Note that, the two threshold configurations, the
Mean-Threshold and Variance-Threshold, are chosen by us to evaluate the authentication method.
It is possible to replace this with any other threshold configuration. This is a free choice that can
be made by the security expert, managing the authentication system.
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Figure 7.30: Original inputs and reconstructions by autoencoder

7.12 Discussion
In the previous sections, we evaluated several authentication methods. First we experimented
with K-NN classifier in section 7.9. Authentication methods with this algorithm showed no good
results, so we continued with more advanced authencation methods, based on deep learning. In
section 7.10 we made use of a convolutional network for our authentication method, which showed
very good results with an accuracy of 93% and an acceptable false positive rate. On the other
hand in section 7.11, we constructed another promising method, where we used autoencoders for
semantic hashing. This method showed less good results than the convolutional network, with
for his optimal configuration an accuracy of 77%. Although, this authentication method has
much more flexibility than the convolutional network. Which method should we choose? Let us
elaborate this. If we have to base ourselves on the performance of the authentication methods,
we would choose the convolutional network. But, the deployment of a convolutional network in
a live authentication system is less interesting. The reason is that for every new device, a new
convolutional network needs to be trained. Considering the runtime of the experiments, this can
take a long time. Alternatively, if we would use the authentication method with the autoencoder
and semantic hashing, this would not be needed. We only need to train the autoencoder once.
After that, the same autoencoder is used everytime to convert the canvases to a compressed
representation. So, if we would add a new device to the system, it only has to calculate the com-
pressed representation. This take significanly less time than training the algorithm again. Also,
the autencoder offers much more flexibility for the security expert, managing the authentication
system. The fact that he has the free choice on how to configure the threshold and group size,
gives him the possibilty to define his own policy.

In general, the authentication method with convolutional networks offers us a higher perfo-
mance, but is less generic and flexible than the authentication method, based on an autoencoder
and semantic hashing.
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Chapter 8

Conclusion and Future Work

In this chapter, we summarize the main results and key observations of this thesis. To end, we
provide an overview of other opportunities with regard to future research.

8.1 Conclusion
Recent developments in the research towards canvases has motivated us to develop a new au-
thentication method, based on canvases. Nowadays, canvases are only used for simple tracking
methods. Currently, these tracking methods are not complex enough to use for authentication.
We developed several methods, based on machine learning techniques and canvases, that have the
complexity to allow authentication. This was a very specific research question and there was no
research available. Mainly, the inspiration for this research was drawn from image classification,
a similar research domain.

The goal of this thesis was to develop a seamless authentication method, based on canvases
and machine learning techniques and intended for weak authentication. The outline of the
authentication method was as follows. First, the user registers a device by feeding an email and an
amount of random canvases to the authentication system. After the registration, the user should
be able to identify himself with the registered device by sending again his email and an amount of
random canvases. The drawing method, chosen during this research, is very simple. The method
draws a random string multiple times on a fixed position. This allowed us to observe all the
possibilties of a canvas drawing in its simplest form. Also, we tried to gradually increase the
complexity of the methods we experimented with. This gave use the knowledge to incrementally
improve our authentication method. In general, we developed three authentication methods.

The first authentication method used a K-NN Classifier, a very intuitive and easy to understand
algorithm. It allowed us to see the possibilities with the canvases. It was clear that this method
was not suitable as an authentication method. It showed bad performances and scaled very bad
for large dataset. Despite the bad results, the method inspired us for new approaches in the next
authentication methods. We used convolutional autoencoders to retrieve a compressed represen-
tation of the canvases. This had a positive impact on the results of the method. It achieved more
consistent and better results. This inspired use for the second developed authentication method
with convolutional networks.

The second authentication method was fully based on convolutional networks. The authen-
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tication system trained for each device a new convolutional network and used the prediction
of the neural network to predict if a canvas comes from a certain device. This method is the
best performing method of all the developed methods. It has an accuracy of 93% in a real
world environment and has a low false positive rate of 9%. The drawback of this method is the
fact that it needs to train a new convolutional device, every time a new device is added to the
authentication system. This can be time expensive.

Alternatively, we developed the third and last authentication method. This method used an
autoencoder to semantically hash the canvases. The idea was that the autoencoder maps the
canvases to a binary compressed representation in a way that canvases from the same device have
a small distance between their representations and canvases from different devices have a large
distance between their representations. The authentication method used a threshold related to the
distance, to decide whether or not the canvases originated from the same device. An advantage
of this system is the flexibility. It allows the security expert to choose the threshold freely. In
this way, the security expert can define his own policy for the authentication system. Another
advantage is the fact that is is a generic authentication method. When a new device is added
to the system, no new training of the autoencoder is required. The autoencoder can generate a
binary compressed representation for every new device, when it is only trained once. We evaluated
this method by considering several group sizes, two distance measures, namely the hamming
distance and euclidean distance and two threshold configurations. As a result, we saw that the
hamming distance was the best distance measure for the system and the Mean-threshold, together
with a group size equal to 100, results in a good performance of 77%. The Mean-threshold was
defined as the mean distance between two canvases from the same device.

Overall we can say that we succeed in our goal. We have developed and evaluated several
authentication methods, which could serve for weak authentication. Further, we have shown
that we can identify devices, based on canvases and their render differences. More over, we
demonstrated that it is possible to pick up these difference by using simple and random canvas
drawings of several devices. This makes canvases also a very interesting subject for future research.

8.2 Future Work
• Tuning of the architectures: The autoencoders and convolutional networks require a lot

of decision making with regard the hyperparameters and the architecture. All the deep
learning methods in our experiments have the same architecture and configuration. It would
be interesting to see for future work how other architectures or configurations would perform
compared to ours. An example would be the use of stacked or denoising autoencoders,
instead of our normal autoencoder.

• Advanced canvases: In this research we considered only a very simple drawing technique to
represent the canvases. It would be interesting to see how our methods would perform with
more complex canvases. A nice addition to the canvas are for example shapes or emoijs.
Especially emoijs, they introduce immediately a difference, since it is drawn differently for
each operating system. This could help the algorithms to make a more accurate decision.

• Security of the authentication method: The security of the authentication method is not
discussed in this thesis. Nevertheless, it is important to make an assessment of the security
of the method. How can the authentication be evaded and is it possible to fake someone's
identity? These are questions that could be asked in future research.
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• Large scale evaluation: We evaluated this method with a rather limited dataset. In the
real world there is much more variation. An large scale evaluation of the authentication
method could give us more insight on the entropy of the canvases and the performances of
our systems.
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