Methoden Wetenschappelijk Onderzoek

Introduction
About myself

• Bart de Boer
 bart@ai.vub.ac.be
 – Artificial Intelligence laboratory

• Research: evolution of speech
 – Computer modeling
 – Experimental work
Practicalities

• Course description and rules are found on the ARTI website
 – https://ai.vub.ac.be/courses/2012-2013/methods-scientific-research

• Publication of documents and assignments (publication, handing in, feedback) will be through Pointcarre
 – Make sure you are enrolled!

Bart de Boer 2012
About the course

• “Methoden wetenschappelijk onderzoek”
• How to do science
 – Some background
 – Mostly practical

• 8 lectures
 – From 9 to 12 (not 10 to 12)
• 4 assignments
 – Two weeks for each assignment
Themes

1. Introduction
2. Reading papers – literature survey
3. Collecting data
4. Setting up an experiment – research proposal
5. Describing data
6. Analyzing data – statistics assignment
7. Exchange with industry
8. Writing a paper – extended abstract
9. Conclusion – paper review

Bart de Boer 2012
Course evaluation

• Aim is mostly practical
 – Final mark based on assignments
 – No exam

• The real test will be your thesis!

Bart de Boer 2012
Why?

• Most of you will not become scientists

• But a university degree is a scientific degree

• Practical reasons:
 – Our society is thoroughly scientific
 – Scientific way of doing things pervasive in business, education, (public) management politics
 – Even anti-scientific groups (religious, new-age, climate-change deniers) use scientific method and jargon

• For any job at university level you need scientific skills

Bart de Boer 2012
What is science?

• A **structured** way to learn to **understand** the world
• With checks and balances to prevent us from **fooling ourselves**

• Understanding the checks and balances helps to **understand others’ results** (or claims)

Bart de Boer 2012
Science and technology

• Science’s popularity in the 19th century closely related to *technological progress*
 – Progress was partly due to science
 – But partly due to tinkering (e.g. steam engine)

• Scientific method *helps* technology
• But does all science need to be *application-oriented*?

Bart de Boer 2012
Science and Society

• We live in a **scientific society**
 – Even though most political ideology is based on 19th century science

• It is important to be able to think and write scientifically for all kinds of **political and management** work

Bart de Boer 2012
Computer “science”

Tichy (1998) noticed that computer scientists hardly do experiments at all

– He calls BS on their arguments not to do so
Tichy’s list of excuses (1)

• “Traditional scientific method is not applicable”
 – “We investigate information”

• A lot of claims should still be tested
 – For example: “C++ is better than C”

• And performance of models can also be tested using standard scientific methods

Bart de Boer 2012
Tichy’s list of excuses (2)

• “The current level of experimentation is good enough”
 – Tichy: 40-50% of 1993 CS papers with empirical claims had no support whatsoever
 – Sjøberg et al. (2005) looked at 5453 software engineering articles and found only 103 with controlled experiments

• This would be unacceptable in any other branch of science

Bart de Boer 2012
Tichy’s list of excuses (3)

- “Experiments cost too much”
 - (It is too much work)
 - Get off your lazy behinds, other sciences do it, too
 - At the university level, you have to go beyond mere programming

- “Demonstrations will suffice”
 - Demonstrations are an excellent means to fool yourself and your audience
 - Avoiding this is what scientific method is for

Bart de Boer 2012
Tichy’s list of excuses (4)

• “You’ll never get it published”
 – = Your thesis supervisor won’t have it (or doesn’t require it)
 – As for publication, it is probably untrue

• As for theses:
 0 out of ~16 theses I saw this year had statistical analysis of their results
 – Which means: all of them would have failed at the psychology department…

Bart de Boer 2012
Full disclosure

• I used to have **shaky methodology**, too
 – I don’t think my PhD thesis contains a **single statistical test**
 – I was trained as a computer scientist (1988-1994): no methodology whatsoever

• But times are changing:
 – It becomes **more and more important** to follow good methodology
 – Subject areas with good methodology become **dominant**
 • Think bioinformatics
How computer science is done

• (Tongue in cheek)
• Be fascinated by a subject
• Start programming
• Find a problem to solve
• Make a demo
• Make a “happy graph”
• Write your paper/report/thesis

Bart de Boer 2012
How computer science is done

• (Tongue in cheek)
• Be fascinated by a subject
• Start programming
• Find a problem to solve
• Make a demo
• Make a “happy graph”
• Write your paper/report/thesis

Me

The competition

Bart de Boer 2012
Why this is bad

• Be fascinated by a subject
 – Other people probably are, too.

• Start programming - Shift of focus, messiness

• Find a problem to solve - Bias

• Make a demo
 – Designed to fool yourself and your audience

• Make a “happy graph”
 – Selected results, lucky run, no idea of variation

• Write your paper/report/thesis
 – You forgot half of what you did

Bart de Boer 2012
How science is done (1)

• It starts with **observation and curiosity**
 – How does something work?
 – How can something be made better?
 – Etc.

• This leads to a **research question**

Bart de Boer

http://my2008blog.wordpress.com/2008/04/14/remains-of-a-feast/
How science is done (2)

• The next step is formation of a hypothesis
 – This is essentially a creative process
 – It is always good to have multiple hypotheses
• A useable hypothesis makes testable predictions

• Formulating good hypotheses requires knowledge and experience
• As does formulating interesting research questions
How science is done (3)

- Then one has to formulate experiments to test one’s hypotheses
 - Only in mathematics can things be proven
 - Experiments are generally aimed at falsification
 - But they can also be meant to increase qualitative understanding (descriptive studies)

- What do we measure, how do we measure it, how accurate will this be, how many measurements do we need to make etc.

Bart de Boer 2012
How science is done (4)

- Then we run the experiment

- Depending on the field this can be more or less **difficult** and more or less **work**
 - Scientists like to save work, so focus on relatively easy experiments (?)
How science is done (5)

• The results are then analyzed and interpreted
 – Coding the data
 – Analyzing with statistics

• Done so to prevent one from fooling oneself

Bart de Boer 2012
How science is done (6)

- You then **communicate** your results
 - Present it at a **conference**
 - Publish it in a **journal**
 - Tell it to the **general public**

- Using the correct **style**
- Referring to **previous work**

Bart de Boer 2012
How science is done (7)

• But publishing isn’t easy
 – Almost everything is peer-reviewed
 – Colleagues read your work, and comment on it – anonymously
 – Usually about 3 reviewers per paper
 – If not rejected, revisions
 – This can take a long time
How science is done (8)

• Other scientists can then read your work
 – Discuss it
 – Disagree with it
 – Agree with it
 – Use it for their own work
 – Etc.

• For this reason, you must be open and precise about your work, and about your sources
Openness and precision

• Openness and precision make it possible for science to be cumulative
 – “Standing on the shoulders of giants” as Newton put it

• But not without being critical of other work
 – Convinced by data, not by rhetoric
 – Scientists have very sensitive BS-detectors
Science in practice (1)

• Science is done by people
 – People have prior beliefs and convictions
 – People have their likes and dislikes
 – People have their pride
 – People need to eat
Science in practice (2)

- Science is done in a social network
 - Students are trained by older scientists
 - Schools of research form (which can compete or cooperate)

- This can lead to science being stuck in a paradigm
 - Only shift when older generation disappears (Kuhn, The structure of scientific revolutions)

Bart de Boer 2012
Science in practice (3)

• Science costs a lot of money
 – Not everything that is interesting can be done
• Independent scientists do not exist anymore
 – You need an affiliation
• Therefore: a lot of competition for limited resources
 – Scientists spend a lot of time on grant proposals
 – Funding agencies have their own agenda
• In many countries, permanent positions are now nearly non-existent
 – Even very smart young people cannot continue their research
 – While older researchers dominate

Bart de Boer 2012
Science in practice (4)

• Research is **not** just done because it is good
 – But also because:
 • Other people **like** it
 • It fits in a **paradigm**
 • It fits the **priorities** of a funding agency
 • Etc.

• However, science is **self-correcting**
 – If an old paradigm does not work, it **will** be replaced
 – The **real world** has the **last word**
Science in practice (5)

• Science is fun
 – You work very independently
 – You get to work with smart people
 – You discover stuff that nobody knows
 – Scientific work is creative work

• That is why people do it even though working conditions are not what they used to be

Bart de Boer 2012
What will we do? (1)

• Aim to **introduce** you to a number of practices that scientists have developed over the years
 – (Or refresh your memory)
 – And explain why these are **useful**

• Make assignments so that you can **practice the practices**
What will we do? (2)

• The exercises are partly pretend-play
 – Make a literature list
 – Write a proposal
 – Write a review

• Unavoidable if you want to practice

• But if you choose your topic wisely, it may be useful for your MSc thesis
What will we not do (1)

• Philosophy of science
 – Fascinating, but not very practical
 – We will encounter some as we go along
What will we not do (2)

• Postmodern criticism of scientific method
 – (Everything is a cultural construct)
 – There really is a reality outside of science

– But I will discuss convention from time to time
– Scientific method is a way of critical thinking
 • Critical thinking about the method is good, but we first must be very familiar with it

Bart de Boer 2012
What do I expect from you?

• Scientific thinking/working/writing requires experience
 – 10 000 hours to become an expert (Malcolm Gladwell)
 – The course is only 3x28 = 84 hours

• There is some theory
 – 8x3 = 24 hours of lecture

• But practical exercise is most important
 – An extra 60 hours for 4 assignments
 – 15 hours per person per assignment

Bart de Boer 2012
What do I expect from you?

• For assignments 1, 2 and 3 you need to work in teams of two
• Assignment 4 you will do alone

• I will suggest topics, but it is useful (and more fun) to choose topics that are related to what you want to do for your thesis
 – And choose your partner accordingly

Bart de Boer 2012
Next session

• October 12
• Literature study
 – How to get information from literature
 – And how to show you used it
 – As well as the first part on data collection
 – Plus: your first assignment

Bart de Boer 2012