
Graduation thesis submitted in partial fulfillment of the requirements
for the degree of Master of Science in Applied Science and Engi-
neering: Computer Science

KNOWLEDGE TRANSFER IN
DEEP REINFORCEMENT LEARN-
ING

Arno Moonens

Academic Year: 2016-2017

Promotor: Prof. Dr. Peter Vrancx

Science and Bio-Engineering Sciences

Proefschrift ingediend met het oog op het behalen van de graad
van Master of Science in Applied Science and Engineering: Com-
puter Science

KENNISOVERDRACHT BIJ DEEP
REINFORCEMENT LEARNING

Arno Moonens

Academiejaar: 2016-2017

Promotor: Prof. Dr. Peter Vrancx

Wetenschappen en Bio-ingenieurswetenschappen

Abstract

Deep reinforcement learning allows for learning how to perform a task using high-
dimensional input such as images by trial-and-error. However, it is sometimes necessary
to learn variations of a task, for which certain knowledge can be transferred. In this
thesis, we learn multiple variations of a task in parallel using both shared knowledge
and task-specific knowledge. This knowledge is then transferred to a new task. In ex-
periments, we saw that learning first in parallel on a set of source tasks significantly
improves performance on a new task compared to not learning on source tasks or only
using one. We also found that it is beneficial to start learning on a new task using
task-specific knowledge of a source task.

i

ii

Acknowledgments

I would like to thank my promotor Prof. Dr. Peter Vrancx for always giving useful
feedback and helping me when I was stuck. This thesis would not have been possible
without his expertise and the inspiration he offered. I would also like to thank my friends
and family for always supporting me in this and all other endeavors.

iii

iv

Contents

1 Introduction 1

2 Artificial neural networks 3
2.1 Basics . 3
2.2 Activation functions . 4

2.2.1 Perceptron . 5
2.2.2 Sigmoid . 5
2.2.3 Hyperbolic tangent . 6
2.2.4 Rectified Linear Unit . 7
2.2.5 Softmax . 8

2.3 Gradient descent and backpropagation . 9
2.3.1 Gradient descent . 9
2.3.2 Stochastic gradient descent . 12
2.3.3 Backpropagation . 13
2.3.4 Extensions and improvements . 15

3 Reinforcement learning 19
3.1 Basics . 19
3.2 Dynamic programming . 20
3.3 Monte Carlo and Temporal-Difference . 21
3.4 Eligibility traces . 22
3.5 Bootstrapping . 27
3.6 Policy gradient . 28
3.7 Generalization and function approximation 32

3.7.1 Coarse coding . 34

4 Deep learning 37
4.1 Convolutional neural networks . 38
4.2 Recurrent Neural Networks . 40

5 Deep reinforcement learning 43
5.1 DQN . 43
5.2 Continuous control with deep reinforcement learning 45

v

vi CONTENTS

5.3 Asynchronous Methods for Deep Reinforcement Learning 46

6 Transfer learning 49
6.1 Transfer learning dimensions . 49
6.2 Metrics . 50
6.3 Related work . 51

7 Proposed algorithm 57

8 Experimental setup 61
8.1 Cart-pole environment . 61
8.2 Acrobot environment . 61
8.3 Methodology . 62
8.4 Results . 64

8.4.1 Parallel and sequential knowledge transfer 64
8.4.2 Feature extraction . 65
8.4.3 Usage of a different amount of source tasks 66
8.4.4 Transfer of sparse representation 69
8.4.5 REINFORCE using a source and target task 72

9 Conclusion 75

Appendices 77

A Experiment details 79
A.1 Data collection . 79
A.2 Artificial neural network parameters . 79
A.3 Environment parameters . 79

List of Figures

2.1 An artificial neural network . 4
2.2 The perceptron unit . 5
2.3 The sigmoid function . 6
2.4 Hyperbolic tangent function. 7
2.5 Rectified Linear Unit function . 8
2.6 Leaky ReLU function . 9
2.7 An example of an error surface . 11

3.1 n-step returns . 23
3.2 TD forward view . 24
3.3 TD backward view . 24
3.4 Generalization between points . 35
3.5 Shapes of receptive fields . 36

4.1 An example of a 3-by-3 filter applied to an image 38
4.2 Convolutional neural network layout . 39
4.3 Convolutional neural network features hierarchy 39
4.4 Recurrent neural network . 40
4.5 Long short-term memory cell . 41
4.6 Gated Recurrent Unit cell . 42

6.1 Transfer learning metrics . 52

7.1 Artificial neural network architecture used in our approach 58

8.1 Visualization of the cart-pole environment 62
8.2 Visualization of the acrobot environment 63
8.3 Learning curves for the parallel and sequential version of our algorithm

applied to the cart-pole environment . 64
8.4 Learning curves for the transfer learning algorithm applied to the cart-

pole environment with no feature extraction in its neural network, one
using a layer with 5 units and one using a layer of 10 units. 65

8.5 Learning curves for REINFORCE and TLA for the Cart-pole environment 66

vii

viii LIST OF FIGURES

8.6 Learning curves for the acrobot environment of REINFORCE and TLA
for the Acrobot environment . 68

8.7 Boxplots of the asymptotic performances of REINFORCE, TLA 5 and
TLA 10 using the acrobot environment. 69

8.8 Learning curves for the cart-pole environment of TLA with and without
sparse representation transfer . 70

8.9 Learning curves for the acrobot environment of TLA with and without
sparse representation transfer . 71

8.10 REINFORCE applied for 100 epochs to a randomly chosen source task
of a cart-pole environment and afterwards to the target task, using the
same network and weight values. The learning curve is compared to the
one of the TLA 5 algorithm that uses sparse representation transfer. . . . 73

8.11 REINFORCE applied for 100 epochs to a randomly chosen source task
of an acrobot and afterwards to the target task, using the same network
and weight values. 74

List of Algorithms

1 Backpropagation . 14

2 Sarsa(λ) . 25
3 Watkins’ Q(λ) . 26
4 REINFORCE . 30
5 QAC . 31

6 Deep Q-learning with experience replay . 45
7 Asynchronous Advantage Actor Critic . 47

8 Asynchronous knowledge transfer agent for a source task 58
9 Knowledge transfer agent for the target task 59

ix

x LIST OF ALGORITHMS

List of Tables

8.1 Mean, standard deviation and median of the jumpstart performances for
REINFORCE, TLA 5 and TLA 10 applied to the cart-pole environment. 67

8.2 Mean, standard deviation and median of the jumpstart performances for
REINFORCE, TLA 5 and TLA 10 applied to the acrobot environment. . 67

8.3 P-values for the Wilcoxon rank-sum test of the jumpstart performances
using different algorithms, applied to the acrobot environment. 68

8.4 P-values for the Wilcoxon rank-sum test using different algorithms with
the acrobot environment. 69

8.5 Mean, standard deviation and median of the jumpstart performances for
TLA 5 and TLA 10, with without and with sparse representation transfer,
applied to the cart-pole environment. 70

8.6 Mean, standard deviation and median of the jumpstart performances TLA
5 and TLA 10 both with and without sparse representation transfer,
applied to the acrobot environment. 72

8.7 Mean, standard deviation and median of the asymptotic performances
TLA 5 and TLA 10 both with and without sparse representation transfer,
applied to the acrobot environment. 72

xi

xii LIST OF TABLES

Chapter 1

Introduction

Reinforcement learning is a branch from the machine learning field where we we learn
from an environment by interacting with it. The reinforcement learning algorithm selects
an action, executes it and can receive a reward. It can then change its way of selecting
actions in order to get a higher reward, which is possibly received later on.
The environment in which the agent acts can be for example a game like Pong, a smart
home controlling the room temperature or a self-driving car.

Determining which action to take can be done by using an artificial neural network.
It is inspired by the brain of a human and consists of interconnected elements called
units. The network receives an input as a vector of numerical values. These are then
propagated to layers of units and results in one or more output units.
In the context of reinforcement learning, these input units can be the current state of
the environment. The output units can represent the action that has to be taken. The
learning process can then involve changing the strength of connections between units
and as such influencing the output values.

For high-dimensional inputs, different kinds of artificial neural networks must be
used to be able to process these inputs. Techniques involving these networks are called
deep learning methods. For example, an image can be used as input to the network.
These typically include several thousands of pixels of each a certain color. Convolutional
neural networks are able to detect patterns in the images using several layers of filters.
Another deep learning network is the recurrent neural network, which is able to process
a sequence of data such as a video or text.

By combining deep learning and reinforcement learning, it is possible to learn in an
environment that has a high-dimensional input space. This is called deep reinforcement
learning. For example, the agent can learn how to play Pong just using an image of the
screen, just like a human.

An environment in which is learned is roughly defined by the possible states in which

1

2 CHAPTER 1. INTRODUCTION

it can be, which actions can be taken and in which state one ends up in when taking
an action being in a certain state. These however can be changed such that the envi-
ronment is easier or harder to learn. In an environment where a self driving car must
be controlled for example, the amount of obstacles may vary or the weather conditions
may change.
Although these changes may require different capabilities of the agent, some knowledge
may still be useful. It can thus be beneficial for the agent to transfer the already learned
knowledge from the initial situation, called source task to the agent learning in the new
situation, called the target task. This domain is called transfer learning. One use of this
is for example in cases where it is too expensive or time consuming to learn in the real
world. Instead, one can first learn in a simulation and then transfer the knowledge to
use and fine tune it in the real world, saving time and money.
It is necessary to know from which source tasks to transfer knowledge and which knowl-
edge to transfer. For this, we need to know how the tasks are related and possibly how
an agent can interpret and act using the new state space and action space.

In this thesis, we investigate the use of transfer learning in reinforcement learning
using artificial neural networks. First, we will introduce the reader to the concepts
of reinforcement learning, artificial neural networks, deep learning, deep reinforcement
learning and transfer learning. Afterwards, we will discuss related work in the field of
transfer learning applied to reinforcement learning and deep reinforcement learning. We
will then explain the algorithm that was used in experiments and how the experiments
were conducted. Last, the results of the experiments will be discussed.

Chapter 2

Artificial neural networks

Artificial neural networks are models that can approximate discrete-valued, real-valued
and vector-valued functions. They are composed of interconnected units that can ac-
tivate other units using connections of varying strength. Artificial neural networks are
loosely inspired by biological neural networks, where these units are called neurons,
which are connected by axons.
The higher the strength, also called weight, of connections between units, the more in-
fluence the unit has on the next one. These strengths are numerical values that can be
manually defined. However, thanks to a method called backpropagation, weights can
be learned systematically. The combination of artificial neural networks and backprop-
agation led to successful applications, for example to recognize handwritten characters
(LeCun et al., 1989), for face recognition (Cottrell, 1990) and to recognize spoken words
(Lang, Waibel, & Hinton, 1990). However, early applications also include reinforcement
learning, for example to learn to balance a pendulum (Anderson, 1989) or to play the
game Backgammon (Tesauro, 1992).

2.1 Basics

As said, artificial neural networks are made up of units. These units can be grouped into
layers, where the values of each layer are propagated to the next layer depending on the
weights of their connections. These weights define the model. Input units receive external
information and provide information to other units. Output units are the opposite and
receive information from the network itself and provide information externally. Hidden
units both receive information from and provide information to units inside the network.
A simple artificial neural network is visualized in Figure 2.1.
As a non-input unit gets information from multiple units, these need to be combined

to determine if the unit can be activated or not. This is done by applying a linear or
non-linear function, called an activation function, to the weighted sum of the connected
units.

3

4 CHAPTER 2. ARTIFICIAL NEURAL NETWORKS

Figure 2.1: An artificial neural network with 3 input units, 4 hidden units and 2 output
units. wih and who are the weights for connections between respectively the input units
and hidden units and between the hidden units and output units.

2.2 Activation functions

Formally, an activation function φ will compute for unit j with inputs from layer x:

o = φ
(n∑

i

wijxi
)

(2.2.1)

Or in vector format:
o = φ(−→w · −→x) (2.2.2)

From hereon we will denote the weighted sum as z ≡
∑n

i wijxi ≡
−→w · −→x .

2.2. ACTIVATION FUNCTIONS 5

2.2.1 Perceptron

A perceptron unit, defined by Rosenblatt, 1958, gives as output either −1 or +1 depend-
ing on the linear combination of the input and the weights:

o(−→x) =

{
+1 if −→w · −→x > 0

−1 otherwise
(2.2.3)

It can be seen as a hyperplane where the output is −1 or +1 depending on which side
the input lies. Using −1 as false and +1 as true, it is also possible to represent boolean
functions such as AND, OR, NAND and NOR. However, some boolean functions, such
as XOR cannot be represented by a single perceptron (Mitchell, 1997).

A schematic using the perceptron unit is shown in Figure 2.2.

Figure 2.2: The perceptron unit. Source: Demant, Garnica, and Streicher-Abel, 2013.

2.2.2 Sigmoid

A disadvantage of the perceptron unit is that it is not differentiable in the whole domain
(specifically at x = 0). Why this is a problem will become clear in Section 2.3.
To solve this problem, a sigmoid function can be used. A sigmoid function is a dif-
ferentiable function that is monotonically increasing and approaches an asymptote for
x → ±∞ (LeCun, Bottou, Orr, & Müller, 2012). As a result, these can still separate
the input space in 2 parts.

6 CHAPTER 2. ARTIFICIAL NEURAL NETWORKS

In the artificial neural networks domain, the sigmoid function generally refers to a vari-
ation of the logistic function and is denoted by σ(x). Its formula is:

f(z) = σ(z)

=
1

1 + e−z
(2.2.4)

The behavior of this function is visualized in Figure 2.3.

Figure 2.3: The sigmoid function.

2.2.3 Hyperbolic tangent

Another popular function and another kind of sigmoid function is the hyperbolic tangent
function, also called tanh. While the output of the sigmoid function ranges between 0
and +1, here the output ranges between −1 and +1, just like the range (and the only
possible values) of the perceptron. The formula of the hyperbolic tangent function,
which can also be written in terms of the sigmoid function, is:

f(z) = tanh(z)

= 2σ(2z)− 1

=
e
z
2 − e−

z
2

e
z
2 + e−

z
2

(2.2.5)

This function is visualized in Figure 2.4.

2.2. ACTIVATION FUNCTIONS 7

Figure 2.4: Hyperbolic tangent function.

2.2.4 Rectified Linear Unit

A rectified linear unit, also called a ReLU, is another popular and more recent activation
function. It was first defined by Nair and Hinton, 2010. The output is the identity
function if z ≥ 0 and 0 otherwise:

f(z) =

{
z if z ≥ 0

0 otherwise
(2.2.6)

As can be seen, this function requires less computations than the sigmoid and hyperbolic
tangent function. However, the derivative for z < 0 is always 0. Why this can be a
problem is also explained in Section 2.3.
The ReLU function is shown in Figure 2.5.

To solve the problem of the derivative being zero at z < 0, the Leaky ReLU was
invented (Maas, Hannun, & Ng, 2013). Here, instead of the output being zero for z < 0,
the output has a small slope, defined by a constant α:

f(z) =

{
z if z ≥ 0

αz otherwise
(2.2.7)

As can be seen, the derivative of this function is always non-zero.
An example of a Leaky ReLU is shown in Figure 2.6.

A variation of a Leaky ReLU, called Parametric Rectified Unit, also has a small slope
for x < 0, but with an α that can be learned (He, Zhang, Ren, & Sun, 2015). Other

8 CHAPTER 2. ARTIFICIAL NEURAL NETWORKS

Figure 2.5: Rectified Linear Unit function.

variants use a random slope for values below zero (Xu, Wang, Chen, & Li, 2015), add
noise a ReLU (Nair & Hinton, 2010) or use an exponential function for values below zero
(Clevert, Unterthiner, & Hochreiter, 2015):

f(z) =

{
z if z ≥ 0

α(ez − 1) otherwise
(2.2.8)

2.2.5 Softmax

The softmax activation function is different from the previous activation functions that
were described because here the output of one neuron depends on other neurons of the
same layer:

f(zi) =
ezi∑
j e

z
j

(2.2.9)

Where zi is the weighted sum for the current output to be computed and zj is the
weighted sum of another neuron in the same layer.
As we can see, the softmax function normalizes the outputs and results in outputs ranging
between 0 and 1. Because of this, we can use the outputs as if they are probabilities.
This is useful in a task where an action needs to be taken probabilistically based on the
output of the artificial neural network.

2.3. GRADIENT DESCENT AND BACKPROPAGATION 9

Figure 2.6: Leaky ReLU function with α = 0.2.

2.3 Gradient descent and backpropagation

If we choose the weights of our network correctly, we might succeed in approximating a
function. However, it is not always possible to separate the input space and have the
right outputs using our artificial neural network. In that case, we might want the best
possible solution, e.g. one that has the least amount of errors in producing outputs w.r.t.
the correct outputs, also called the target outputs. Furthermore, choosing the weights
manually can be a tedious process.
For these reasons, we use an algorithm called called backpropagation, which uses a
variation of gradient descent. We will first discuss gradient descent as this provides the
basis of the backpropagation algorithm.

2.3.1 Gradient descent

Gradient descent is a technique used to find a local minimum of a function using the
gradient of that function with respect to its parameters. These parameters lie in a weight
vector space, also called hypothesis space.

In our case, we want to approximate a function. As such, we want to minimize
the differences between our outputs and the outputs of the function, also called the
training examples. This difference, called the training error is also needed to update the
weights. It depends on the learning algorithm (in our case an artificial neural network),
its parameters and the training examples. However, here we assume that the learning
algorithm and the training examples are fixed while learning.

10 CHAPTER 2. ARTIFICIAL NEURAL NETWORKS

A common measure for the training error, the mean squared error (MSE), is defined as:

E(−→w) ≡ 1

N

N∑
i=0

(yi − f(xi;
−→w))2 (2.3.1)

Where N is the number of training examples, xi is the input of a training example,
yi is the target output of the training example and f is our learning algorithm, which
depends on the weight vector −→w .

Because we now know in which way the training error and the weight vector are
related, we can compute the derivative of the training error E with respect to each
component of −→w . This called the gradient and is denoted as ∇E(−→w):

∇E(−→w) ≡
[
∂E

∂w0
,
∂E

∂w1
, . . . ,

∂E

∂wn

]
(2.3.2)

Where n is the number of components in −→w . Note that ∇E(−→w) is also a vector. It
defines how to change the weight components in order to get the steepest increase in the
training error E. Thus, if we negate the gradient, we get the steepest decrease in E. We
can then update the weight vector as such:

−→w ← −→w − η∇E(−→w) (2.3.3)

Where η is a positive value called the learning rate, which influences how big the changes
to the weight vector are.

The goal is to set the weights to such values so that the error is minimized. This is
called a global minimum. No other combinations of weight values can lead to a lower
error than those of the global minima.
However, it is possible that, given a combination of weight values, any change in those
values does not influence the error, in which case the gradient for every weight compo-
nent is 0. Thus, with the current algorithm, there is no incentive to change the weights.
This is the case when every set of weights in the neighborhood of the current ones leads
to a higher error. This ”position” in the weight vector space is called a local minimum.
Although the algorithm cannot ”see” immediate improvements, it is possible that an-
other combination of weight values leads to a lower error. This is analogous to being in
a valley in the mountains, where the valley after a mountain (and thus not visible) may
lie lower. This is also visualized in Figure 2.7.

For artificial neural networks without a hidden layer, such as a single perceptron
unit, that use the MSE when updating weights, every local minimum is also a global
minimum. However, when using hidden layers, this might not always be the case.
These local minima might seem like a problem for artificial neural networks, but in
practice they rarely are, according to theoretical and empirical results (Choromanska,
Henaff, Mathieu, Arous, & LeCun, 2015). Instead, there are more saddle points. Here,

2.3. GRADIENT DESCENT AND BACKPROPAGATION 11

Figure 2.7: An example of an error surface using only one weight w0. A, B and C are
local minima, while D is the global minimum.

the gradient is zero and the error goes up when some weights are changed and goes down
for others. Generally a lot of such points are present, but they all have the same value
for the objective function (i.e. the error function).

A small value of η leads to slow convergence, while a high value can cause the algo-
rithm to overstep a local minimum. Because of this, some algorithms gradually decrease
the learning rate as the number of weight updates grows.

For a single weight vector component, the weight vector update becomes:

wi ← wi − η
δE

δwi
(2.3.4)

Of course, in order to update the weights, we first need to calculate the derivate of E
w.r.t. each component wi. As an example, we show the derivative when using a simple
linear unit, which is defined as:

f(−→x ;−→w) = −→x · −→w (2.3.5)

12 CHAPTER 2. ARTIFICIAL NEURAL NETWORKS

We then get the following derivation:

δE

δwi
=

δ

δwi

1

N

N∑
j=0

(yj − oj)2

=
1

N

N∑
j=0

δ

δwi
(yj − oj)2

=
1

N

N∑
j=0

2(yj − oj)
δ

δwi
(yj − oj)

=
2

N

N∑
j=0

(yj − oj)
δ

δwi
(yi −−→xi · −→w)

=
2

N

N∑
j=0

(yj − oj)(−xij)

(2.3.6)

Where xij is the i’th input component of training example j and oj ≡ f(xj ;
−→w). Instead

of just using a linear unit, the function f can of course be more complex and use for
example one of the activation functions from Section 2.2. However, we can now see that
we cannot use the perceptron unit because it is not differentiable over its whole domain.

Using the resulting formula of Equation 2.3.6 along with Equation 2.3.4, we can also
define how to update each component of the weight vector:

wi ← wi + η
2

N

N∑
j=0

(yj − oj)xij (2.3.7)

As we can see, for each weight vector, we need to apply the model to the input of each
training example. For this reason, this version of gradient descent is also often called
batch gradient descent. Of course, the outputs only need to be computed once per weight
vector update as they do not depend on which specific weight vector component that we
are updating.

Still, each time using every training example for the weight vector update can lead
to slow convergence to a local minimum. Furthermore, in case of multiple minima in the
error surface, it is possible that the gradient descent algorithm does not stop at a global
minimum (Mitchell, 1997).

2.3.2 Stochastic gradient descent

A popular variation of batch gradient descent that tries to solve the previously mentioned
issues is stochastic gradient descent. Instead of summing using all training examples, we

2.3. GRADIENT DESCENT AND BACKPROPAGATION 13

apply a weight update using only one training example. To do this, we use a different
error function for each example j:

Ej(
−→w) = (yj − oj)2 (2.3.8)

The update for a single weight vector component when using a linear unit is then:

wi ← wi + 2η(yj − oj)xij (2.3.9)

The idea here is that these weight updates, when having iterated over all the training ex-
amples, will be a decent approximation relative to using our original error function. Note
that the update using one training example affects the error of the next training example.

By making the learning rate small enough, usually smaller than with batch gradient
descent, it is possible to approximate the result of batch gradient descent arbitrarily
closely (Mitchell, 1997). It is also computationally cheaper because each time we only
handle one training example. Additionally, stochastic gradient descent can sometimes
avoid being stuck in local minima because it uses various∇Ej(−→w) instead of just∇E(−→w)
to move in the hypothesis space.

2.3.3 Backpropagation

The backpropagation algorithm uses gradient descent to learn weights of a multilayer
network with possibly multiple units in each layer (Rumelhart, Hinton, & Williams,
1986).

We say that, for multilayer networks, L > 2, with L the number of layers in the
network. This means that there are other layers besides the input and output layer.
Such a network was already depicted in Figure 2.1.

As multiple output units are also possible, we need a new training error measure
that sums over all of the output units of the network:

E(−→w) ≡ 1

N

N∑
i=0

∑
k∈outputs

(yki − oki)2 (2.3.10)

Where outputs are the output units of the network and yki and oki is the value of the
k’th output unit of respectively the i’th training example and network output.

The difference in calculating the gradients in the weights is that it depends on previ-
ous layers that aren’t input layers. That is, starting from the second non-input layer, the
input to a unit comes, besides the weights, from other units of which the value itself is
also calculated using weights. Thus, units in some layers can depend on units in multiple
previous layers. This must also be taken into account when calculating the gradient for
the output of those units. To do this, we can use the chain rule for the gradient of a

14 CHAPTER 2. ARTIFICIAL NEURAL NETWORKS

single weight component:

∂Ed
∂wji

=
∂Ed
∂netj

∂netj
∂wji

=
∂Ed
∂netj

xji

(2.3.11)

Where Ed is the error for a training example d, xji is the i’th input to unit j, wji is the
weight associated with this input and netj =

∑
iwjixji. The further derivation for all

the weights of the network is described in Mitchell, 1997, Chapter 4. For an artificial
neural network with 1 hidden layer, we get the pseudo-code shown in Algorithm 1.

Algorithm 1: Backpropagation algorithm. For simplicity, the squared error
(Ej(
−→w) = 1

2(yj − oj)2 for training example j) was used. Source: Mitchell, 1997,
Chapter 4.

Input: training examples, neural network, η
1 // Assume a network with nin input units nhidden hidden units and nout output

units.
2 // Assume (randomly) instantiated weights.
3 repeat
4 for (−→x ,−→y) in training examples do
5 Propagate −→x through the network and receive values for all the output

units: ou with u an output unit of the network
6 for each network output unit k do
7 Calculate its error term:
8 δk ← ok(1− ok)(yk − ok)
9 end

10 for each hidden unit h do
11 Calculate its error term:
12 δh ← oh(1− oh)

∑
k∈outputswkhδk

13 end
14 for each network weight wji do
15 Do an update:
16 wji ← wji + ∆wji
17 where
18 ∆wji = ηδjxji
19 end

20 end

21 until a termination condition is met

2.3. GRADIENT DESCENT AND BACKPROPAGATION 15

2.3.4 Extensions and improvements

2.3.4.1 Different loss functions

Besides just the difference between the output of the network and the expected output,
additional penalties can be added to indirectly influence the values of the weights. This
is generally done in order to prevent overfitting. Overfitting means that the performance
of the algorithm on the data on which we trained (called training data) is significantly
better than the performance on held-out data on which we didn’t train (called test data).
The algorithm captures too much details or noise in the training data. Using penalties,
we can force the algorithm to focus on generalization rather than specialization.
Here, we typically use the term loss function instead of an error function. This loss func-
tion can contain the error as we already described, along with other functions (typically
also called loss functions).

A popular loss function is called the L1 norm (also called Lasso) (Tibshirani, 1996).
For each weight w, we add the value λ|w| to the loss. The L1 norm is then defined as
such:

L1(
−→w) = λ

k∑
i=1

|wi| (2.3.12)

Where k is the number of weights of the network and λ is a parameter determining the
regularization strength. As the loss function, we then get:

L(−→w) = E(−→w) + L1(
−→w) (2.3.13)

This norm has the property of leading to sparse weight vectors (Bach, Jenatton, Mairal,
& Obozinski, 2012). This means that a lot of weights are zero or close to zero and the
focus is on finding a subset of the must important units.

Instead of using the absolute value, the L2 norm sums over squared weights. It has
the following form:

L2(
−→w) =

1

2

k∑
i=1

w2
i (2.3.14)

The fraction 1
2 is often used such that the derivative is λw instead of 2λw. The L2

loss focuses more on penalizing high weights. It leads to diffusion of the weights and
can indirectly force the network to use all the units of the network to form the correct
output.

The L1 norm and L2 norm can also be combined, called elastic net regularization
(Zou & Hastie, 2003):

LE(−→w) = L1(
−→w) + L2(

−→w) (2.3.15)

=
k∑
i=1

λ1|wi|+ λ2w
2
i (2.3.16)

16 CHAPTER 2. ARTIFICIAL NEURAL NETWORKS

2.3.4.2 Different weight updates

Here we discuss methods that, given an error function, update the weights in different
ways.

One of the most common extensions to backpropagation is to add a fraction of the
previous weight update to the new weight update. This extension is called momentum.
To apply this, we change the equation on line 18 of Algorithm 1 to the following:

∆wji(t) = ηδjxji + α∆wji(t− 1) (2.3.17)

Where ∆wji(t) is a weight update executed at iteration t and α, with 0 ≤ α < 1, which
determines how much of the previous weight update we want to carry to the new one.
When α = 0, we get again the regular weight update.

Thanks to momentum, it is possible to get past regions where the gradient is zero and
the weights would not change without momentum. This is analogous to a ball rolling
down a surface but keeps rolling a bit on a flat surface afterwards. In the real world, an
object in motion will stay in motion, unless there is a force applied to it. Here, that force
is the gradient. It is also possible to get past small local minima and it can speed up
learning when the gradient does not change in subsequent iterations. This is analogous
to a ball that goes downhill and keeps gaining speed.

The weight update of Root Mean Square Propagation (RMSProp) is quite different
from stochastic gradient descent and only uses the sign of the gradient to update the
weights (Tieleman & Hinton, 2012). This allows us to escape from plateaus more quickly.
Furthermore, the learning rate can be different for each weight. For example, we can
multiply the learning rate of a certain weight by a factor greater than one if its gradient
in the last 2 updates agreed on the sign, and multiply the learning rate by a value less
than 1 otherwise. This means that, when the gradients agree on the direction, we give
them more influence. If they are not consistent and disagree in subsequent steps, we
decrease the influence. We can also put a limit on the learning rate as to not let it grow
to excessively low or high amounts.

However, by just using an adaptive learning rate, we can have the problem of weights
themselves growing too high in unwanted situations. For example, when a gradient is for
9 subsequent steps a small positive amount (e.g. 0.1) and once a large negative amount
(e.g. −0.9), we don’t want to change the weights a lot because they balance each other
out. Using the current algorithm however, the learning rate and as a result the weights
would become too high because we only look at the signs and not the magnitude of the
gradients.
Right now, we are dividing the gradient by its absolute value in order to just get +1
or −1 depending on the sign. It is however better to divide each weight by a moving

2.3. GRADIENT DESCENT AND BACKPROPAGATION 17

average of the squared weight using the gradients of the past steps:

MeanSquare(w, t) = γ ·MeanSquare(w, t− 1) + (1− γ) ·
(

∂E

∂w(t)

)2

(2.3.18a)

w(t+ 1) = w(t)− α√
MeanSquare(w, t)

∂E

∂w(t)
(2.3.18b)

Where w(t) is a weight at time step t, ∂E
∂w(t) is its gradient, α is the learning rate and

wt+1 is the new weight value. The past squared gradients are decayed by a value γ.
Usually γ = 0.9. It is also possible to add a small number ε (e.g. ε = 10−8) to the
denominator in Equation 2.3.18b to avoid division by zero.

Adaptive Moment Estimation (Adam) (Kingma & Ba, 2014) also uses an adaptive
learning rate for each weight and an exponentially decaying average of previous squared
gradients (also called the second moment). In addition, an exponentially decaying aver-
age of past gradients (also called the first moment) is also stored:

Mean(w, t) = β1 ·Mean(w, t− 1) + (1− β1) ·
∂E

∂w(t)
(2.3.19a)

MeanSquare(w, t) = γ ·MeanSquare(w, t− 1) + (1− γ) ·
(

∂E

∂w(t)

)2

(2.3.19b)

The authors of this method observed that the two previous equations are biased towards
zero, which results in high weight updates. To alleviate this problem, the use bias-
corrected values:

̂Mean(w, t) =
Mean(w, t)

1− βt1
(2.3.20a)

̂MeanSquare(w, t) =
MeanSquare(w, t)

1− βt2
(2.3.20b)

The weight update then becomes:

w(t+ 1) = w(t)− α√
MeanSquare(w, t) + ε

Mean(w, t) (2.3.21)

2.3.4.3 Dropout

Dropout is a way to prevent overfitting and is mostly applied to deep learning methods,
which are explained in Chapter 4. It does so by randomly leaving out some visible or
hidden units. As a result, all incoming and outgoing connections to these temporarily
removed units are also removed and the algorithm cannot rely on these connections.
The simplest way of determining if a unit has to be removed is by removing it with a
certain probability p, e.g. p = 0.5. This value can also be determined by validation.
As each unit can be present or not when using the network, for n units there are 2n

18 CHAPTER 2. ARTIFICIAL NEURAL NETWORKS

possible networks. By learning each time using a possibly different network, we have
a way of combining multiple models where each model is trained only a few times and
most weights are shared between other models. Dropout is only used when training.
In the testing phase, no units are removed. Here, however, we multiply the outgoing
weights of each unit by the probability p. This is done to make sure that the expected
output for any hidden unit is the same as the actual output at test time.

Chapter 3

Reinforcement learning

In reinforcement learning, one tries to find which action to take in a certain state of the
environment in order to maximize a possibly delayed numerical reward.
For chapters 3.1 to 3.5 and 3.7, we will closely follow the explanation by Sutton and
Barto, 1998.

3.1 Basics

Reinforcement learning problems can be formulated in the form of a Markov Decision
Process (MDP). This is four-tuple (S,A,P,R). S is the state space and contains all
the possible states of the environment. The action space, A, denotes all the possible
actions that the agent can take in the environment. P : S × A → S is the transition
function and defines the probabilities for being in next state given a state and an action.
R : S ×A → R gives probabilities for rewards when taking an action in a certain state.
A transition is then a tuple of a state, an action taken at that state, the received reward
by taking that action (determined using R) and the next state (determined using P):
(st, at, rt, st+1). A sequence of transitions is called a trajectory.

A reinforcement learning algorithm does not know on beforehand which actions are
optimal. As such, this must be discovered by trial-and-error. Subsequently, it can change
its policy to increase the achieved rewards. This policy, denoted by π, defines for each
state and action a probability π(s, a), which denotes the probability of taking action a
when in state s: πt(s, a) = P (at = a|st = s). Note that exactly one action has to be taken
in a state and that the action probabilities for one state sum to 1:

∑
a∈A πt(s, a) = 1.

Because feedback in the form of numerical rewards may not be immediate, a reinforce-
ment learning algorithm must be able to backtrack which actions in certain situation
lead to the reward that the reinforcement learning algorithm received.

Reinforcement learning algorithms often use a state-value function V (s). This func-
tion says how good it is to be in a certain state s by stating the expected return in the
future starting from state s, where the return is the discounted rewards. This expected

19

20 CHAPTER 3. REINFORCEMENT LEARNING

value when starting in state s and following a specific policy π is denoted as V π(s):

V π(s) = E
π
{Rt|st = s} = E

π

{ ∞∑
k=0

γkrt+k+1|st = s
}

(3.1.1)

Where γ is a discount applied over time to past rewards. The optimal policy π is the
one that leads to the highest V π(s) for all s ∈ S. The resulting state-value function is
V ∗(s) = maxπ V

π(s) for all s ∈ S.
It is also possible to define a value for taking an action in a certain state, which is

the action-value function Q(s, a). Qπ(s, a) is the expected return after taking action a
in state s:

Qπ(s, a) = E
π
{Rt|st = s, at = a} = E

π

{ ∞∑
k=0

γkrt+k+1|st = s, at = a
}

(3.1.2)

Similarly as with V ∗(s), Q∗(s, a) is the action-value function we have when applying the
optimal policy.
Actions can be selected by for example ε-greedy or softmax. In ε-greedy action selection,
the action with the highest Q(s, a) is selected with probability 1−ε and a random action
otherwise.
Softmax chooses an action a when in state s with the following probability:

p(s, a) =
eQ(s,a)/τ∑n
b=1 e

Q(s,b)/τ
(3.1.3)

Where τ is called the temperature and controls the balance between exploration and
exploitation. For low values, the best actions are highly probable. For τ → 1, the prob-
ability distribution becomes uniform.

3.2 Dynamic programming

In Dynamic programming, the whole model of the problem is known. A such, we have
the complete probability distribution of all the possible transitions. For example, to
evaluate a policy π:

V π(s) = E
π
{rt+1 + γrt+2 + γ2rt+3 + · · · | st = s}

= E
π
{rt+1 + γV π(st+1) | st = s}

=
∑
a

π(s, a)
∑
s′

Pass′ [Rass′ + γV π(s′)]

(3.2.1)

Here, π(s, a) is the probability of taking action a in state s. This V π(s) can be computed
using iterative updates for every s:

Vk+1(s) = E
π
{rt+1 + γVk(st+1)|st = s}

=
∑
a

π(s, a)
∑
s′

Pass′ [Rass′ + γVk(s
′)]

(3.2.2)

3.3. MONTE CARLO AND TEMPORAL-DIFFERENCE 21

This iteration stops when this state-value function has converged. As can be seen, every
possible next states is used in the computation instead of just a sample. Because of this,
this kind of updates is called a full backup. Note that we use an estimate of the value
function to update the estimate itself. This is called bootstrapping.
The optimal state-value function V ∗(s) and state-action-value function Q∗(s, a) can be
calculated using the following formulas:

V ∗(s) = max
a

E{rt+1 + γV ∗(st+1)|st = s, at = a}

= max
a

∑
s′

Pass′ [Rass′ + γV ∗(s′)]
(3.2.3)

Q∗(s, a) = E{rt+1 + γmax
a′

Q∗(st+1, a
′)|st = s, at = a}

=
∑
s′

Pass′ [Rass′ + γmax
a′

Q∗(s′, a′)]
(3.2.4)

3.3 Monte Carlo and Temporal-Difference

Unlike dynamic programming, model-free methods don’t require complete knowledge of
the environment. Instead, only sample transitions are needed. This way, 2 problems
with dynamic programming can be solved. First, the model may be large, which makes
it infeasible to use for computing for example an optimal policy. Second, in real world
problems, a complete model of the problem may not be available. It may for example
be unknown what is the probability of ending in a certain state when taking a certain
action from a start state.
Monte Carlo methods collect sample returns and average them in order to approximate
a value function. The incremental implementation for approximating V is as follows:

V (st)← V (st) + α
[
Rt − V (st)

]
(3.3.1)

Where Rt is the actual return of an action and α is a constant step-size parameter. As
was shown in equation 3.1.1, to compute Rt we need all the future rewards until the end
of the episode.
Temporal-Difference (TD) learning tries to solve this by bootstrapping techniques like
in dynamic programming. To do this, in the update we replace the full return using
the observed reward and the estimate of the value of the next state. This is known as
TD(0):

V (st)← V (st) + α
[
rt+1 + γV (st+1)− V (st)

]
(3.3.2)

These estimates can then be used for acting in an environment.
Sarsa uses TD estimates for on-policy control. Because it is on-policy, we must estimate
the action-value function Qπ(s, a) for the current behavior policy π and for all states s
and actions a. We consider transitions from state-action pair to state-action pair instead
of transitions from state to state. The update is as follows:

Q(st, at)← Q(st, at) + α
[
rt+1 + γQ(st+1, at+1)−Q(st, at)

]
(3.3.3)

22 CHAPTER 3. REINFORCEMENT LEARNING

We can then choose the action with the highest Qπ(st, at), using ε-greedy etc. Another
control method called Q-learning also uses TD estimates but doesn’t use the policy that
is followed to estimate Q∗. This is called an off-policy algorithm. Here, we do a backup
using the action that has the highest Q value at the next state:

Q(st, at)← Q(st, at) + α
[
rt+1 + γmax

a
Q(st+1, a)−Q(st, at)

]
(3.3.4)

Note that the policy still can influence which state-action pairs are visited and updated.
To guarantee finding the optimal behavior, it is required that all pairs continue to be
updated.

3.4 Eligibility traces

Eligibility traces are used in order to only influence eligible states or actions when a
certain action is taken.
Monte Carlo methods perform a backup for each state based on the entire sequence of
observed rewards from that state until the end of the episode. The backup of more
simple methods is only based on the next reward of a state, using the state value one
step later as a proxy for the remaining rewards. An intermediate method would perform
a backup based on an intermediate number of rewards. Then, we use the rewards of the
intermediate steps and the estimated value of the last state. A visualization can be seen
in Figure 3.1. The n-step target can be formulated as:

R
(n)
t = rt+1 + γrt+2 + · · ·+ γn−1rt+n + γnVt(st+n) (3.4.1)

There, we treat the terminal state as a state that always transitions to itself with zero
reward. This way of treating an episodic task the same as a continuing task doesn’t
influence the result, even if we discount the returns. As such, all n-step returns that last
up to or past termination have the same value as the complete return.
The increment to Vt(st) is then defined by:

∆Vt(st) = α
[
R

(n)
t − Vt(st)

]
(3.4.2)

In on-line updating, the updates are done during the episode, as soon as a ∆Vt(st) is
computed. In off-line updating, these increments are set aside and applied after the
episode is done.
n-step TD methods are rarely used because they are inconvenient to implement. To com-
pute n-step returns, you have to wait n steps to observe the resultant rewards and states.

We can also take the weighted average of n-step return. This is called the forward
view or theoretical view. The requirement is that the weights sum to 1. TD(λ) is a
particular way of doing this. The λ-return is defined by:

Rλt = (1− λ)
∞∑
n=1

λn−1R
(n)
t (3.4.3)

3.4. ELIGIBILITY TRACES 23

Figure 3.1: Returns each based on a different amount of rewards and by using the state
value as a proxy afterwards. This is not needed for Monte Carlo methods as they use
all the future rewards. Source: Sutton and Barto, 1998.

After a terminal state has been reached, all subsequent n-step returns are equal to Rt,
so the (1− λ) isn’t applied. When λ = 1, we will only have the conventional return Rt.
The increment, ∆Vt(st), is:

∆Vt(st) = α
[
Rλt − Vt(st)

]
(3.4.4)

In this forward view, we look for each state visited forward in time to all the future
rewards and decide how best to combine them. After looking forward from and updating
one state, we move to the next and don’t work with that state anymore. Future states,
however, are viewed and processed repeatedly. This way of thinking is visualized in
Figure 3.2.

The backward view can be seen as a practical version of the forward view, as it
achieves the same but is easier to implement. Here we have an additional memory
variable associated with each state, the eligibility trace, denoted et(s) ∈ IR+. On each
step, they are decayed by γλ, and the eligibility trace for the one state visited on the
step is incremented by 1. The increment ∆Vt(st) is then defined as such:

δt = rt+1 + γVt(st+1)− Vt(st) (3.4.5a)

∆Vt(s) = αδtet(s), for all s ∈ S (3.4.5b)

Here we work backwards and update backward to each prior state according to the
state’s eligibility trace at that time. This is visualized in Figure 3.3. If we set λ = 0,

24 CHAPTER 3. REINFORCEMENT LEARNING

Figure 3.2: The forward view, where each state value is updated by looking forward to
the states and their rewards that follow. Source: Sutton and Barto, 1998.

Figure 3.3: The backward view, where the value of visited states are updated based on
their eligibility values. Source: Sutton and Barto, 1998.

then we only update the trace for st, thus getting TD(0). For larger values, with λ < 1,
more of the preceding states are changed. The more distant states are changed by a
smaller amount because the eligibility trace is smaller. This way, they are blamed less
for the TD error.
If λ = 1 the credit given to earlier states falls only by γ per step. If λ = 1 and γ = 1,
then there is no decay at all and we achieve the Monte Carlo method for an undiscounted
episodic task. This is known as TD(1). This TD(1) is more general however because it
cannot only be applied to episodic tasks, but also to discounted continuing tasks. It can
also be performed incrementally and on-line, while Monte Carlo methods have to wait
until the episode is over. If the Monte Carlo control method does something bad, its
behavior cannot change during the same episode, while on-line TD(1) can (using n-step).
Both methods achieve the same weight update.

To combine TD(λ) and Sarsa, called Sarsa(λ), we need eligibility traces for each

3.4. ELIGIBILITY TRACES 25

state-action pair: et(s, a). As such, we do updates like this:

Qt+1(s, a) = Qt(s, a) + αδtet(s, a), for all s, a (3.4.6)

where
δt = rt+1 + γQt(st+1, at+1)−Qt(st, at) (3.4.7)

and

et(s, a) =

{
γλet−1(s, a) + 1 if s = st and a = at;

γλet−1(s, a) otherwise.
for all s, a (3.4.8)

The resulting algorithm can be seen in Algorithm 2:
Two methods exist to combine TD(λ) and Q-learning and thus getting Q(λ): There

Algorithm 2: Sarsa(λ). Source: Sutton and Barto, 1998

1 Initialize Q(s, a) arbitrarily
2 e(s, a)← 0 for all s, a
3 for each episode do
4 Initialize s,a
5 repeat
6 Take action a, observe reward r and new state s′

7 Choose action a′ from s′ with action selection policy using Q
8 δ = r + γQ(s′, a′)−Qt(s, a)
9 e(s, a)← e(s, a) + 1

10 for all s, a do
11 Q(s, a)← Q(s, a) + αδe(s, a)
12 e(s, a)← γλe(s, a)

13 end
14 s← s′; a← a′

15 until s is terminal

16 end

exists 2 different methods: Watkins’ Q(λ) and Peng’s Q(λ).
Here, we must cut off the look ahead until the first exploratory action instead of the
episode’s end. This is done because this exploratory action doesn’t have any relationship
with the greedy policy. Recall that Q-learning is an off-policy method and the policy
learned about is not necessarily the same as the one used to select actions. As such, it can
learn about the greedy policy while following a policy involving exploratory (suboptimal)
actions.

For Watkins’ Q(λ), if at+n is the first exploratory action, the longest backup is
toward:

rt+1 + γrt+2 + · · ·+ γn−1rt+n + γn max
a

Qt(st+n, a) (3.4.9)

26 CHAPTER 3. REINFORCEMENT LEARNING

Where we assume off-line updating.
In the backward view, we update the eligibility traces just like in Sarsa, with the only
exception that we don’t use the eligibility trace of the previous time step when a sub-
optimal (exploratory) action is taken. We get the following result:

et(s, a) = Isst ∗ Iaat +

{
γλet−1(s, a) if Qt−1(st, at) = maxaQt−1(st, a);

0 otherwise
(3.4.10)

Where Ixy is an identity indicator function, equal to 1 if x = y and 0 otherwise. The Q
update is defined by:

Qt+1(s, a) = Qt(s, a) + αδtet(s, a) (3.4.11)

Where
δt = rt+1 + γmax

a′
Qt(st+1, a

′)−Qt(st, at) (3.4.12)

The resulting pseudo-code can be seen in Algorithm 3.
Because exploratory actions happen often, backups won’t be long and so eligibility traces

Algorithm 3: Watkins’ Q(λ). Source: Sutton and Barto, 1998

1 Initialize Q(s, a) arbitrarily
2 e(s, a)← 0 for all s, a
3 for each episode do
4 Initialize s,a
5 repeat
6 Take action a, observe reward r and new state s′

7 Choose action a′ from s′ with action selection policy using Q
8 a∗ ← arg maxbQ(s′, b)
9 if a∗ = a′ then

10 a∗ ← a′

11 end
12 δ = r + γQ(s′, a∗)−Qt(s, a)
13 e(s, a)← e(s, a) + 1
14 for all s, a do
15 Q(s, a)← Q(s, a) + αδe(s, a)
16 if a∗ = a′ then
17 e(s, a)← γλe(s, a)
18 else
19 e(s, a)← 0
20 end

21 end
22 s← s′; a← a′

23 until s is terminal

24 end

3.5. BOOTSTRAPPING 27

won’t have a lot of advantage anymore.
Peng’s Q(λ) tries to solve this, being a hybrid of Sarsa(λ) and Watkin’s Q(λ). Its com-
ponent backups are neither off- nor on-policy. The earlier transitions are each on-policy
and the last transition uses the greedy policy. As such, all but the last uses the actual
experiences. Because of this, for a fixed non-greedy policy, Qt converges to neither Qπ

nor Q∗, but some hybrid between the 2. If the policy is more greedy, the method may
still converge to Q∗.

Replacing traces are a modified kind of eligibility traces that can yield a slightly
better performance. With the traditional kind of traces (accumulating traces), the trace
of a state is augmented by 1 when visiting it. With replacing traces, however, they are
set to 1. Thus, we get the following update:

et(s) =

{
1 if s = st

γλet−1(s) otherwise
(3.4.13)

Prediction or control algorithms using this are called replace-trace methods.

et(s, a) =

1 + γλet−1(s, a) if s = st and a = at;

0 if s = st and a 6= at; for all s, a

γλet−1(s, a) if s 6= st.

(3.4.14)

Another possible improvement if set correctly is a variable λ, which can be different
at each time step t. For example, it may depend on the current state: λt = λ(st). When
we are sure about the estimate of the state st, it can be set to zero so we don’t have
to use estimates of following states anymore. By setting it to 1, we can achieve the
opposite.

3.5 Bootstrapping

Bootstrapping is a technique where we update a value estimate based on other value
estimates. This is done by TD and dynamic programming methods, but not by Monte
Carlo methods. TD(λ) is a bootstrapping method when λ < 1, but not when λ = 1.
Although the latter involves bootstrapping within an episode, afterwards the effect over
a complete episode is the same as the non-bootstrapping Monte Carlo update. Boot-
strapping methods such as TD(λ) are harder to combine with function approximation
because they only find near-minimal MSE solutions (only for the on-policy distribution)
instead of the minimal MSE using for example linear, gradient-descent function approx-
imation for any distribution of training examples, P .
The restriction of convergence is especially a problem for off-policy methods such as
Q-learning and dynamic programming methods because they do not backup states (or
state-action pairs) with exactly the same distribution as the distribution of states we
encounter when following the policy of which we want to estimate the value function.

28 CHAPTER 3. REINFORCEMENT LEARNING

Off-policy bootstrapping combined with function approximation can even lead to diver-
gence and infinite MSE.

Bootstrapping looks like a bad idea because non-bootstrapping methods are more
easy and reliably used with function approximation and can be applied over a broader
range of conditions. Non-bootstrapping methods also achieve a lower error in approach-
ing the value function, even when backups are done according to the on-policy distri-
bution (Mitchell, 1997). In practice, however, bootstrapping methods seem to achieve
better performance. When λ approaches 1, which is the non-bootstrapping case, the
performance becomes much worse.

3.6 Policy gradient

Here, we parametrize the policy instead of the state value or state-action value function.
Methods that parametrize the policy tend to have better convergence properties (Sutton,
Mcallester, Singh, & Mansour, 1999). No value must be stored for every specific state
and action. This is useful in problems where the state and/or action space is high-
dimensional and/or continuous. Last, they can also learn policies where a probability
is provided for every action. However, policy gradient methods also come with a few
disadvantages. They typically converge to a local optimum instead of a global optimum.
It is also rather hard to evaluate a policy and it can have a high variance.
The policy gradient has the form of πθ(s, a). The way of measuring the quality of a policy
(i.e. how well it performs in an environment) depends on the type of environment:

• Episodic environments: use the value of the start state:

J1(θ) = V πθ(s1) = E
πθ

[v1] (3.6.1)

• Continuing environments: use the average value:

JavV (θ) =
∑
s

dπθ(s)V πθ(s) (3.6.2)

• or the average reward per time step:

JavR(θ) =
∑
s

dπθ
∑
a

πθ(s, a)Ras (3.6.3)

Where dπθ is the stationary distribution of the Markov chain for πθ. The stationary
distribution π̄ of a Markov distribution P is a probability distribution such that π̄ = π̄P .
It can be thought of as denoting how much time is spent in each state. This way,
values/rewards of states which are visited often are given a higher importance.
As such, we need to find the parameters θ that maximize J(θ). This optimization
problem can be solved using approaches that don’t use a gradient, such as hill climbing or

3.6. POLICY GRADIENT 29

genetic algorithms. However, here we focus on gradient descent. In this case, we move the
parameter values along the gradient using the quality function: ∆θ = α∇θJ(θ), where α
is the step-size parameter and ∇θJ(θ) is the partial derivative for every dimension of θ.
To estimate each partial derivative, we can compute the policy objective function J(θ)
for a slightly changed value of θ, determined by ε. For each dimension k, this is:

∂J(θ)

∂θk
≈ J(θ + εuk)− J(θ)

ε
(3.6.4)

where uk is a one-hot vector with a value of 1 in dimension k and 0 elsewhere. This kind
of gradient is called a Finite Difference gradient. It is a simple, black-box way that works
for every policy (because we don’t need the derivative), but it is inaccurate and inef-
ficient. We also need to determine the value of ε ourselves, which influences the accuracy.

Instead, we will solve the problem analytically. We assume that the policy is differ-
entiable when it is non-zero and that we know the gradient.

Likelihood ratios use the following identity:

∇θπθ(s, a) = πθ(s, a)
∇θπθ(s, a)

πθ(s, a)

= πθ(s, a)∇θ log πθ(s, a)

(3.6.5)

Writing it using the log is possible because (log f)′ = f ′

f . The score function is∇θ log πθ(s, a).
This can now be used with for example a softmax policy. Here, we weight actions us-
ing a linear combination of features: φ(sa)

T θ. The probability of an action is then the
following proportion:

πθ(s, a) ∝ eφ(s,a)
Tθ (3.6.6)

The score function is here defined as being:

∇θ log πθ(s, a) = φ(s, a)− E
πθ

[φ(s, ·)] (3.6.7)

When having a continuous action space, it is better to use a Gaussian policy, where the
mean is a linear combination µ(s) = φ(s)T θ and the variance can be either fixed or also
parametrized. The policy is then a ∼ N(µ(s), σ2). The score function here is defined as
being:

∇θ log πθ(s, a) =
(a− µ(s))φ(s)

σ2
(3.6.8)

We can now use the likelihood ratios to compute the policy gradients for one-step Markov

30 CHAPTER 3. REINFORCEMENT LEARNING

decision processes:

J(θ) = E
πθ

[r]

=
∑
s∈S

d(s)
∑
a∈A

πθ(s, a)R(s, a)
(3.6.9a)

∇θJ(θ) =
∑
s∈S

d(s)
∑
a∈A

πθ(s, a)∇θ log πθ(s, a)R(s, a)

= E
πθ

[∇θ log πθ(s, a)r]
(3.6.9b)

The Policy Gradient theorem states that we can use this for multi-step MDP’s (Sutton
et al., 1999). We can do this by replacing the reward with the state-action value:

E
πθ

[∇θ log πθ(s, a)Qπθ(s, a)] (3.6.10)

Monte-Carlo policy gradients use this policy gradient theorem and update parameters
using stochastic gradient descent. For this, a return vt is used as an unbiased sample
of Qπθ(s, a). The resulting algorithm is called REINFORCE (Williams, 1992) and is
shown in Algorithm 4.

Algorithm 4: REINFORCE algorithm. Source: Sutton and Barto, 1998.

1 Initialize θ arbitrarily
2 for each episode {s1, a1, r2, . . . , sT1 , aT1 , rT } ∼ πθ do
3 for t = 1 to T − 1 do
4 θ ← θ + α∇θ log πθ(st, at)vt
5 end

6 end
7 return θ

The problem with the Monte-Carlo policy gradient is that it has a high variance.
This can be solved by using an actor-critic method. The critic is used to update the
state-action value function parameters w, such that Qw(s, a) ≈ Qπθ(s, a), while the
actor updates the policy parameters θ in the direction suggested by the critic. These
actor-critic algorithms follow an approximate policy gradient:

∇θJ(θ) ≈ E
πθ

[∇θ log πθ(s, a)Qw(s, a)] (3.6.11)

∆θ = α∇θ log πθ(s, a)Qw(s, a) (3.6.12)

The critic function can be seen of a way of evaluating how good the policy is for the
current θ. A simple way of computing Qw(s, a) is simply a linear function of w and
φ(s, a): Qw(s, a) = φ(s, a)Tw. The algorithm, named QAC is shown in Algorithm 5.
For a function approximation to be compatible, it needs to fulfill 2 conditions:

3.6. POLICY GRADIENT 31

Algorithm 5: QAC

1 Initialize s, θ
2 Sample a ∼ πθ
3 for each step do
4 Sample reward r = Ras ; sample transition s′ ∼ P as
5 Sample action a′ ∼ πθ(s′, a′)
6 δ = r + γQw(s′, a′)−Qw(s, a)
7 θ = θ + α∇θ log πθ(s, a)Qw(s, a)
8 w ← w + βδφ(s, a)
9 a← a′, s← s′

10 end

• The value function approximator is compatible to the policy: ∇wQw(s, a) =
∇θ log πθ(s, a)

• The value function parameters w minimize the mean-squared error: ε = Eπθ [(Qπθ(s, a)−
Qw(s, a))2]

The policy gradient will then be exactly:

∇θJ(θ) = E
πθ

[∇θ log πθ(s, a)Qw(s, a)] (3.6.13)

To reduce the variance in the policy gradient we subtract the baseline function B(s)
from it. This doesn’t change the expectation:

E
πθ

[∇θ log πθ(s, a)B(s)] =
∑
s∈S

dπθ(s)
∑
a

∇θπθ(s, a)B(s)

=
∑
s∈S

dπθB(s)∇θ
∑
a∈A

πθ(s, a)

= 0

(3.6.14)

A good baseline function is the state value function: B(s) = V πθ . When this is used
as a baseline function, we can rewrite the policy gradient using the advantage function
Aπθ(s, a):

Aπθ(s, a) = Qπθ(s, a)− V πθ(s) (3.6.15)

∇θJ(θ) = E
πθ

[∇θ log πθ(s, a)Aπθ(s, a)] (3.6.16)

This still reduces the variance. The critic should now estimate the advantage function.
This can be done by estimating both V πθ(s) and Qπθ(s, a). With those 2 function
approximators we then get:

Vv(s) ≈ V πθ(s) (3.6.17)

Qw(s, a) ≈ Qπθ(s, a) (3.6.18)

A(s, a) = Qw(s, a)− Vv(s) (3.6.19)

32 CHAPTER 3. REINFORCEMENT LEARNING

For updating those values, we can again use temporal difference learning. The TD error
is:

δπθ = r + γV πθ(s′)− V πθ(s) (3.6.20)

This is an unbiased estimate of the advantage function:

E
πθ

[δπθ |s, a] = E
πθ

[r + γV πθ(s′)|s, a]− V πθ(s)

= Qπθ(s, a)− V πθ(s)

= Aπθ(s, a)

(3.6.21)

As such, we can use this TD error to compute the policy gradient:

∇θJ(θ) = E
πθ

[∇θ log πθ(s, a)δπθ] (3.6.22)

In practice, we use the function approximator of the critic function for the value function,
using the critic parameters v:

δv = r + γVv(s
′)− Vv(s) (3.6.23)

3.7 Generalization and function approximation

Normally, if there are a lot of possible states, it will take a long time to learn the esti-
mates of all states. It is even possible that, after some time, previously unseen states
will be encountered. This problem is possible when using continuous variables, images,
. . . To solve this, we generalize states. As such, we can apply information of seen states
to related states that haven’t been visited yet. To do this, we combine standard rein-
forcement learning methods with generalization methods.

A well known kind of generalization methods is called function approximation: it
takes examples of a desired function and tries to approximate it. This is supervised
learning (the input is the original value and the output to predict is the generalized
value). The used supervised learning algorithm needs to be able to handle non-stationary
target functions, as learning must be able to occur on-line. The error for the algorithm
to minimize is the mean-squared error (MSE) between the true value of the state and
the approximated one:

MSE(
−→
θt) =

∑
s∈S

P (s)
[
V π(s)− Vt(s)

]2
(3.7.1)

Where θt is a component of the model that the algorithm generated and P is a distri-

bution weighting the errors of different states. As there are less components
−→
θt than

states, the flexibility for approximation is limited. Because of this, we use P to define
the trade-offs of focusing on improving the approximation of some states at the expense
of others. Usually, this distribution P is the same as the one from which the states in the

3.7. GENERALIZATION AND FUNCTION APPROXIMATION 33

training examples are drawn from and thus the distribution of states at which backups
are done. For minimizing the error over a certain distribution of states, it is of course
preferred that the training examples come from the same distribution.
Another interesting distribution is the on-policy distribution, which describes the fre-
quency with which states are encountered while the agent is interacting with the en-
vironment and selecting actions according to policy π. Minimizing the error over this
distribution, we concentrate on states that actually occur while following the policy and
ignoring others. Training examples for this distribution are also the easiest to get using
Monte Carlo or TD methods because they generate backups from sample experience
using the policy π.
For simple function approximators such as linear ones, the best MSE we find might also
be the global optimum. This is however rarely possible for more complex ones, e.g. ker-
nel based methods or artificial neural networks, and they may stop at a local optimum.
For many cases of interest in reinforcement learning, convergence to an optimum, i.e.
achieving the highest possible reward, does not occur.

One of the most widely used function approximation methods is based on gradient
descent. Here, the parameter vector is a column vector with a fixed number of real

valued components, also called a weight vector:
−→
θt = (θt(1), θt(2), . . . , θt(n)T . Vt(s) is a

smooth differentiable function of
−→
θt for all s ∈ S. At each time step t, we observe a new

example st 7→ V π(st). The order of the received states is not assumed to be the same as
the order of gathering them from transitions in the environment. Even if we would give
the exact V π(st), the function approximator has only limited resources and would not
be able to approximate the function exactly. Thus, it must generalize.
Like already discussed, we assume that the states over which we want to minimize the
MSE over come from the same distribution P as the from examples. We can then use
gradient descent, explained in Section 2.3.1, to adjust the parameter vector in order to
minimize the error:

−→
θ t+1 =

−→
θ t −

1

2
α∆−→

θ t

[
V π(st)− Vt(st)

]2
=
−→
θ t + α

[
V π(st)− Vt(st)

]
∆−→

θ t
Vt(st)

(3.7.2)

Where α is a positive step-size parameter and ∇−→
θ t

denotes the vector of partial deriva-
tives for every function f .
If V π(st) is unavailable because we only have a noise-corrupted version or one with
backed-up values, we can simple use vt instead of V π(st):

−→
θ t+1 =

−→
θ t + α

[
vt − Vt(st)

]
∆−→

θ t
Vt(st) (3.7.3)

If vt is an unbiased estimate and so E{vt} = V π(st) for each t, then
−→
θ t is guaranteed to

converge to a local optimum under stochastic approximation conditions for decreasing
the step-size parameter α. This is the case for Monte Carlo state-value prediction.

34 CHAPTER 3. REINFORCEMENT LEARNING

An important special case is when the approximate function Vt is a linear function

of the parameter vector,
−→
θ t. For every state s, there is a column vector of features−→

φ s = (φs(1), φs(2), . . . , φs(n))T , with the same number of components as
−→
θ t. The

approximate state-value function is then given by:

Vt(s) =
−→
θ Tt
−→
φ s =

n∑
i=1

θt(i)φs(i) (3.7.4)

The gradient with respect to
−→
θ t is then:

∇−→
θ t
Vt(s) =

−→
φ s (3.7.5)

As can be seen, this update is rather simple. Furthermore, there is only one optimum

(or several ones which are equally good),
−→
θ ∗. As a result, the method is guaranteed to

converge to or near a local optimum.
Note that this linear form doesn’t allow for the representation of interactions between fea-
tures, for example when the presence of a certain features is good only if another feature
is absent. For this, we need to introduce features that are combinations of feature values.

3.7.1 Coarse coding

Coarse coding is the representation of a state with features that overlap, for example
a binary feature that is 1 when the coordinate given by a x and y feature lies in a
circle. If 2 points A and B have circles ”in common”, there will be some generalization
between them, as the features for both points for those circles will be 1. This is shown in
Figure 3.4. The more features in common, the greater this effect. If the circles are small
or large, generalization will be over respectively a short or large distance. The nature
of the generalization is also affected by the shape of the features’ receptive fields. This
can be seen in Figure 3.5. The fineness of discrimination is however only determined by
the total number of features.

In tile encoding, a form of coarse encoding, the fields of the features are grouped
into exhaustive partitions of the input space, called tilings. These tilings are defined by
ranges of values for state attributes that they cover. For one specific tiling, the state can
only lie in the ranges of 1 tile. As such, maximally one feature is active in each tiling and
the total number of features present is always the same as the number of tilings. This
allows us to set the step-size parameter α (used in formula 3.4.5a) in an easy, intuitive
way. We can for example choose α = 1

m , where m is the number of tilings. This results
in exact one-trial learning. When the example st 7→ vt is received, then the new value
will be Vt+1(st) = vt, whatever the prior value Vt(st) was. For a slower change using for
example α = 1

10m , one would move one-tenth of the way to the target in one update.
The weighted sum to make up the approximate value function is almost trivial to com-
pute, as in tile coding only binary features are used. Instead of performing n multipli-
cations and additions, we compute the indices of the m << n present features and then

3.7. GENERALIZATION AND FUNCTION APPROXIMATION 35

Figure 3.4: X and Y share 1 feature, as both points lie in the same
receptive field, a circle. Thus, slight generalization from X to Y is
possible. Source: Sutton and Barto, 1998.

add up the m corresponding components of the parameter vector. The eligibility trace
computation is also easier because the components of the gradient ∇−→

θ
Vt(st) are either

0 or 1.
An easy to compute form of tilings are grid-like ones. Different tilings may also be used,
ideally offset by different amounts. The width and shapes should match the width of gen-
eralization that is expected to be optimal. The denser the tiling, the more fine-grained
the desired function can be, but also the greater the computational cost of updating.
The width or shape of each tile must not be uniform or regular-shaped (like a square)
however. One can also use stripes, diamond shapes, . . . To reduce memory requirements,
hashing can be used. A large tiling can be collapsed in such way into a much smaller
set of tiles. This hashing produces tiles consisting of non-contiguous, disjoint regions
randomly spread throughout the state space, but that still form an exhaustive tiling.
Radial basis functions are a generalization of coarse coding that allows for continuous-
valued features: in the interval [0, 1] instead of just 0 or 1. This way, we can reflect
various degrees to which the feature is present. A typical RBF feature, i, has a Gaussian
(bell-shaped) response φs(i) dependent only on the distance between the state and the
feature’s center state, ci and relative to the feature’s width σi:

φs(i) = e
− ||s−ci||

2

2σ2
i (3.7.6)

The advantage of this method is that they produce approximate functions that vary
smoothly and are differentiable. The disadvantage is that σi and ci must be tuned man-
ually and that non-linear RBF networks are computationally complex.

36 CHAPTER 3. REINFORCEMENT LEARNING

Figure 3.5: Generalization depends on the shape of the receptive fields
of the features. When multiple features’ receptive fields overlap, the
generalization is broad and narrow when only few of them overlap.
Source: Sutton and Barto, 1998.

Chapter 4

Deep learning

As was briefly mentioned in Section 3.7, artificial neural networks can be used as function
approximators. However, feedforward artificial neural networks may lack capabilities to
represent complex functions and might be unusable for certain kinds of input. They also
lack granularity and can be influenced by variance in the input that is irrelevant for the
task (e.g. in a classification task, shifted objects in a picture should still be classified
correctly). Because of this, they are not suitable for complex tasks like image recogni-
tion, unless an adequate feature extractor is applied first. Generic methods like kernel
methods can be applied but are not guaranteed to work well for the task.
Generally, feature extractors need to be developed manually in order to represent the
aspects of the input that are important. This, however, requires more work and requires
knowledge about the domain and the task.

In contrast, deep learning methods are able to learn multiple levels of representations
of raw data without human guidance. Each level of features builds upon the previous
one, starting from the input itself, and represents it in a more abstract way. These ab-
stractions are generated as to recognize aspects of the input that are important for the
task. Because of this, it is possible that small variations in the input have no influence
on the abstraction and output. As these abstractions are learned automatically, there is
no need anymore to create internal representations manually, which require more work
as it is different for every kind of task. The generated abstractions may also recognize
useful patterns in the data that might not be intuitive to a human and would not have
been represented using the hand-crafted features.

In deep learning, the important aspects of the input can be detected automatically
by combining different modules that have different functions in order to get higher ab-
stractions and to eventually generate output. Most of these modules contain weights an
can be trained, like explained in Section 2.3.
Here, we explain artificial neural networks capable of learning representations using
multi-dimensional arrays and sequential data, following the explanation by LeCun, Ben-
gio, and Hinton, 2015.

37

38 CHAPTER 4. DEEP LEARNING

4.1 Convolutional neural networks

Convolutional neural networks are neural networks that are inspired by the way the
visual cortex of an animal works. These networks get as input data in multi-dimensional
arrays, such as 2-dimensional images with pixel intensities as the third dimension for
example.
A convolutional neural network is structured as a series of stages, which are combinations
of layers. In the first stages, convolutional layers and pooling layers are used. In a
convolutional layer, units are organized in feature maps. Each of these units is connected
to a patch in the feature maps of the previous layer through a matrix of weights that is
called the filter bank or the kernel. The filter bank matrix then slides over the feature
map, does an element-wise computation of the 2 matrices and sums the results. The
filter bank is then moved by a certain amount, called the stride. All units in a specific
feature map of a layer use the same filter bank. An example of this process is shown in
Figure 4.1.

Figure 4.1: An example of a 3-by-3 filter applied to an image. The filter is first applied
using an element-wise computation and summation on the red square shown in the image,
resulting in the value on the right. Then, because the stride is 1, we move the filter one
pixel to the right (shown in the blue square) and perform the same computation. Zeros
are added in order to get a feature map of the same size as the input. Source: Pavlovsky,
2017.

These filters are used because local groups of values may be correlated and as such
may have the same weights. This reduces the amount of weights that need to be trained.
Furthermore, certain concepts and local statistics (of images) may be invariant to the
location. A certain pattern or motif in an image might appear in different places of the
image but may have the same meaning.
The result of this convolutional operation (which is linear) operation is again a feature
map and can then be passed to a non-linear function such as a ReLU.

These convolutional layers are then combined with pooling layers. Instead of de-

4.1. CONVOLUTIONAL NEURAL NETWORKS 39

tecting local conjunctions of features from the previous layer, pooling tries to merge
semantically similar features into one. This is necessary because the positions of fea-
tures that form a motif are not exact and can vary somewhat. It may not matter for
example that an object is close or far in an image. To detect the motifs more reliably, we
course-grain their features. The typical pooling units compute the maximum or average
of a local patch of units in one or a few feature maps. The neighboring pooling units do
the same for patches that are shifted by one or more rows and/or columns and as such
creating an invariance to small shifts and distortions.
Popular convolutional networks, often using multiple layers of different types, include
”AlexNet” (Krizhevsky, Sutskever, & Hinton, 2012), ”LeNet” (LeCun, Bottou, Bengio,
& Haffner, 1998) and ”GoogLeNet” (Szegedy et al., 2014).
A typical layout of a convolutional neural network is shown in Figure 4.2, while a hier-
archy of features extracted using a convolutional neural network is shown in Figure 4.3.

Figure 4.2: Layout of a typical convolutional neural network, which uses convolutional
layers, pooling layers and fully connected layers in order to detect an object in an image.
Source: https://www.clarifai.com/technology

Figure 4.3: A hierarchy of features with as low-level features contours of faces. A more
complex layer represents parts of faces. The final layer shows whole faces and can be used
for classification or regression. Note that these features don’t always have an intuitive
meaning. Source: Lee, Grosse, Ranganath, and Ng, 2009.

https://www.clarifai.com/technology

40 CHAPTER 4. DEEP LEARNING

4.2 Recurrent Neural Networks

Recurrent neural networks (RNNs) are used to process sequential data such as speech
and language. Here, an input sequence is processed one element at a time. The first
RNNs used a state vector in their units that contains history about the past elements
in the sequence. This is visualized in Figure 4.4.

Figure 4.4: A recurrent neural network in which each state (hidden unit) is passed to
the next one. xt and ot are respectively the input and output at time step t. st is the
output of a hidden layer and depends on the input and the hidden unit at the previous
time step: st = U ∗ xt +W ∗ st−1. Note that the same weights U , V and W are used at
each time step. Source: LeCun, Bengio, and Hinton, 2015.

Training them was a problem because of the vanishing or exploding gradients, as
these gradients either shrink or grow at every time step. Theoretical and empirical ev-
idence has shown that it is hard for these kind of networks to store information long
enough and that they have difficulties to learn the long-term dependencies (Bengio,
Simard, & Frasconi, 1994).

To learn RNNs, we also need to change the backpropagation algorithm in order to
handle with the different time steps. Here, the error (for one training example) is just
the sum of the errors at every time step: e =

∑
t et. The adapted backpropagation

algorithm, called backpropagation through time (BPTT), also just sums up the gradient
at every time step for every set of weights: ∂E

∂W =
∑

t
∂Et
∂W . For the weights U and V

of Figure 4.4, the gradients are computed just as in normal backpropagation. For W
however, we depend on the previous state, which cannot simple be treated as a constant,
and must be replaced as well. Because of this, we get:

∂Et
∂W

=
t∑

k=0

∂Et
∂ŷt

∂ŷt
∂st

∂st
∂sk

∂sk
∂W

(4.2.1)

We see that training can be hard when the sequences are long, because we need to prop-
agate back through the first time step.

4.2. RECURRENT NEURAL NETWORKS 41

For the tanh and sigmoid function, the derivative is 0 at both ends. This means that
the gradients in other layers will also go towards zero and for small values in the matrix
multiplications the gradient values are shrinking exponentially fast and become nearly
zero after a few time steps. Because of this, steps far away won’t contribute much to
what you’re currently computing, and as such the long-term dependencies are small. If
the values of the partial derivatives are high however, we could get exploding gradients.
These are however easier to detect and solve, because the value of the gradients will be
too high to be presented by a variable in the programming language. The problem can
also easily be solved by restricting the value in a certain range.
The problem of vanishing gradients can be solved by a better initialization of the weights,
by regularization and by another non-linear function, namely the already explained
ReLU. For this function, the derivative is either 0 (when z < 0) or 1 (∂z∂z = 1).

A way of solving this is using a long short-term memory. This is a combination of
different units and has an explicit memory. One of the units has a connection with itself
and is used to accumulate or forget the stored information. It can be learned using an-
other unit to know when to forget something and when to remember past information.
First, the input is passed to an input gate it that determines how much of the input to let
through into the memory. By also both adding and forgetting a part, determined using
a forget gate ft, the internal memory is updated. An output gate ot then determines
how much of the internal memory to output to the next layer. The architecture of an
LSTM cell is shown in Figure 4.5.

Figure 4.5: The architecture of an LSTM cell. Source: Graves, 2013.

Another kind of recurrent unit is the Gated Recurrent Unit (GRU), which was in-

42 CHAPTER 4. DEEP LEARNING

troduced by Cho et al., 2014. It is simpler than LSTM but yields similar results. It
also uses an internal memory, here called the hidden state and denoted by h. An update
gate z determines how much of the previous memory we want to keep, depending on
the previous hidden state and the input. A reset gate r says how much of the previous
hidden state we want to keep in the new hidden state, depending on the hidden state and
the input. The new hidden state is then a combination of the partly ”reset” previous
hidden state and the input. The output is the sum of the previous hidden state and the
new one, weighted by the reset gate.
By always setting the reset gate to 1 and the update gate to 0 we get again the classic
RNN architecture.
The architecture of a GRU cell is visualized in Figure 4.6.

Figure 4.6: Gated Recurrent Unit cell. Source: Chung, Gülçehre, Cho, and Bengio,
2014.

Other networks with memory include a Neural Turing Machine, in which a tape-like
memory is used from which the network can read or write.
Another kind is a memory network, in which a normal network is augmented by a asso-
ciative memory.

Chapter 5

Deep reinforcement learning

In deep reinforcement learning, deep learning methods are used to generalize over states
and to approximate functions that are part of reinforcement learning algorithms. Using
this combination, we can learn to act in environments where the state is represented by
a high-dimensional value, such as an image. Again, multiple levels of representations
are built. Here, these representations are built in order to perform better in an environ-
ment.
Besides dealing with high-dimensional inputs, deep reinforcement learning algorithms
must also be able to overcome instability issues. These are caused by subsequent ob-
servations being correlated. When learning while acting in the environment, learned
knowledge can also be overwritten when the data distribution changes (called ”catas-
trophic forgetting”), an issue that occurs for example when exploring a new part of the
state space. Last, it is also possible that the function approximator parameters diverge.

First, we will discuss Deep Q-Network (DQN), which solves these problems by using
a more stable target to learn on and learns on past experiences, leading to uncorre-
lated data. Afterwards, we will discuss Asynchronous Advantage Actor Critic (A3C).
Instead of learning using past experiences, this algorithms obtains uncorrelated data and
avoids catastrophic forgetting by learning in parallel with different actors on the same
environment.

5.1 DQN

A Deep Q-Network (DQN), presented in Mnih et al., 2015, aims to combine deep learn-
ing with reinforcement learning. It applies a convolutional neural network to high-
dimensional sensory inputs such as the pixels of a game screen in order to approximate
an action-value function Q∗(s, a). This is parametrized by the weights of the convolu-
tional neural network, thus being Q(s; a; θi). Past experiences are also reused and the
Q value function used to select action is only periodically updated to the most recently
learned one in order to reduce instability.

43

44 CHAPTER 5. DEEP REINFORCEMENT LEARNING

This instability is caused by using a nonlinear function to approximate the action-
value function and by the correlation between subsequent observations. Small changes
in the Q value can lead to big changes in the policy and because of that the data
distribution and the correlations between the action-values Q(s, a) and the target values
r+ γmaxa′ Q(s′, a′) can also change a lot. The action that is selected determines which
states that will be observed next.

Experience replay solves the problem of having correlated subsequent observations
and changing data distributions by randomizing used mini-batches of the data on which
is learned. In each iteration, these random mini-batches of saved experiences are used
for applying Q-learning updates. Experiences can be used multiple times, which results
in an efficient use of the available data.
For the replay memory, all the encountered experiences can be used or only the N
most recent ones. Here, however, it is possible that we forget experiences that may be
important. Because we use uniform sampling to determine which experiences to use, we
also give no extra importance (i.e. more probability) to more useful experiences.

A second improvement is to only update the used target function every C steps.
This helps to reduce the correlation between the action-value function values and the
target values, as for example Q(st, at) can have an influence on Q(st+1, a). To do this,
we copy the current network weights to obtain an action-value function Q̂ to generate
target values yj . By doing this, we add a delay between the time an update to Q is
made and the time the update affects the targets yj , making divergence or oscillations
much more unlikely.

The loss function used to update the weights of the parametrized action-value func-
tion is:

Li(θi) = Es,a,r,s′ ∼ U(D)
[
(r + γmax

a′
Q(s′, a′;Q−i −Q(s, a; θi)

2
]

(5.1.1)

Where U(D) means that we take a uniformly random subset of the data set D. θ−i are
the network parameters used to compute the target value. γ determines the importance
of future rewards. Instead of stochastic gradient descent, RMSProp is used here to up-
date the weights.

The deep convolutional neural network gets as input the pixel colors of a game screen
and has an output unit for every possible action. As such, we can compute the action-
value function for every action when being in a certain state using only one forward pass.

To select an action, we can use the classic action selection policies such as ε-greedy
and softmax. Using these policies, we can learn off-policy because we don’t always
choose the action with the highest action-value. The value of respectively ε or τ in these
mentioned policies can change over time to get closer to on-policy.

All rewards were clipped between -1 and 1 to limit the scale of derivatives and as
such the amount of change of the weights. It also allows for using the same learning rate
for multiple games.

5.2. CONTINUOUS CONTROL WITH DEEP REINFORCEMENT LEARNING 45

The resulting pseudo-code can be seen in Algorithm 6.

Algorithm 6: Deep Q-learning with experience replay. Source: Mnih et al., 2013.

1 Initialize replay memory D to capacity N
2 Initialize action-value function Q with random weights θ

3 Initialize target action-value function Q̂ with weights θ− = θ
4 for episode = 1, M do
5 Initialize sequence s1 = {x1} and preprocessed sequence φ1 = φ(s1)
6 for t = 1, T do
7 With probability ε select a random action at
8 otherwise select at = arg maxaQ(φ(st), a; θ)
9 Take action at and observe reward rt and new image xt+1

10 st+1 ← st, at, xt+1

11 Preprocess φt+1 ← φ(st+1)
12 Store transition (φt, at, rt, φt+1) in D
13 Sample random minibatch of transitions (φj , aj , rj , φj+1) from D
14 if episode terminates at step j + 1 then
15 yj ← rj
16 else

17 yj ← rj + γmaxa′ Q̂(φj+1, a
′; θ−)

18 end
19 Perform a gradient descent step on (yj −Q(φj , aj ; θ))

2 with respect to the
network parameters θ

20 Every C steps reset Q̂← Q

21 end

22 end

5.2 Continuous control with deep reinforcement learning

It is also possible to use an Actor-critic algorithm along with a replay buffer like in the
DQN algorithm (Mnih et al., 2015). This idea is presented by Lillicrap et al., 2015

For the critic, a function approximator with the following loss is used:

L(θQ) = Est∼ρβ ,at∼β,rt∼E
[
(Q(st, at|θQ)− yt)2

]
(5.2.1)

Where
yt = r(st, at) + γQ(st, µ(st+1)|θQ) (5.2.2)

µ(st|θQ) is a function that specifies the policy by mapping states to actions. It can
be seen that using the loss function we have a critic that is learned using the Bellman

46 CHAPTER 5. DEEP REINFORCEMENT LEARNING

equation, just like in Q-learning.

Instead of just copying the weights to the target value network every C steps, we
gradually move the target value network values towards the learned network values:
θ′ ← τθ + (1− τ)θ′ with τ � 1. This has the effect that target values can only change
slowly. However, although learning is slowed down, it can help to avoid divergence.

Most of the games have different scales for their state values. Possible solutions are to
change the hyperparameters for each game individually or to scale the states manually.
However, it is also possible to use a more general solution called batch normalization.
Here, we scale normalize each dimension across the samples in a minibatch in order to
have unit mean and variance. This minimizes the covariance shift during training. To
have more exploration, noise is added to the actor policy. This noise is generated using
the Ornstein-Uhlenbeck process.

5.3 Asynchronous Methods for Deep Reinforcement Learn-
ing

In Mnih et al., 2016 experience replay isn’t used because of memory and computation
usage and because it is off-policy, which means that it learns from data generated by a
policy that may already be outdated. Instead, we use multiple agents (that use well-
known reinforcement algorithms) that run in parallel but each running on a separate
instance of the same type of environment. These all run on a multi-core CPU (i.e. on
only one computer). Each of the agents use the same parameters θ, but by using certain
exploration policies, they are able to each explore a possibly different part of the state
space. It is possible to use a different exploration policy for each agent as to maximize
the exploration of different states. Each agent also calculates a gradient w.r.t. the
parameters θ depending on its experience. These gradients are accumulated and after a
certain number of steps they are applied to the parameters θ. Because they are global,
this update has an effect on all agents. After an amount (possibly the same amount as
for the gradient update) of steps, the target network parameters θ− can also be updated
using the current parameters θ.
In n-step Q-learning and advantage actor-critic, a forward-view is used instead of the
more commonly used backward view (which uses eligibility traces). Forward view was
found to be easier when training neural networks with momentum-based methods and
backpropagation through time. To do this, we first compute a certain number of steps
(or until the episode is over). Then, the gradients are computed for each state-action
pair encountered since the last update. Each n-step update uses the longest possible
n-step return resulting in a one-step update for the last state, a two-step update for the
second last state, and so on for a total of up to the previously determined number of
maximum allowed steps. These accumulated gradients are then immediately applied to
θ. This results in the pseudo-code shown in Algorithm 7.

5.3. ASYNCHRONOUS METHODS FOR DEEP REINFORCEMENT LEARNING47

Algorithm 7: Asynchronous Advantage Actor Critic (A3C). Source: Mnih et al.,
2016.

1 // Assume global shared parameter vectors θ and θv and global shared counter
T = 0

2 // Assume thread-specific parameter vectors θ′ and θ′v
3 Initialize thread step counter t← 1
4 repeat
5 Reset gradients: dθ ← 0 and dθv ← 0
6 Synchronize agent-specific parameters θ′ = θ and θ′v = θv
7 tstart ← t
8 Initialize state st
9 repeat

10 Perform at according to policy π(at|st; θ′)
11 Receive reward rt and new state st+1

12 t← t+ 1
13 T ← T + 1

14 until terminal st or t− tstart == tmax

15 R =

{
0 if st is terminal
V (st, θ

′
v) otherwise // Bootstrap from last state

16 for i ∈ {t− 1, . . . , tstart} do
17 Accumulate gradients w.r.t. θ′: dθ ← dθ+∇θ′ log π(ai|si; θ′)(R−V (si; θ

′
v))

18 Accumulate gradients w.r.t. θ′v: dθv ← dθv + ∂ (R− V (si; θ
′
v))

2/∂θ′v
19 end
20 Perform asynchronous update of θ using dθ and of θv using dθv
21 until T > Tmax

48 CHAPTER 5. DEEP REINFORCEMENT LEARNING

Chapter 6

Transfer learning

Transfer learning involves the use of experience gained when learning one or more tasks,
to improve the performance on a different but related task. Each task is represented by
a Markov Decision Process (MDP).
Here, we discuss a framework for transfer methods that can be used for reinforcement
learning, closely following Taylor and Stone, 2009.

As already said, the transfer of knowledge always happens between one or more
source tasks and a target task. First, an appropriate set of tasks must be selected. Af-
terwards, the transfer learning algorithm must learn how these source tasks are related
to the target task. Then, the appropriate knowledge can be transferred.

6.1 Transfer learning dimensions

To be able to transfer knowledge, some assumptions must be made about differences
between the source tasks and the target task. This can be for example in the underlying
dynamics of the environment, which can make the task harder or easier to solve, or dif-
ferent sets of possible actions at certain states. These differences define between which
type of source and target tasks knowledge can be transferred. The differences between
the source task(s) and target task can also make the knowledge transfer easier or harder,
requiring the appropriate guidance by a human or a method that can overcome these
differences in case of a fully autonomous transfer learner.
Multi-task learning is a special kind of task learning where the problems for the source
and target tasks are drawn from the same distribution instead of having arbitrary source
and target tasks. More specifically, the transition function is drawn from a fixed distri-
bution of functions. For the mountain car environment, this may mean for example that
the motor of the car differs in power in different tasks.

As was stated, first the set of source tasks needs to be selected. Again, this can be
done by a human in case of a human-guided scenario. However, the selection may also

49

50 CHAPTER 6. TRANSFER LEARNING

be done by the agent itself. For example, it can learn multiple source tasks and then
use them all for transfer. Another possibility is to select the source tasks that are the
most relevant and lead to highest performance for the target task. The agent may also
just aim to avoid negative transfer, such that the specific selection of source tasks does
not to worsen learning performance for the target task. The agent could also modify the
source task(s) such that the transferred knowledge is the most useful in the target task.

Instead of just knowing that tasks are related, many methods also need to know
how tasks are related, using task mappings. This is necessary to make the knowledge
gained on the source tasks useful for the target task. Tasks may differ in state and action
variables and the in the semantic meaning of them. In the mountain car environment,
one can have a task where the goal is on the opposite side. As such, taking the action
Left has a different meaning for these tasks. Actions in the two tasks must be mapped
such that their effects are similar.
Again, these mappings can be provided by a human or they can be learned by the agent.
Note that these mappings may be partial and not every action in the source task is
mapped to an action in the target task or vice-versa. For the state space, it is also
possible to map the states themselves instead of the state variables.
In multi-task learning, states and variables are the same and have the same meaning.
Because of this, no task mappings are necessary in multi-task learning.

Task learning methods can also differ in the type of knowledge that is transferred
between source and target tasks. This knowledge can be for example an action-value
function, transitions or policy gradient parameters. For tasks that are closely related,
detailed knowledge may be useful. Otherwise, high-level information may result in a
better learning performance. The type of knowledge that is transferred can also depend
on the type of source and target tasks and on the task mappings.

Last, the task learning method may also restrict which reinforcement learning algo-
rithms that can be used. It is possible for example that only a class of reinforcement
learning algorithms or only one specific reinforcement learning algorithm can be used
with the task learning method or that the algorithm is the same for both the source
and target tasks. Ideally, the reinforcement learning algorithms can be chosen freely and
may be selected based on the characteristics of the task at hand.

6.2 Metrics

Several metrics exist to evaluate the learning performance and solution quality of transfer
learning algorithms. Generally, one metric does not give a complete representation of
the overall performance of the algorithm. Because of this, often multiple metrics are
used.
Here we will list the most popular ones:

6.3. RELATED WORK 51

• Jumpstart : This is the initial improvement that the target task has over an al-
gorithm that doesn’t use knowledge transfer. However, little to no learning has
occurred yet. Because of this, learning performance can’t be measured. The metric
also does not give an indication about the final performance, i.e. the performance
after having learned.

• Asymptotic performance: This is the opposite of jumpstart performance and mea-
sures the performance improvement after having learned the target task or during
the last time steps of the algorithm. However, this is hard to measure because
one has to know when the task learning algorithm converged. Furthermore, the
task learning algorithm and the algorithm that doesn’t use knowledge transfer may
require a different training time in order to converge.

• Total reward : This is the total reward that the algorithm has accumulated during
learning, i.e. the area under the learning curve. In case of improvement, this area
is bigger than when transfer learning isn’t used. This can be achieved when the
transfer learning algorithm has a higher learning rate. However, convergence is
again an issue here. An algorithm that learns slower and thus takes more time to
converge may accumulate a higher total reward than a faster algorithm, although
the latter may even reach a higher performance. This metric is only useful for task
that always have the same duration.

• Transfer ratio: This is the ratio of the total reward improvement that the transfer
learning algorithm has over the other algorithm. Because it uses the total reward
metric, it suffers from the same issues. Furthermore, it is also influenced by the
reward structure. For example, an agent always receiving a reward of +1 at the
end of the episode may result in a different ratio.

• Time to threshold : This measures the time needed to reach a pre-defined perfor-
mance. A transfer learning algorithm may need less time to reach this threshold.
The threshold needs to be defined manually and depends on the task domain and
learning method.

A graph with 3 of the 5 metrics is shown in Figure 6.1. Instead of comparing the
transfer learning algorithm with a algorithm that doesn’t use knowledge transfer, it is
also possible to compare the algorithm with the performance of humans (by averaging
their performances). However, metrics must be chosen carefully such that they don’t
favor the algorithm or the human and they can be abused.

6.3 Related work

Transfer learning methods for reinforcement learning can first be divided into 2 groups:
methods that use task mappings and methods that do not. We will only discuss methods
that do not use task mappings as our approach also does not use task mappings.

52 CHAPTER 6. TRANSFER LEARNING

Figure 6.1: A graph comparing the jumpstart, time to threshold and asymptotic per-
formance metrics between the algorithm that uses knowledge transfer and the one that
doesn’t. Note that here the transfer learning algorithm performs better on all three
metrics. It can also be seen that the total reward is higher. Source: Taylor and Stone,
2009.

In one of the earliest works of transfer learning used for reinforcement learning (Self-
ridge, Sutton, & Barto, 1985), the transition function was gradually changed as to make
the task harder. A cart pole task was used where the pole was long and light at first,
but was made shorter and heavier over time. The total time spent learning on the se-
quence of gradually modified tasks was shorter than when trying to solve the hardest
task directly.

Later work was generally focused on transferring from one source task to a target
task, while in recent research, most of the times a more general scenario with possibly
multiple sources is considered. The approaches that we will further discuss mostly fo-
cus on transferring from multiple sources instead of just one. We do this because our
approach also allows the use of multiple source tasks. Furthermore, the discussed algo-
rithms that can use multiple source tasks generally also allow just one source task from
which to transfer knowledge.

One approach, presented in Lazaric, Restelli, and Bonarini, 2008, is to transfer tran-
sitions (also called instances or samples) gathered from the source tasks to the target
task. However, transitions may not be useful if the target tasks differs too much from
the source tasks. To solve this, transitions from source tasks are chosen based on the

6.3. RELATED WORK 53

similarity of these tasks to the target task. After having trained on the source tasks
and collected transitions, we also collect a few transitions from the target task. The
similarity between a source task and the target task is then the probability that the
transitions of the target task were generated by an approximated model of the source
task.

Ammar and Eaton, 2014 also focus on the problem of selecting the appropriate source
tasks from which to transfer knowledge. Here, however, a Restricted Boltzmann Ma-
chine (Smolensky, 1986) is used in order to generate a model of a source tasks that
yields features that are relevant for characterizing the task. The model, generated us-
ing transitions of the source task, then tries to reconstruct samples of the target task.
The similarity of a source and target task can then be assessed using the difference of
the reconstructed transitions and the real transitions of the target task. Note however
that the state and action spaces of the source tasks and target task needs to be the same.

Another possibility is to transfer a representation. In this case, characteristics are
inferred from multiple source tasks. In Bernstein, 1999, policies are averaged and can
be applied for n time steps on all states. This combination of policy, time steps to
execute and states is called an option. The reasoning is that actions that are used a
lot in a state in source tasks may also be useful in the target task. In Perkins, Pre-
cup, et al., 1999, these options are provided on beforehand. The agent then learns a
single action-value function over these options using all the source tasks. These options
along with the action-value function can then be transferred and used for the target task.

Instead of using a single policy or action-value function, one can also collect a library
of policies and select one to use probabilistically, depending on the expected reward.
This approach is presented in Fernández and Veloso, 2006; Fernández and Veloso, 2013.
At every time step, the algorithm can choose to use one of the source task policies, use
the current best target task policy or to randomly explore. As the probabilities depend
on the gained rewards, after some time more useful policies are exploited more often.
This method only works however for tasks where only the goal state in a maze is different.

Unlike Tanaka and Yamamura, 2003, action-value functions are transferred instead
of policies and statistics about them are used. More specifically, the average and stan-
dard deviation of the value each state-action pair is calculated. In the target task, the
action-value function for each state-action pair is then instantiated to the average for
that pair for the source tasks. The standard deviation is used in order to prioritize
updates for state-action pairs that are far from the average. Besides this, states-action
pairs that fluctuate often within an episode are also prioritized.

Foster and Dayan, 2002 try to extract sub-tasks across multiple source tasks. Opti-
mal policies are then learned for each of these sub-tasks and pieced together. In this case,
the environment was a maze and tasks differ in their goal in the maze. Value functions
can then be learned on parts of the maze. Less learning for the target task is then re-

54 CHAPTER 6. TRANSFER LEARNING

quired because most of the already learned sub-tasks can also be used for the target task.

Most methods focus on problems with a discrete state and action space. However,
other methods exist that can be applied on problems with a continuous state and action
space. Here, function approximation is always required. Walsh, Li, and Littman, 2006
group states encountered in the source tasks and treat them as being one and the same
state. This abstraction along with the value function learned on this abstraction can
then be transferred and used for learning the target task.
Lazaric, 2008 also groups states of the source tasks, but does this by adjusting parameters
of a function approximator to build features. Only a small set of features are searched
while still being able to learn useful value functions. The learning process for the tasks
is executed in parallel. Again, after learning the source tasks, the parameters of the
function approximator and the value functions are transferred.

2 other approaches use a hierarchical Bayesian model. They use this to find pa-
rameters that make up the dynamics and reward function of a problem. In Sunmola
and Wyatt, 2006, transitions of source tasks are used as a prior to find parameters for
models. After getting transitions from the target task, the most probable model for the
target task transitions is transferred and used.
Wilson, Fern, Ray, and Tadepalli, 2007 use a similar approach, but they don’t make
a distinction between source and target tasks. Instead, problems (MDPs) are executed
sequentially and models are built using an already acquired set of transitions and models
of previous tasks.

In Isele and Eaton, 2016, a multi-task learning method is presented that learns tasks
simultaneously by using a predefined description for each task. When a new task arrives
along with its features, obtained from its task descriptor, a policy can be generated that
immediately results in a good performance, even though the algorithm was not applied
on that task before and the task descriptor, task order and task distribution was not
known on beforehand. This is called zero-shot learning. As such, knowledge transfer can
take place without the need of training data to identify relationships across tasks. For
each subsequent task, the policy and feature vector are iteratively improved.
First, it is assumed that the policy parameters for every task t can be factorized using a
shared knowledge base L ∈ Rd×k: θ(t) = Ls(t). s(t) ∈ R(k) are the sparse coefficients over
the basis, i.e. the latent representation of the policy’s parameters for task t. L is able
to capture relationships among policies as this is used to compute every policy, whereas
there is a sparse representation for computed for each task separately.
The features of the task are obtained by (possibly non-linear) feature extractors applied
on the descriptor of the task: φ(m(t)) ∈ Rdm . These features can also be linearly fac-
torized using another shared knowledge base D ∈ Rdm×k: φ(m(t)) = Ds(t), where the
same sparse representation is used as the one used to compute the policy. Both knowl-
edge bases provide information about the task and because of this they share the same
coefficient vectors S. We then used coupled dictionary optimization techniques from
the sparse coding literature to optimize these dictionaries. They are updated iteratively

6.3. RELATED WORK 55

based on trajectories samples from the current task.
When a new task arrives, with its task descriptor, we search for the coefficients s(tnew)

that minimize the difference between the extracted features and the reconstruction of it
using the shared knowledge base D. Using these coefficients, we can compute the policy
parameters using θ = Ls(tnew). Afterwards, we can iterate again to improve the sparse
representation s and the knowledge bases.

Together with the interest in deep reinforcement learning (Mnih et al., 2015; Mnih
et al., 2016), the interest in its application to transfer learning also grows. In Parisotto,
Ba, and Salakhutdinov, 2015, the algorithm, Actor-Mimic Network (AMN), learns the
Q function for source tasks from an expert for each specific task (in this paper a DQN
that was trained until convergence). Note that only one set of parameters (and thus one
neural network) is used to learn on all the source tasks. As can be seen, this is supervised
learning (more specifically regression) with the output of the expert’s network as target
value. As input, both the expert and the AMN can be used to sample trajectories.
Besides mimicking using the expert’s output, the AMN also tries to mimic the hidden
layer activations of the expert’s network. This is done by adding a loss in function of the
difference between the hidden layer activations of the expert network and the activations
of the AMN. Intuitively, this gives insight to the AMN, also called to student, why it
should act in a specific way, in addition to telling how it should act. After learning for a
pre-determined number of frames on each task, the weights of the AMN are transferred
to a DQN and the algorithm trains on an unseen target task. Note that each task is
a different kind of task here (i.e. the state space, action space, transition function and
reward function can be different). However, the algorithm can also be applied to tasks
with the same state and action space.

In contrast to the previous algorithm, Progressive Neural Networks (Rusu et al.,
2016) use A3C to learn tasks. However, the focus here is on avoiding catastrophic
forgetting, which causes previously learned weights to be overwritten when there is a
different distribution in the data. In this case, this means that we are learning a different
task. To accomplish this, a different set of artificial neural network weights is used for
each task. Knowledge is transferred using lateral connections from neurons of artificial
neural networks used for previously learned tasks.
After a task is learned, the weights of the used artificial neural networks are kept fixed.
When a new task has to be learned, a new artificial neural network is instantiated, with
each neuron being both the result of its own knowledge and that of previous tasks:

h
(k)
i = f

W (k)
i h

(k)
i−1 +

∑
j<k

U
(k:j)
i h

(j)
i−1

 (6.3.1)

Where h
(k)
i is the output for layer i of task k, f is an element-wise activation function,

W
(k)
i is the weight vector for layer i of task k and U

(k:j)
i are the lateral connections from

layer i− 1 of task j to layer i of task k.
The algorithm learns both its own weights and its lateral connections from the previous

56 CHAPTER 6. TRANSFER LEARNING

tasks. Thus, it can decide which knowledge from previous tasks is useful. However, it
is not necessary to use this knowledge from previous tasks, as they may not be similar
enough for the current task. The task also cannot be influenced by future tasks, as it
has no lateral connections from them.
A limitation of this algorithm is that each task has its own set of weights, of which is
reported that only a fraction is utilized.

Chapter 7

Proposed algorithm

Our aim is to learn from multiple source tasks using shared knowledge in order to have
a better performance on a target task than when we wouldn’t train on source tasks.
While a version of the algorithm was implemented where the source tasks are executed
sequentially for each episode, the focus is on a version where source tasks are learned
simultaneously. More specifically, we combine the A3C algorithm (Mnih et al., 2016)
with the transfer learning algorithm in Isele and Eaton, 2016. This is done by executing
A3C using tasks defined by different environment parameters instead of exactly the same
ones and training them using both shared knowledge and knowledge that is specific to
the task.

Our approach only uses a latent basis over the policy space instead of using one over
the policy space and another one over the descriptor space like in Isele and Eaton, 2016.
For a task t, we can reconstruct the policy using the shared basis L and the sparse co-
efficients over this basis for that specific task s(t): θ(t) = Ls(t), with θ(t) ∈ Rd, L ∈ Rd×k
and s(t) ∈ Rk. The policy can then be combined with the state or features extracted
from it by taking the weighted sum and passing it through a non-linearity, in this case
the softmax function described in Section 2.2.5. This results in a probability for each
action.
The architecture of the network used for one task is visualized in Figure 7.1.

The source tasks can be learned in two ways, either sequentially or in parallel. In
the sequential way, we collect trajectories and calculate the gradients for every task after
another. These gradients include both those for the sparse representation and for the
knowledge base. They are calculated for every episode of a task like in the REINFORCE
algorithm (explained in Section 3.6), i.e. with likelihood ratios using discounted rewards
as a sample for the Q values of the policy. After evaluating every task, we sum and apply
all of their gradients. The learning process for the source tasks stops when a certain
number of updates have been applied.
In the parallel way, all source tasks are learned at the same time, each executing a
certain number of updates. Trajectories are collected for each task continuously and its

57

58 CHAPTER 7. PROPOSED ALGORITHM

Figure 7.1: Artificial neural network architecture used in our approach. The sparse
representation θ(t) is different for every task t, while the same knowledge base is used
for every task.

gradients are applied immediately after they are calculated. This means that they are
not first summed up like in the sequential method.
The resulting pseudo code for the source tasks learned using the parallel method can be
seen in Algorithm 8.

Algorithm 8: Asynchronous knowledge transfer agent for a source task.

1 // Assume global knowledge base L and global shared counter T ← 0

2 Initialize thread-specific parameter vector θ(t)

3 Initialize thread step counter t← 1
4 repeat

5 θ(t) ← Ls(t)

6 Reset gradients: dθ(t) ← 0
7 tstart ← t
8 Initialize state st
9 repeat

10 Perform at according to policy π(at|st; θ(t))
11 Receive reward rt and new state st+1

12 t← t+ 1

13 until terminal st or t− tstart = tmax
14 for i ∈ {t− 1, . . . , tstart} do

15 Accumulate gradients w.r.t. θ(t): dθ(t) ← dθ(t) + α∇θ(t) log πθ(t)(si, ai)vi
16 end

17 Perform asynchronous update of θ(t) using dθ(t)

18 T ← T + 1

19 until T > Tmax

After learning the source tasks, the knowledge base that they jointly learned is trans-
ferred to the target task. This task then separately learns and executes updates for a
number of episodes. The pseudo-code for the target task is shown in Algorithm 9.

59

Algorithm 9: Knowledge transfer agent for the target task.

1 // Assume global knowledge base L

2 Initialize task-specific sparse representation s(t)

3 Initialize thread step counter t← 1
4 T ← 0
5 repeat
6 tstart ← t
7 Initialize state st
8 repeat

9 Perform at according to policy π(at|st;Ls(t))
10 Receive reward rt and new state st+1

11 t← t+ 1

12 until terminal st or t− tstart = tmax
13 for i ∈ {t− 1, . . . , tstart} do

14 Accumulate gradients w.r.t. s(t): ds(t) ← ds(t) + α∇s(t) log πs(t)(si, ai)vi
15 end

16 Perform update of s(t) using ds(t)

17 T ← T + 1

18 until T > Tmax

60 CHAPTER 7. PROPOSED ALGORITHM

Chapter 8

Experimental setup

Experiments were executed on variations of the cart-pole environment and on variations
of the acrobot environment. For executing algorithms on both environments, a frame-
work by Brockman et al., 2016 was used.
After describing these environments, we describe the methodology of our experiments
and the results.

8.1 Cart-pole environment

In the 2-dimensional cart-pole environment (Barto, Sutton, & Anderson, 1983), a pole
is placed vertically on a cart. The goal in this environment is to keep the pole balanced
vertically (i.e. keep the angle of the pole between thresholds) and to keep the cart between
2 borders. An agent can either move left or right. It can’t stay at its current position.
The state is defined by 4 continuous-valued attributes: the position of the cart, the
velocity of the cart, the angle of the pole and the angular velocity of the pole. A discrete
value of 1 is given as a reward each time the pole is balanced and the cart is between
bounds. The episode ends either when these requirements are not fulfilled anymore or
200 steps have been executed. The environment is visualized in Figure 8.1.

8.2 Acrobot environment

The goal in the acrobot environment, visualized in Figure 8.2, is to swing up the tip
of 2 joined arms above a certain point (Spong, 1995). This can be done by applying a
force on the joint between the 2 arms. However, this force is not enough to fulfill the
goal immediately. Instead, the actuator must apply force to the left and to the right
to build up enough speed to get above the horizontal threshold. The state consists of
the angle and angular velocity of both arms. One can either move the joint clockwise,
counter-clockwise or do nothing. An episode stops either when the tip of the outermost
arm is above the threshold or when 500 steps have been executed in the episode. At

61

62 CHAPTER 8. EXPERIMENTAL SETUP

Figure 8.1: Visualization of the cart-pole environment. F is the force applied to the cart
when taking an action. x is the distance of the cart from the center and ẋ is its velocity.
θ is the angle of the pole and θ̇ refers to its angular velocity. Source: Grant, 1990.

each step, a reward of −1 is given. The goal is to maximize the reward and as such to
minimize the amount of steps necessary to reach the threshold.

8.3 Methodology

Several experiments were executed with our transfer learning algorithm, using varying
types of transferred knowledge and artificial neural networks and a different number of
source tasks. However, the structure of the algorithm is always the same.
In some experiments, the performance of our algorithm is also compared to the perfor-
mance of the REINFORCE algorithm described in Section 3.6. When necessary, changes
to this algorithm are mentioned.
The used values for hyperparameters for both algorithms are described in Appendix A.2.

For an experiment with our algorithm, first a number of environments are randomly
generated. We try to learn with either 5 or 10 environments and thus source tasks. The
environment for each task can differ for a predefined number of parameters specific to
the task, of which the values can each be in a certain range. For example for a cart-pole
task, these are the mass of the cart, the mass of the pole and the length of the pole. The
parameters and the allowed ranges for their values are described for each environment
in Appendix A.3.
Then a number of source tasks are learned that can update both the shared knowledge
base and their own sparse representation. After a number of epochs, i.e. updates to
these variables, we stop with learning these tasks. Instead, we learn to solve a new task,
the target task. In some experiments, the sparse representation for the target task is ini-
tialized using the sparse representation of a randomly chosen source task. In others, the

8.3. METHODOLOGY 63

Figure 8.2: Visualization of the acrobot environment. θ1 and θ̇1 are respectively the
angle and angular velocity of the arm attached to the central fixed point. θ2 and θ̇2
are respectively the angle and angular velocity of the outermost arm. Source: Frémaux,
Sprekeler, and Gerstner, 2013.

sparse representation is randomly initialized, as explained in Appendix A.2. However,
for the target task only the sparse representation can be updated and not the shared
knowledge base.

Other experiments involve the REINFORCE algorithm and was used as comparison
with the results of the other experiments. Here, we first run the algorithm on one source
task and then transfer the learned knowledge to the target task. In practice, this means
that we start learning on the target task with the weights learned using the source task.
The algorithm can still learn adapt all the weights using experience gained on the target
task. No sparseness on the weights was enforced.

Each experiment was repeated 100 times, each time using a different set of environ-
ments and thus problems to solve. Afterwards the rewards are averaged over all the
runs.
Trajectories for both sets of tasks contained of maximally 200 or 500 steps depending on
the type of environment. This could be less in case the environment was in an end state.
In case of the cart-pole environment, this can mean for example that the cart tried to

64 CHAPTER 8. EXPERIMENTAL SETUP

cross the left or right border or that the pole fell down.
Hyperparameters, such as the learning rate of neural networks, were chosen manually.

8.4 Results

To evaluate our proposed algorithm, we execute multiple experiments. First we compare
the sequential and parallel version of our algorithm. We then see if feature extraction
can improve the performance. Afterwards, we discuss results of an experiment where we
transfer a sparse representation from a random source task to the target task. Last, we
evaluate the results of using a single source task.
When discussing the jumpstart and asymptotic performance, we use the mean reward of
respectively the first 5 and the last 5 epochs (i.e. updates to the artificial neural network
parameters).

8.4.1 Parallel and sequential knowledge transfer

We first compare the performance of the algorithm that learns the source tasks in parallel
with the one that learns them sequentially. We do this for the cart-pole environment in
order to determine which version of the algorithm to use for further experiments.

The performance of both versions of the algorithm and for both the source tasks and
target task is shown in Figure 8.3. Here, we see that, on average, the parallel version

Figure 8.3: Learning curves for the parallel and sequential version of our algorithm
applied to the cart-pole environment. Until epoch 100, the average performance on the
source tasks is shown. Afterwards, the performance of the target task is shown.

8.4. RESULTS 65

of our algorithm converges faster than the sequential version. To find out which version
is better, we first compare the median of the area under curve (AUC) over all the runs.
For the sequential version, the AUC is 19446.096, while it is 19655.268 for the parallel
version. We now use a Wilcoxon rank-sum test with the null-hypothesis that there is no
difference. We get W = 8.244 and 1.665∗10−16. With a significance level of 0.05, we can
reject the null-hypothesis and say that the medians of the 2 versions are different. By
observing those medians, we can say that the parallel version is better. As it does not
first accumulate gradients but applies them as they are computed, it instantly affects
other tasks and improves their performance.
For the following experiments, when referring to ”our transfer learning algorithm”, the
parallel version will be used.

8.4.2 Feature extraction

In this experiment, we evaluate the use of feature extraction on the states. We compare
the performance of an artificial neural network with a layer of 5 units, one with 10 units
and one without feature extraction at all. The learning curves for the performance on
the target task are shown in Figure 8.4. Feature extraction does not seem to improve the

Figure 8.4: Learning curves for the transfer learning algorithm applied to the cart-pole
environment with no feature extraction in its neural network, one using a layer with 5
units and one using a layer of 10 units.

performance of the algorithm for this environment. It only seems to slow down learning.
It is worse when we use more units in the hidden layer used for feature extraction. As
more units are added, more weights influence the result and more of these weights must
be learned.

66 CHAPTER 8. EXPERIMENTAL SETUP

It must be noted however that for algorithms working with high-dimensional inputs,
feature extraction, using for example deep learning, is necessary to obtain a good per-
formance. In this environment, the state contains values that are useful for solving
a task. However, without feature extraction, it is not clear if a certain pixel of an im-
age is important. Feature extraction is able to obtain values relevant for solving the task.

For the following experiments, we will focus on the different algorithms and different
ways of transferring knowledge instead of the artificial neural network architecture.

8.4.3 Usage of a different amount of source tasks

We now explore the differences between learning directly on a target task and first
learning on source tasks (i.e. using our transfer learning algorithm), using the metrics
that we defined in Section 6.2. We consider both 5 and 10 source tasks. The algorithms
using 5 source tasks and 10 source tasks are referred to as respectively TLA 5 and
TLA 10. For the regular algorithm, we use the REINFORCE that was discussed in
Section 3.6.

8.4.3.1 Cart-pole

The learning curve of both algorithms on the target task is visualized in Figure 8.5. It

Figure 8.5: Learning curves for the cart-pole environment of the REINFORCE algorithm
and our transfer learning algorithm (TLA) with 5 source tasks (shown as TLA 5) and
10 source tasks (shown as TLA 10). The learning curves are only shown until epoch
60 in order to better show the initial performance of the algorithms. All the algorithms
converged and achieved the same rewards after this epoch.

8.4. RESULTS 67

can be seen visually that, on average, in all the configurations the jumpstart performance
is about the same. We now compare the means, standard deviations and the medians
of the jumpstart performances of the algorithms. This is shown in Table 8.1. It can

Algorithm Mean Standard deviation Median

REINFORCE 86.060 25.330 86.886
TLA 5 158.237 23.153 163.840
TLA 10 165.120 21.955 169.034

Table 8.1: Mean, standard deviation and median of the jumpstart performances for
REINFORCE, TLA 5 and TLA 10 applied to the cart-pole environment.

be seen that the best jumpstart performance is achieved using TLA 10, as it has the
highest mean and median and varies the least. Because it learned on more source tasks,
it has more samples from the distribution of environment parameters and thus it can
cover more kinds of task variations. REINFORCE performs the worst, as it must learn
without any prior learned knowledge.

We can also see in Figure 8.5 that REINFORCE takes longer on average to reach the
maximum reward (which is 200 in this environment). As a result, the area under curve
for REINFORCE is 18170.243 whereas it is 19130.824 and 19329.318 for respectively
TLA 5 and TLA 10.
In every configuration, the maximum reward is reached most of the times as the median
asymptotic performances for the 3 algorithms are all 200.

8.4.3.2 Acrobot

We now do with the same experiment, but with the acrobot environment. As can be
seen in Figure 8.6, the average performance of the REINFORCE algorithm on the target
task is different from TLA 5 and TLA 10.

We can how exactly the behavior of these algorithms differ initially by looking at
the jumpstart performances. Statistics of these jumpstart performances are shown in
Table 8.2. We see that TLA 10 performs the best. However, as seen by the standard

Algorithm Mean Standard deviation Median

REINFORCE −361.209 159.760 −490.063
TLA 5 −380.222 160.589 −500.000
TLA 10 −339.530 168.845 −419.571

Table 8.2: Mean, standard deviation and median of the jumpstart performances for
REINFORCE, TLA 5 and TLA 10 applied to the acrobot environment.

deviations, the results can differ considerably. We will see if the differences in medians
are significant by using a Wilcoxon rank-sum test with for each pair of algorithms the
null-hypothesis that there is no difference between them. The resulting p-values are

68 CHAPTER 8. EXPERIMENTAL SETUP

Figure 8.6: Learning curves of the REINFORCE algorithm and our transfer learning
algorithm (TLA) with 5 source tasks (shown as TLA 5) and 10 source tasks (shown as
TLA 10).

shown in Table 8.3. We can say using each time a significance level of 0.05 that there is

Algorithm REINFORCE TLA 5 TLA 10

REINFORCE
TLA 5 0.512
TLA 10 0.426 0.179

Table 8.3: P-values for the Wilcoxon rank-sum test of the jumpstart performances using
different algorithms, applied to the acrobot environment.

no difference between any combination of algorithms.

As we could already see in Figure 8.6, the REINFORCE algorithm seems learn
slower on average than the other algorithms. This is also visible when looking at the
area under curve, which is −30810.360 for REINFORCE algorithm and −19437.733 and
−16223.803 for respectively TLA 5 and TLA 10.

Last, we compare the asymptotic performances, again with the same test and the
null-hypotheses that there are no differences between the asymptotic performances. The
resulting p-values are shown in Table 8.4.

With a significance level of 0.05, we can say that there is a difference between REIN-
FORCE and TLA 5 and between REINFORCE and TLA 10. With the same significance
level, we retain the null-hypothesis for TLA 5 and TLA 10. Thus, we can say that us-

8.4. RESULTS 69

Algorithm REINFORCE TLA 5 TLA 10

REINFORCE
TLA 5 1.034 ∗ 10−4

TLA 10 7.091 ∗ 10−6 0.449

Table 8.4: P-values for the Wilcoxon rank-sum test using different algorithms with the
acrobot environment.

ing knowledge transfer yields a significant difference in the resulting performance, when
applied to the acrobot environment. To further discuss these differences, we look at the
boxplots of the asymptotic performances for the three configurations. These are shown
in Figure 8.7. We can see that the median for the REINFORCE algorithm is still the

Figure 8.7: Boxplots of the asymptotic performances of REINFORCE, TLA 5 and TLA
10 using the acrobot environment.

lowest possible reward for this environment. This means that in at least half of the cases,
the REINFORCE algorithm cannot improve and cannot get past the minimum reward.
In contrast, the medians of TLA 5 and TLA 10 are respectively −105.305 and −98.391.
Only some outliers of these algorithms don’t get past the minimum reward.

8.4.4 Transfer of sparse representation

We now explore the results of transferring a sparse representation. After learning on
the source tasks, we initialize the sparse representation weights of the target task with
the sparse representation of a randomly chosen source task. The algorithm can then
change this sparse representation to improve its performance on the target task. We

70 CHAPTER 8. EXPERIMENTAL SETUP

compare the results to those when not transferring the sparse representation, both for
the cart-pole and the acrobot environment.

8.4.4.1 Cart-pole

To see how both version of the algorithm differ on average in terms of learning perfor-
mance, we take a look at the learning curves, which are shown in Figure 8.8. It can be

Figure 8.8: Learning curves for the Cart-pole environment of our transfer learning algo-
rithm (TLA) with 5 source tasks (shown as TLA 5) and 10 source tasks (shown as TLA
10), both with and without sparse representation transfer.

seen that the versions using sparse representation transfer need little to no update to
reach the maximum reward. However, all versions converge to the maximum as all the
medians of the asymptotic performances are 200.

We now compare the jumpstart performances of these algorithms using the mean,
standard deviation and median, shown in Table 8.5. As shown, the versions using

Algorithm Sparse repr. transfer Mean Standard deviation Median

TLA 5 No 158.237 23.153 163.840
TLA 10 No 165.120 21.955 169.034
TLA 5 Yes 192.613 28.179 200.000
TLA 10 Yes 196.125 21.640 200.000

Table 8.5: Mean, standard deviation and median of the jumpstart performances for
TLA 5 and TLA 10, with without and with sparse representation transfer, applied to
the cart-pole environment.

8.4. RESULTS 71

sparse representation transfer perform better initially. In at least half the runs, the
maximum reward is already reached at the start. Just like for the version without
sparse representation transfer, in most runs the maximum is maintained or reached at
the end.

8.4.4.2 Acrobot

To discuss the differences between the 2 versions for the acrobot environment, we also
look at the learning curves, which are shown in Figure 8.9. It can be seen that, on

Figure 8.9: Learning curves for the acrobot environment of our transfer learning algo-
rithm (TLA) with 5 source tasks (shown as TLA 5) and 10 source tasks (shown as TLA
10), both with and without sparse representation transfer.

average, the version using sparse representation transfer can start with a high reward
but improves little afterwards. However, the rewards stay superior to those using the
version without sparse representation transfer.

First, we see how the 2 versions perform initially, using the jumpstart performances.
Statistics about the jumpstart performances are presented in Table 8.6. Indeed, the
versions using sparse representation transfer initially obtain a higher reward and are
more stable. This means that the sparse representation of a source task is a better
initialization than just using random values.
Next, we use the same types of statistics for the asymptotic performances. These are
shown in Table 8.7. Again, the versions with sparse representation transfer perform
better, because a higher mean and median reward is achieved and the standard deviations
are lower.

72 CHAPTER 8. EXPERIMENTAL SETUP

Algorithm Sparse repr. transfer Mean Standard deviation Median

TLA 5 No −380.222 160.589 −500.000
TLA 10 No −339.530 168.845 −419.571
TLA 5 Yes −141.236 101.567 −110.482
TLA 10 Yes −136.400 97.188 −108.157

Table 8.6: Mean, standard deviation and median of the jumpstart performances TLA
5 and TLA 10 both with and without sparse representation transfer, applied to the
acrobot environment.

Algorithm Sparse repr. transfer Mean Standard deviation Median

TLA 5 No −156.128 137.661 −107.222
TLA 10 No −132.873 105.777 −96.224
TLA 5 Yes −110.481 67.384 −93.085
TLA 10 Yes −106.626 64.108 −91.087

Table 8.7: Mean, standard deviation and median of the asymptotic performances TLA
5 and TLA 10 both with and without sparse representation transfer, applied to the
acrobot environment.

Using these statistics, we see that for this environment a sparse representation is also
a useful and more stable starting point for the target task and also leads to a better
performance at the end. We can also notice that the performance is better when using
using 10 source tasks instead of 5. To see if this difference is significant, we use a
Wilcoxon rank-sum test with the null-hypothesis that there is no difference in asymptotic
performances. This results in a p-value of 0.654. Thus, with a significance level of 0.05,
we can retain the null-hypothesis and say that the difference is not significant.

8.4.5 REINFORCE using a source and target task

To see if it is really necessary to learn from multiple source tasks that use a shared
knowledge base, we apply the REINFORCE algorithm first on one source task and then
use the learned weights of the artificial neural network as initialization for the network of
the target task. Our transfer learning algorithm is used for comparison and first learns
on 5 source tasks. It then transfers besides the shared knowledge base also a randomly
chosen sparse representation from one of the source tasks, like in Section 8.4.4.
We execute this experiment both for the cart-pole and the acrobot task.

8.4.5.1 Cart-pole

For the cart-pole environment, the learning curves are shown in Figure 8.10. It can be
seen that on average the TLA 5 algorithm learns more quickly on the source tasks. It
is also able to retain a better jumpstart performance, with a median of 200 instead of
186.908 for REINFORCE. The asymptotic performances seem to be equal and have the

8.4. RESULTS 73

Figure 8.10: REINFORCE applied for 100 epochs to a randomly chosen source task of
a cart-pole environment and afterwards to the target task, using the same network and
weight values. The learning curve is compared to the one of the TLA 5 algorithm that
uses sparse representation transfer.

same median of 200.

8.4.5.2 Acrobot

We now do the same experiment for the acrobot environment. The resulting learning
curve for the source and target task is shown in Figure 8.11. On average, for both al-
gorithms only a small adaption is needed for the target task to reach the same reward
as the one with which the source task ended. However, the median jumpstart perfor-
mance is −500, meaning that in at least half the cases the knowledge of the source task
does not improve the initial performance on the target task. In contrast, the median
jumpstart performance for TLA 5 is −110.482. For the target task, the asymptotic
performance of REINFORCE also does not reach the values from our TLA 5 algorithm.
The REINFORCE algorithm has a median asymptotic performance of −203.426 instead
of −93.085 for TLA 5.

74 CHAPTER 8. EXPERIMENTAL SETUP

Figure 8.11: REINFORCE applied for 100 epochs to a randomly chosen source task of
an acrobot and afterwards to the target task, using the same network and weight values.

Chapter 9

Conclusion

We presented an algorithm suitable for learning in parallel or sequentially on a set of
source tasks. These task share a knowledge base, but they also have their proper sparse
representation. The learned knowledge can then be transferred to the target task with
the goal of having an increased performance over an algorithm that does not use prior
knowledge.

In our experiments, we found that source tasks learned in parallel learned faster
than when they were learned sequentially. In the parallel version, changes to the shared
knowledge base are applied immediately instead of summing them and applying the
changes after all source tasks have been evaluated.

We also discussed to use of feature extraction applied to the input, which is in
this case the state of an environment. For the cart-pole environment, no feature ex-
traction was necessary and even slowed down learning. However, environments with a
high-dimensional input space generally require feature extraction in order to obtain the
relevant aspects of the input.

Our algorithm has better performance on the target task than when just using the
REINFORCE algorithm on it. Our algorithm learns faster and is able to receive higher
rewards. The performance is even better when we transfer the sparse representation
from a randomly chosen source task to the target task. The algorithm then only needs
to tune the sparse representation for it to work on its own task.

To see if multiple source tasks are really necessary, we compared our algorithm with
the REINFORCE algorithm where it learns on a single source task and transfers all its
knowledge to the target task. Although the asymptotic performance was similar, our
algorithm learned better on the source tasks and has a higher jumpstart performance.

We can conclude that it is beneficial to learn on multiple source tasks in parallel and
transfer knowledge learned on these tasks to the target task.

75

76 CHAPTER 9. CONCLUSION

Appendices

77

Appendix A

Experiment details

A.1 Data collection

For each agent, transitions on which to learn were collected in the same way. In each
iteration, 5000 transitions have to be collected. To do this, we keep executing actions
and saving the transitions until this threshold is reached. When an end state is reached
before reaching this threshold, we reset the environment and keep executing actions.

A.2 Artificial neural network parameters

Weights are initialized using values drawn from a truncated normal distribution with
mean 0 and standard deviation 0.02. This means that we draw values from a normal
distribution with the same mean and standard deviation, except that only values maxi-
mally 2 standard deviations away from the mean can be drawn.
To update weights, I used RMSProp, described in Section 2.3.4.2. The following hy-
perparameters were always used for both the sequential and the parallel version of the
algorithm and for REINFORCE :

• ε = 10−9

• α = 0.05

• γ = 0.9

A.3 Environment parameters

Here we describe the range of possible values for each parameter of the cart-pole and
acrobot environments. To generate an environment, each parameters is drawn from a
uniform distribution with possible values in the defined range. For the cart-pole envi-
ronment, we have:

79

80 APPENDIX A. EXPERIMENT DETAILS

Parameter name minimum maximum

Pole length 0.01 5.0
Pole mass 0.01 5.0
Cart mass 0.01 5.0

For the acrobot environment, we have:

Parameter name minimum maximum

Length of link 1 0.2 2.0
Length of link 2 0.2 2.0
Mass of link 1 0.2 2.0
Mass of link 2 0.2 2.0

Bibliography

Ammar, H. B. & Eaton, E. (2014). An Automated Measure of MDP Similarity for Trans-
fer in Reinforcement Learning. Workshops at the Twenty-Eighth AAAI Conference
on Artificial Intelligence, 31–37. Retrieved from http://www.aaai.org/ocs/index.
php/WS/AAAIW14/paper/viewPaper/8824

Anderson, C. W. (1989). Learning to control an inverted pendulum using neural net-
works. IEEE Control Systems Magazine, 9 (3), 31–37.

Bach, F. R., Jenatton, R., Mairal, J., & Obozinski, G. (2012). Optimization with sparsity-
inducing penalties. Foundations and Trends in Machine Learning, 4 (1), 1–106. Re-
trieved from http://dblp.uni-trier.de/db/journals/ftml/ftml4.html#BachJMO12

Barto, A. G., Sutton, R. S., & Anderson, C. W. (1983). Neuronlike adaptive elements
that can solve difficult learning control problems. IEEE Trans. Systems, Man, and
Cybernetics, 13 (5), 834–846. Retrieved from http://dblp.uni-trier.de/db/journals/
tsmc/tsmc13.html#BartoSA83

Bengio, Y., Simard, P., & Frasconi, P. (1994). Learning long-term dependencies with
gradient descent is difficult. IEEE transactions on neural networks, 5 (2), 157–166.

Bernstein, D. S. (1999). Reusing Old Policies to Accelerate Learning on New MDPs.
Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J., &

Zaremba, W. (2016). OpenAI Gym. arXiv, 1–4. Retrieved from http://arxiv.org/
abs/1606.01540

Cho, K., van Merrienboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk,
H., & Bengio, Y. (2014). Learning Phrase Representations using RNN Encoder-
Decoder for Statistical Machine Translation. Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing (EMNLP), 1724–1734. doi:10.
3115/v1/D14-1179

Choromanska, A., Henaff, M., Mathieu, M., Arous, G. B., & LeCun, Y. (2015). The Loss
Surfaces of Multilayer Networks. In Aistats.

Chung, J., Gülçehre, Ç., Cho, K., & Bengio, Y. (2014). Empirical evaluation of gated
recurrent neural networks on sequence modeling. CoRR, abs/1412.3555. Retrieved
from http://dblp.uni-trier.de/db/journals/corr/corr1412.html#ChungGCB14

Clevert, D.-A., Unterthiner, T., & Hochreiter, S. (2015). Fast and accurate deep network
learning by exponential linear units (elus). CoRR, abs/1511.07289. Retrieved from
http://dblp.uni-trier.de/db/journals/corr/corr1511.html#ClevertUH15

81

http://www.aaai.org/ocs/index.php/WS/AAAIW14/paper/viewPaper/8824
http://www.aaai.org/ocs/index.php/WS/AAAIW14/paper/viewPaper/8824
http://dblp.uni-trier.de/db/journals/ftml/ftml4.html#BachJMO12
http://dblp.uni-trier.de/db/journals/tsmc/tsmc13.html#BartoSA83
http://dblp.uni-trier.de/db/journals/tsmc/tsmc13.html#BartoSA83
http://arxiv.org/abs/1606.01540
http://arxiv.org/abs/1606.01540
https://dx.doi.org/10.3115/v1/D14-1179
https://dx.doi.org/10.3115/v1/D14-1179
http://dblp.uni-trier.de/db/journals/corr/corr1412.html#ChungGCB14
http://dblp.uni-trier.de/db/journals/corr/corr1511.html#ClevertUH15

82 BIBLIOGRAPHY

Cottrell, G. W. (1990). Extracting features from faces using compression networks: Face,
identity, emotion and gender recognition using holons. In Connectionist models:
Proceedings of the 1990 summer school (pp. 328–337).

Demant, C., Garnica, C., & Streicher-Abel, B. (2013). Overview: Classification. In In-
dustrial image processing: Visual quality control in manufacturing (pp. 151–172).
Berlin, Heidelberg: Springer Berlin Heidelberg. doi:10.1007/978-3-642-33905-9 6

Fernández, F. & Veloso, M. (2006, September 27). Probabilistic policy reuse in a rein-
forcement learning agent. In H. Nakashima, M. P. Wellman, G. Weiss, & P. Stone
(Eds.), Aamas (pp. 720–727). ACM. Retrieved from http://dblp.uni-trier.de/db/
conf/atal/aamas2006.html#FernandezV06

Fernández, F. & Veloso, M. M. (2013). Learning domain structure through probabilistic
policy reuse in reinforcement learning. Progress in AI, 2 (1), 13–27. Retrieved from
http://dblp.uni-trier.de/db/journals/pai/pai2.html#FernandezV13

Foster, D. J. & Dayan, P. (2002). Structure in the Space of Value Functions. Machine
Learning, 49 (2-3), 325–346. Retrieved from http://dblp.uni-trier.de/db/journals/
ml/ml49.html#FosterD02

Frémaux, N., Sprekeler, H., & Gerstner, W. (2013). Reinforcement learning using a
continuous time actor-critic framework with spiking neurons. PLOS Computational
Biology, 9 (4), 1–21. doi:10.1371/journal.pcbi.1003024

Grant, S. (1990). Modelling cognitive aspects of complex control tasks. In Proceed-
ings of the ifip tc13 third interational conference on human-computer interaction
(pp. 1017–1018). North-Holland Publishing Co.

Graves, A. (2013). Generating sequences with recurrent neural networks. CoRR, abs/1308.0850.
Retrieved from http : / / dblp . uni - trier . de / db / journals / corr / corr1308 . html #
Graves13

He, K., Zhang, X., Ren, S., & Sun, J. (2015). Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. CoRR, abs/1502.01852. Re-
trieved from http://dblp.uni-trier.de/db/journals/corr/corr1502.html#HeZR015

Isele, D. & Eaton, E. (2016). Using Task Features for Zero-Shot Knowledge Transfer in
Lifelong Learning. Ijcai, 1620–1626.

Kingma, D. P. & Ba, J. (2014). Adam: A method for stochastic optimization. CoRR,
abs/1412.6980. Retrieved from http://arxiv.org/abs/1412.6980

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep
convolutional neural networks. In P. L. Bartlett, F. C. N. Pereira, C. J. C. Burges,
L. Bottou, & K. Q. Weinberger (Eds.), Nips (pp. 1106–1114). Retrieved from http:
//dblp.uni-trier.de/db/conf/nips/nips2012.html#KrizhevskySH12

Lang, K. J., Waibel, A., & Hinton, G. E. (1990). A time-delay neural network architecture
for isolated word recognition. Neural Networks, 3 (1), 23–43. doi:10.1016/0893-
6080(90)90044-L

Lazaric, A. (2008). Knowledge transfer in reinforcement learning (Doctoral dissertation,
Politecnico di Milano).

https://dx.doi.org/10.1007/978-3-642-33905-9_6
http://dblp.uni-trier.de/db/conf/atal/aamas2006.html#FernandezV06
http://dblp.uni-trier.de/db/conf/atal/aamas2006.html#FernandezV06
http://dblp.uni-trier.de/db/journals/pai/pai2.html#FernandezV13
http://dblp.uni-trier.de/db/journals/ml/ml49.html#FosterD02
http://dblp.uni-trier.de/db/journals/ml/ml49.html#FosterD02
https://dx.doi.org/10.1371/journal.pcbi.1003024
http://dblp.uni-trier.de/db/journals/corr/corr1308.html#Graves13
http://dblp.uni-trier.de/db/journals/corr/corr1308.html#Graves13
http://dblp.uni-trier.de/db/journals/corr/corr1502.html#HeZR015
http://arxiv.org/abs/1412.6980
http://dblp.uni-trier.de/db/conf/nips/nips2012.html#KrizhevskySH12
http://dblp.uni-trier.de/db/conf/nips/nips2012.html#KrizhevskySH12
https://dx.doi.org/10.1016/0893-6080(90)90044-L
https://dx.doi.org/10.1016/0893-6080(90)90044-L

BIBLIOGRAPHY 83

Lazaric, A., Restelli, M., & Bonarini, A. (2008). Transfer of samples in batch reinforce-
ment learning. In Proceedings of the 25th international conference on machine
learning (pp. 544–551). ACM.

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521 (7553), 436–444.
doi:10.1038/nature14539

LeCun, Y., Boser, B. E., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W. E., &
Jackel, L. D. (1989). Backpropagation applied to handwritten zip code recognition.
Neural Computation, 1 (4), 541–551. Retrieved from http://dblp.uni-trier.de/db/
journals/neco/neco1.html#LeCunBDHHHJ89

LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied
to document recognition. In Proceedings of the ieee (Vol. 86, 11, pp. 2278–2324).
Retrieved from http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.42.
7665

LeCun, Y., Bottou, L., Orr, G. B., & Müller, K.-R. (2012). Efficient backprop. In G. Mon-
tavon, G. B. Orr, & K.-R. Müller (Eds.), Neural networks: Tricks of the trade (2nd
ed.) (Vol. 7700, pp. 9–48). Lecture Notes in Computer Science. Springer. Retrieved
from http://dblp.uni-trier.de/db/series/lncs/lncs7700.html#LeCunBOM12

Lee, H., Grosse, R. B., Ranganath, R., & Ng, A. Y. (2009). Convolutional deep belief
networks for scalable unsupervised learning of hierarchical representations. In A. P.
Danyluk, L. Bottou, & M. L. Littman (Eds.), Icml (Vol. 382, p. 77). ACM Inter-
national Conference Proceeding Series. ACM. Retrieved from http://dblp.uni-
trier.de/db/conf/icml/icml2009.html#LeeGRN09

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., . . . Wierstra,
D. (2015). Continuous control with deep reinforcement learning. arXiv preprint
arXiv:1509.02971, 1–14. doi:10.1561/2200000006

Maas, A. L., Hannun, A. Y., & Ng, A. Y. (2013). Rectifier nonlinearities improve neural
network acoustic models. In Proc. icml (Vol. 30, 1).

Mitchell, T. M. (1997). Machine learning. McGraw-Hill.
Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap, T. P., Harley, T., . . . Kavukcuoglu,

K. (2016). Asynchronous Methods for Deep Reinforcement Learning. arXiv, 48, 1–
28. Retrieved from http://arxiv.org/abs/1602.01783

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., &
Riedmiller, M. (2013). Playing Atari with Deep Reinforcement Learning. Retrieved
from http://arxiv.org/abs/1312.5602

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. a., Veness, J., Bellemare, M. G., . . .
Hassabis, D. (2015). Human-level control through deep reinforcement learning.
Nature, 518 (7540), 529–533. doi:10.1038/nature14236

Nair, V. & Hinton, G. E. (2010). Rectified linear units improve restricted boltzmann
machines. In J. Fürnkranz & T. Joachims (Eds.), Icml (pp. 807–814). Omnipress.
Retrieved from http://dblp.uni-trier.de/db/conf/icml/icml2010.html#NairH10

Parisotto, E., Ba, L. J., & Salakhutdinov, R. (2015). Actor-Mimic: Deep Multitask and
Transfer Reinforcement Learning. CoRR, abs/1511.0. Retrieved from http://arxiv.
org/abs/1511.06342

https://dx.doi.org/10.1038/nature14539
http://dblp.uni-trier.de/db/journals/neco/neco1.html#LeCunBDHHHJ89
http://dblp.uni-trier.de/db/journals/neco/neco1.html#LeCunBDHHHJ89
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.42.7665
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.42.7665
http://dblp.uni-trier.de/db/series/lncs/lncs7700.html#LeCunBOM12
http://dblp.uni-trier.de/db/conf/icml/icml2009.html#LeeGRN09
http://dblp.uni-trier.de/db/conf/icml/icml2009.html#LeeGRN09
https://dx.doi.org/10.1561/2200000006
http://arxiv.org/abs/1602.01783
http://arxiv.org/abs/1312.5602
https://dx.doi.org/10.1038/nature14236
http://dblp.uni-trier.de/db/conf/icml/icml2010.html#NairH10
http://arxiv.org/abs/1511.06342
http://arxiv.org/abs/1511.06342

84 BIBLIOGRAPHY

Pavlovsky, V. (2017). Introduction to convolutional neural networks. Retrieved June 4,
2017, from https://www.vaetas.cz/blog/intro-convolutional-neural-networks/

Perkins, T. J., Precup, D. et al. (1999). Using options for knowledge transfer in rein-
forcement learning. University of Massachusetts, Amherst, MA, USA, Tech. Rep.

Rosenblatt, F. (1958). The perceptron: A probabilistic model for information storage
and organization in the brain. Psychological Review, 65 (6), 386–408.

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by
back-propagating errors. Nature, 323 (6088), 533–536. Retrieved from http://dx.
doi.org/10.1038/323533a0

Rusu, A. A., Rabinowitz, N. C., Desjardins, G., Soyer, H., Kirkpatrick, J., Kavukcuoglu,
K., . . . Hadsell, R. (2016). Progressive Neural Networks. arXiv. arXiv: 1606.04671.
Retrieved from http://arxiv.org/abs/1606.04671

Selfridge, O. G., Sutton, R. S., & Barto, A. G. (1985). Training and Tracking in Robotics.
In A. K. Joshi (Ed.), Ijcai (pp. 670–672). Morgan Kaufmann. Retrieved from http:
//dblp.uni-trier.de/db/conf/ijcai/ijcai85.html#SelfridgeSB85

Smolensky, P. (1986). Parallel distributed processing: Explorations in the microstructure
of cognition, vol. 1. In D. E. Rumelhart, J. L. McClelland, & C. PDP Research
Group (Eds.), (Chap. Information Processing in Dynamical Systems: Foundations
of Harmony Theory, pp. 194–281). Cambridge, MA, USA: MIT Press. Retrieved
from http://dl.acm.org/citation.cfm?id=104279.104290

Spong, M. W. (1995). The swing up control problem for the acrobot. IEEE control
systems, 15 (1), 49–55.

Sunmola, F. T. & Wyatt, J. L. (2006). Model transfer for markov decision tasks via
parameter matching. In Proceedings of the 25th workshop of the uk planning and
scheduling special interest group (plansig 2006).

Sutton, R. S. & Barto, A. G. (1998). Reinforcement Learning: An Introduction. Cam-
bridge: MIT Press.

Sutton, R. S., Mcallester, D., Singh, S., & Mansour, Y. (1999). Policy Gradient Methods
for Reinforcement Learning with Function Approximation. In Advances in Neural
Information Processing Systems 12, 1057–1063. doi:10.1.1.37.9714

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S. E., Anguelov, D., . . . Rabinovich,
A. (2014). Going deeper with convolutions. CoRR, abs/1409.4842. Retrieved from
http://arxiv.org/abs/1409.4842

Tanaka, F. & Yamamura, M. (2003). Multitask reinforcement learning on the distribution
of mdps. In Cira (pp. 1108–1113). IEEE. Retrieved from http://dblp.uni-trier.de/
db/conf/cira/cira2003.html#TanakaY03

Taylor, M. E. & Stone, P. (2009). Transfer Learning for Reinforcement Learning Domains
: A Survey. Journal of Machine Learning Research, 10, 1633–1685. doi:10.1007/
978-3-642-27645-3

Tesauro, G. (1992). Practical issues in temporal difference learning. Machine Learning,
8, 257.

Tibshirani, R. (1996). Regression shrinkage and selection via the Lasso. Journal of the
Royal Statistical Society. Series B (Methodological), 267–288.

https://www.vaetas.cz/blog/intro-convolutional-neural-networks/
http://dx.doi.org/10.1038/323533a0
http://dx.doi.org/10.1038/323533a0
http://arxiv.org/abs/1606.04671
http://arxiv.org/abs/1606.04671
http://dblp.uni-trier.de/db/conf/ijcai/ijcai85.html#SelfridgeSB85
http://dblp.uni-trier.de/db/conf/ijcai/ijcai85.html#SelfridgeSB85
http://dl.acm.org/citation.cfm?id=104279.104290
https://dx.doi.org/10.1.1.37.9714
http://arxiv.org/abs/1409.4842
http://dblp.uni-trier.de/db/conf/cira/cira2003.html#TanakaY03
http://dblp.uni-trier.de/db/conf/cira/cira2003.html#TanakaY03
https://dx.doi.org/10.1007/978-3-642-27645-3
https://dx.doi.org/10.1007/978-3-642-27645-3

BIBLIOGRAPHY 85

Tieleman, T. & Hinton, G. (2012). Lecture 6.5-rmsprop: Divide the gradient by a run-
ning average of its recent magnitude. COURSERA: Neural Networks for Machine
Learning.

Walsh, T. J., Li, L., & Littman, M. L. (2006). Transferring state abstractions between
mdps. In Icml workshop on structural knowledge transfer for machine learning.

Williams, R. (1992). Simple statistical gradient-following algorithms for connectionist
reinforcement learning. Machine Learning, 8 (3), 229–256.

Wilson, A., Fern, A., Ray, S., & Tadepalli, P. (2007). Multi-task reinforcement learning: A
hierarchical bayesian approach. In Z. Ghahramani (Ed.), Icml (Vol. 227, pp. 1015–
1022). ACM International Conference Proceeding Series. ACM. Retrieved from
http://dblp.uni-trier.de/db/conf/icml/icml2007.html#WilsonFRT07

Xu, B., Wang, N., Chen, T., & Li, M. (2015). Empirical evaluation of rectified activations
in convolutional network. CoRR, abs/1505.00853. Retrieved from http://dblp.uni-
trier.de/db/journals/corr/corr1505.html#XuWCL15

Zou, H. & Hastie, T. (2003). Regularization and variable selection via the elastic net.
Journal of the Royal Statistical Society: Series B (Statistical Methodology), 67 (2),
301–320.

http://dblp.uni-trier.de/db/conf/icml/icml2007.html#WilsonFRT07
http://dblp.uni-trier.de/db/journals/corr/corr1505.html#XuWCL15
http://dblp.uni-trier.de/db/journals/corr/corr1505.html#XuWCL15

	Introduction
	Artificial neural networks
	Basics
	Activation functions
	Perceptron
	Sigmoid
	Hyperbolic tangent
	Rectified Linear Unit
	Softmax

	Gradient descent and backpropagation
	Gradient descent
	Stochastic gradient descent
	Backpropagation
	Extensions and improvements

	Reinforcement learning
	Basics
	Dynamic programming
	Monte Carlo and Temporal-Difference
	Eligibility traces
	Bootstrapping
	Policy gradient
	Generalization and function approximation
	Coarse coding

	Deep learning
	Convolutional neural networks
	Recurrent Neural Networks

	Deep reinforcement learning
	DQN
	Continuous control with deep reinforcement learning
	Asynchronous Methods for Deep Reinforcement Learning

	Transfer learning
	Transfer learning dimensions
	Metrics
	Related work

	Proposed algorithm
	Experimental setup
	Cart-pole environment
	Acrobot environment
	Methodology
	Results
	Parallel and sequential knowledge transfer
	Feature extraction
	Usage of a different amount of source tasks
	Transfer of sparse representation
	REINFORCE using a source and target task

	Conclusion
	Appendices
	Experiment details
	Data collection
	Artificial neural network parameters
	Environment parameters

