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Abstract—We propose an algorithmic framework for multi-
objective multi-armed bandits with multiple rewards. Different
partial order relationships from multi-objective optimization can
be considered for a set of reward vectors, such as scalarization
functions and Pareto search. A scalarization function transforns
the multi-objective environment into a single objective environ-
ment and are a popular choice in multi-objective reinforcement
learning. Scalarization techniques can be straightforwardly im-
plemented into the current multi-armed bandit framework, but
the efficiency of these algorithms depends very much on their
type, linear or non-linear (e.g. Chebyshev), and their parametes.
Using Pareto dominance order relationship allows to explore the
multi-objective environment directly, however this can result in
large sets of Pareto optimal solutions. In this paper we propose
and evaluate the performance of multi-objective MABs using
three regret metric criteria. The standard UCBL1 is extended to
scalarized multi-objective UCB1 and we propose a Pareto UCB1
algorithm. Both algorithms are proven to have a logarithmic
upper bound for their expected regret. We also introduce a
variant of the scalarized multi-objective UCB1 that removes on-
line inefficient scalarizations in order to improve the algorithm’s
efficiency. These algorithms are experimentally compared on
multi-objective Bernoulli distributions, Pareto UCB1 being the
algorithm with the best empirical performance.
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Multi-objective MABs lead to important differences com-
pared to the standard MABs. There could be several arms
considered to be the best according to their reward vectors.
In Section Il, we consider two order relationshifalar-
ization functions [3], like linear and Chebyshev functions,
transform the reward vectors into scalar rewaRdseto partial
order [11] allows to maximize the reward vectors directly in
the multi-objective reward space. By means of an example,
we compare these approaches on a non-convex distribution of
the best arms. We highlight the difficulty of the linear scala
ization functions in optimizing non-convex shapes. Linear
scalarization is currently a popular choice in designingtimu
objective reinforcement learning algorithms, like the tiul
objective MDPs from [5] but these algorithms have the same
limitations as scalarized MO-MABSs in exploring non-convex
shapes. We consider a variety of scalarisation functiond, a
compare their performance to our Pareto MAB algorithm.

In Section lll, we propose three regrets metrics for multi-
objective MAB algorithms. A straightforward regret for tma
ized multi-objective MAB transforms the regret vector into
a value using scalarization functions. This regret measure
however, does not give any information on the dynamics of
the multi-objective MAB algorithm as a whole. Multi-objea
MAB algorithms should pullall optimal arms frequently,
therefore we also introduce amfairness indicator to measure

Many real-world problems are inherently multi-objective lack of variance in pulling the optimal arms. This measure

environments with conflicting objectives. Multi-armed dés

is similar to the risk analysis metric from economy and it is

is a machine learning paradigm used to study and analysespecially useful in pointing out the weakness of scaldrize

resource allocation in stochastic and noisy environmeafs.

multi-objective MAB in discovering and choosing a variety

consider the classical definition for the multi-armed b&ndi of optimal arms. An adequate regret definition for the Pareto
where only one arm is played at a time and each arm i8MAB algorithm measures the distance between $he of
associated with a fixed equal range stochastic reward wectoroptimal reward vectors and a suboptimal reward vector. Our

When armi is played at time steps,t,. . ., the corresponding
reward vectorsX; +,, X, 4, -

. are independently and identi-
cally distributed according to an unknown law with unknown

measure is inspired by-dominance as proposed in [4].

Section IV introduces a Pareto UCB1 algorithm that uses

expectation vector. The independence holds between the arnfhe Pareto dominance relationship to store and identify all

the optimal arms in each iteration. The regret bound for

In this paper, we design a novel multi-armed bandit framethe multi-objective UCB1 algorithm using Pareto regrets is
work that considers multi-objective (or multi-dimensityna logarithmic in the number of plays for a suboptimal arm,
rewards and that imports techniques from multi-objectivethe size of the reward vectors and the number of optimal
optimization into the multi-armed bandits algorithms. Wearms. Section V proposes two scalarization multi-objectiv

call this frameworkmulti-objective multi-armed bandits (MO-

variants of the UCBL1 classical multi-armed bandits [1]; [R&

MABSs). Some of these techniques were also imported in othestraightforward generalization of the single-objectivERL by

related learning paradigms: multi-objective Markov Daris
Processes (MDPs) [5], [10], and multi-objective reinfonest
learning [8], [9].

arbitrarily alternate different scalarization-based USBand
i) an improved UCB1 that removes scalarization functions
considered not to be useful.
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In Section VI, we compare runs of the proposed multi-
objective UCBL1 algorithms on multi-objective Bernoulli-re
ward distributions, the standard stochastic environmesetdu
to test multi-armed bandits. Section VII concludes the pape

Il. ORDER RELATIONSHIPS FOR REWARD VECTORS

Let's consider aK-armed bandit,X > 2. In the multi-
objective setting, the expected reward of each bandimulti-
dimensionaly; = (ul,. .., uP), whereD is a fixed number of
dimensions, or objectives. We consider the general caseswh
a reward vector can be better than another reward vectoran o
dimension, and worse than another reward vector in anoth
dimension. This means that the objectives might be confticti

A. The Pareto partial order

€

%

B. Order relationships for scalarization functions

A conventional way to transform a multi-objective environ-
ment into a single-objective environment is to wsaarization
functions. However, since single-objective environments, in
general, results in a single optimum, we need a set of scalar-
ization functions to generate a variety of elements beluptp
the Pareto optimal set. We consider two types of scalaozati
functions that weight the values of the reward vector, but
with different properties because of their (non)-linearie
consider each set of weights to generate a scalarization
function.

The linear scalarization is the most popular scalarization
function due to its simplicity. It weighs each value of the
reward vector and the result is the sum of these weighted
values. The linear scalarized reward is

flu) =@t pf 4. P, Vi

here (w!,...,w?) is a set of predefined weights and
D wl = 1. A known problem with linear scalarization is
incapacity to potentially find all the points in a non-gexr

Pareto set.

w

J.

The Chebyshev scalarizationhas the advantage that in
certain conditions it can find all the points in a non-convex
Pareto set. The Chebyshev transformation was originally de

We consider that the reward vectors are ordered using theigned for minimization problems, but we adapt it for the

partial order on multi-objective spaces [11]. The follogiin
order relationship between two reward vectqisand v, are
considered. A reward vectqr is considered better than, or
dominating, another reward vector, v < p, if and only if
there exists at least one dimensignfor which v7 < 7,
and for all other dimensions we haver® < u°. We say
that 1 is weakly-dominatingv, v =< p, if and only if for
all dimensionsj, we haver? < u/. A reward vectory is
consideredncomparable with another reward vectar, v||u,

if and only if there exists at least one dimensipifior which
vi < uf, and there exists another dimensionfor which
v° > u°. We say thaf is non-dominated by v, v # p, if and
only if there exists at least one dimensipfor which v/ < 7.
These Pareto relationships are summarized in Table I.

Let the Pareto optimal reward set O* be the set of reward
vectors that are non-dominated by any of the reward vector
Let thePareto optimal set of arms . 4* be the set of arms whose
reward vectors belong t@*. Then:

Yu; € O*, and Vu,, we have u; £ u,

All the Pareto optimal rewards are incomparable:

Vg, py € O, we have ugl|u;

We further assume that it is impossible, from the appli-
cation point of view, to determine a-priori which arm i4*
is better than another arm fromd*. Therefore, the reward
vectors in the Pareto optimal reward g8t are considered
equally important.

$un

maximization goal of multi-armed bandits. THehebyshev
scalarization reward is

) — 3 J.(d — oI ;
f(ma) | inw (i —27), Vi

where z = (z!,...,2P) is a reference point that is
dominated by all the optimal reward vectors. For each
objectivej, this reference point is the minimum of the current
optimal rewards minus a small positive valué,> 0. Then:

1)

[6] shows that all the points in a Pareto set can be found by
moving the reference poird.

J — : J J .
z) = min ul —€, V
1§i§D/Z y V)]

The optimum reward valug* is the reward for which the
ction f, linear or Chebysheyv, attains its maximum value

Fp) =" max_f(u:) ()

1<i<K
We denote the Pareto optimal set of arms identifiable by the
linear scalarization withA} and the Chebyshev scalarization
with A¢. The corresponding set of Pareto optimal reward
set is O3 for linear scalarization and);, for Chebyshev
scalarization.The set of optimal arms might be different for
the different scalarizations.

C. Comparing the partially ordered reward vector sets

To highlight differences in these scalarizations, we cdeisi
in Figure 1 a set of bi-objective rewards with a non-convex
Pareto optimal reward saD*. We show by means of an
example thaD; C O*.

Example 1. Consider six bi-dimensional reward vectors
from Figure 1 a). Let there be four optimal reward vectors,



Fig. 1. a) Six reward vectors, where four are optimaf;, p3, pj and . . . .
(k. Computing the reward values for b) the linear scalarizatand d) the ~ Prévious example. As shown in Figure 1 b), therents

Chebyshev scalarization. c) The reference paint set of weights for the linear scalarization that can express
Bi-objective rewards _ Linear scalarization the middle optimal rewardg:5 and p5. We conclude that
58 o ‘ 5 57 ‘ the learning of a non-convex Pareto front is impossible with
o~ 56 ! g o linear scalarization. The Chebyshev scalarization famstican
2 . W = potentially expresses the full Pareto front, however ituttio
§ 53 | . g 51 be recognized that this depends on the chosen referenceg poin
© g1l HGHF’ e w8 which also needs to be optimized.
= I —r—
. . S .48
.4949 PR g 0 25 50 .75 1 A multi-objective MDP that uses Pareto relationships is
' " opiective 1 weight w, presented in Wiering and De Jong [10]. It can learn any
@ (®) discrete Pareto front but it has a rather complicated and
computational expensive mechanism to update and propagate
Reference point _ Chebyshev scalarization the probabilities of the states and falls out of the scope of
58 o ‘ 5 07— o ] the paper. Moreover, it should be noted that it is limited to
o 56t ¢ g deterministic settings, and therefore not applicable éoMO-
2 W 5 oos ! MABs we consider here.
2 53¢ R T Ha
8 a1, s SR Ill. PERFORMANCE OF MULTFOBJECTIVEMAB
. s o S ALGORITHMS
49 ‘ ‘ ‘ z 0 25 50 .75 1.
49 -51b_ t'_531 55 weight w; The goal of multi-objective multi-armed bandits is to
oo ) simultaneously minimize the regret in all objectives by fairly

playing all the arms in the Pareto optimal arm set using a
wi = (0.55,0.5), us = (0.53,0.51), pus5 = (0.52,0.54)  policy =. In this section, we propose three metrics to measure
and u; = (0.5,0.57) in O* and two suboptimal reward the performance of multi-objective MABs. THeareto regret
vectors,us = (0.51,0.51) and g = (0.5,0.5). Note that the metric measures the distance between a reward vector and
suboptimal rewarg:; is non-dominated by two optimal reward the Pareto optimal reward set, whereas sbalarized regret
vectors fromO*, pj and uj, but us is dominated by and  metric measures the distance between the maximum value of
15. pe is dominated by all the other reward vectors. a scalarized function and the scalarized value of an arm. The
nfairness metric is related to the variance in pulling all the

Figures 1 b) and d) show the values of the linear andéptimal arms

Chebyshev scalarization functions for different weightsse

(w1,1 — wy). In F_igure 1 b), the optimum reward vectors p A pareto regret metric

for any set of weights arej and p} but neverul or uj.

O3 therefore does not includg; and % from the non- Intuitively, a regret metric measures how far a suboptimal

convex Pareto optimal reward sét. In Figure 1 ¢) and d), reward vector; is from being an optimal arm itself. Inspired

we consider Chebyshev scalarization with the referencetpoi by e-dominance technique that measures the distance between

z = (0.495,0.495) as it allows to discover all the optimal w: and the Pareto optimal reward s8t, we propose a new

rewards fromO*, and thusO}, = O*. regret metric. Because the considered Pareto optimal desear

has a discrete number of component rewards, to approximate

the closest distance betweér andy;, we need to construct a

virtual reward vector that is incomparable wighl the reward

vectors fromO*. By definition, we add tq:; a positive value

e in all objectives, resulting in a so called virtual rewarattze
Scalarized multi-objective Markov Decision Processes. Vi, Thus:

We now argue that the above observations on the inefficiency Vie—pi+e whereVj v/ =l +e ande> 0

of linear scalarization function are valid for more general ’ e ¢

types of reinforcement learning algorithms, like the Marko The virtual optimal reward for the ary v has the minimum

Decision Processes (MDPs). Multi-armed bandits is consitle Vvalue fore for which v; . is incomparable to all the rewards

a special case of reinforcement learning with only a singlégn O*. Thus,

state. An MDP is defined as a dynamical and uncertain

environment where the states and the actions of an agent

are associated with density functions and reward prolt@sili \We denote the correspondindfor v with €.

that are explored/exploited, for example, using a reirdorent

learning algorithm. Lizotte et al [5] propose a linear soakd

multi-objective MDPs with a bi-dimensional reward vectoat

iteratively discovers the Pareto front using differentssef

weights. For a convex Pareto front, they show that the entire A=V — ;=€ 3)

Pareto shape can be learned with a set of linear scalarzati

functions whose weights can be analytically determined.

With the Pareto partial order, all the arms * are
identifiable because of the dominance relationships deesdri
in Table I. For each of the non-selected armsand ¢, there
exists at least one arm id* that dominates that arni

v elglo% v, forwhich Yu; € O, vf|u;

The regret of the arnu; is equal to the distance between
the virtual optimal reward vector of the arm v/, and the
reward vector of the same arm;. Thus,

FBince by definitiore} is always positive, this regret is always
positive. Note that the regret of the arms belongingXo is

However, they do not discuss the behaviour of their al-0 since the virtual reward coincides with the optimal reward
gorithm for non-convex Pareto fronts. Let's reconsider thevector itself.



B. A scalarized regret metric Algorithm 1: Pareto UCB1

Play each arm once
n< K;,n; <1, Vi

Now we introduce the regret measure that will be used in
combination with the scalarisation functions. Te=larized

et f ticul larized functiofy¥ and for th m repeat
;e%r or a particular scalarized functiofy and for the ar Find the Pareto setl’ such thatvi € A’, V¢,
A] _def j _rJ ; 4 4 * 4 *
] = Ig?j{f (k) — f7 (i) 4) - 21In(n </ D|A*|) %, 21In(n </ D|A*|)

Ty n;
Thus, the scalarized regret is the difference between the
maximum value for a scalarization function on the set of arms
A and the scalarized value for an agm

Pull 7 uniform randomly chosen from
n<n+1l;,n+<n;+1
Updatex;

The linear scalarized regret for an armi is untilstopping condition is met

D

A} = wh- (" — pf), where f7(u*) = I]?Ea}fj(/tk) IV. THE PARETO UBC1 BANDITS ALGORITHM
=1 ’ . Co .
! The following multi-objective UCB1 instance uses the

where f7 is a linear scalarization function with the set of Pareto dominance relationships from Table | to order the
weightsw; = {w! wP}. The Chebyshev scalarized regret reward vectors of arms. Like for the single-objective UCB1,
Gy Wik

- ot e the index for this policy has two terms: the mean vector, and
for an armi and a Chebyshev scalarization functighis . h ’
! Y the second term related to the size of a one-sided confidence

interval of the average reward according with the Chernoff-
Hoeffding bounds. The pseudo-code for the Pareto UCBL1 is
given in Algorithm 1.

J= t *t t ey )
Aj = max wj- (0" —p;), where f7 (i) = max f7(u)

It is straightforward to show that the maximum value for . AS iniftializatir?n step, each armh is play]?_d once. Eachd
any set of weights in the linear and Chebyshev functions idl€ration, for each arm, we compute the sum of its mean rewar
one of the Pareto optimal arms. Thus, vector and its associated confidence interval. A Paretongpti

reward setd’ is calculated from these resulting vectors. Thus,
for all the non-optimal armg ¢ A’, there exists a Pareto
optimal arm:; € A’ that dominates the arif

' 21n(n+/D|A*|)

Ty n;

vje S, 3li e A* such thatf (u}) = max £ ()
€

with S referring to the set of weights. While this definition _ 2In(nY/DJA*])  _
of regret seems natural, it is improper for our goal becatse i ~ *¢ — Y/
gathers a collection of independent regrets instead ofrmiiAi ) .
ing the regret of a multi-objective strategy in all objeetivin ~ We select uniformly at random an optimal arm framand
Example 1, we have shown that the scalarization functions dgull it. Thus, by design, this algorithm is fair in selecting
not always identify all the arms id* as such. Therefore, there Pareto optimal arms. After selection, the mean vatyeand

is a measure needed to indicate the exploration of all optimghe common counters are updated. A possible stoppingieriter
arms. is a maximum number of iterations.

In Figure 2, the dynamics of Algorithm 1 is illustrated. A

suboptimal armus that is closer to the Pareto front according

C. Play fairly the optimal arms to the Pareto regret metric from Equation 3 is more often
selected than an worse aprg, but less than the Pareto optimal

~ We CO”Side'Tii(”) the number of times an optimal arm  5r g The following theorem provides an upper bound for the
is pulled, andE[T™(n)] the expected number of times optimal pgretg regret of the Pareto UCB1 strategy.
arms are selected. Thafairness of a multi-objective multi-

armed bandits algorithm is defined as tlagiance of the arms Theorem 1: Let policy Pareto UCB1 from Algorithm 1
in A*, be run on aK-armed D-objective bandit problemiK > 1,
Fig. 2. The dynamics of Pareto UCB1.
¢ = 1 . Z (Tz*(n) _ E[T*(n)])2 (5) Bi-objective rewards
A" 58 _— ‘
% p 4
o~ 56
For a perfectly fair usage of optimal arms, we have that g
¢ — 0. When a multi-objective strategy uses only samples a 3 53}
subset of4*, then the variance is large. Note the resemblance S g1 | x
between this measure and the risk metric from economy. In : ,“ 1
other words, a well performing multi-objective MAB algdmin 49 w \ \
has low risk of unevenly choosing between optimal arms. 49 51 53 55

objective 1



Algorithm 2: Scalarized UCB1

Require: The scalarization functioff/ = (w?, ..., w?,)
Play each arm once
Vi, i, nd « K; nl < 1;
Pull armi that maximizeslE[f7 (x;)] + \/2In(nd)/n’

Updatex’; n/ < nd +1; nl « nl +1;

Rl

Algorithm 3: Scalarized multi-objective UCB1

Require: S = (f!,..., f°) scalarized functions
Initialize the scalarized UCB1 for alf’
n<—S-K,n;+ S
repeat

Choose uniform randomly a functiofy

Play one time scalarized UCB1 fg¥

Updatex;; n; < n; +1; n<n+1
until a stopping condition is met

having arbitrary reward distributiorB,, ... Px with support
in [0,1]P. Consider the Pareto regret defined in Equation 3.

The expected Pareto regret of a polieyafter any number
of n plays is at most

Z 8 - log(n+/D|A*|) LA %2) Z Al

ig A A

where A* is the set of Pareto optimal arms.

scalarization functions are alternated uniformly at rando

In Section V-C, a scalarized multi-objective UCB1 algamith

is described which removes scalarization functions deemed
redundant.

A. The scalarized multi-objective UBC1

This algorithm is a UCB1 algorithm assumes a set of
scalarizated reward vectos = (f',..., %), S > 1, with
different weights. The pseudo-code for a scalarized UCBL th
uses a scalarization functiofy to reward arms is given in
Algorithm 2. The pseudo-code for scalarizated multi-otijec
UCB1 that alternates scalarized UCB1 with different sealar
ization functions is given in Algorithm 3.

In Algorithm 2, letn? be the number of times the function
/7 is pulled, and letr! be the number of times the arin
under functionf’ is pulled. Let IE[f7(u;)] be the expected
reward of armi under scalarization functiorf’. Given a
scalarization functiorf?, pull the arm that maximizes the term

E[f7(ui)]+1/2In(ni)/n!, and update the counters, wherk
is the counter for armi and scalarization functiorf’.

To initialize Algorithm 3, each scalarization function fno
S for each arm is considered once. Until a stopping criteria
is met, choose a scalarization function frashuniformly at
random and run the corresponding scalarized UCB1. Update
the counters and the expected valuexpt= (z},...,zP).

Note that each scalarized UCB1 has its own counter, and its

individual expected value for each arm is updated separatel
Therefore, the upper scalarized regret bound is the sane as i

The expected upper bound of the Pareto regret for Pareig) The next proposition shows that the upper bound for the

UCBL is logarithmic in the number of plays, the number
of dimensionsD and the number of optimal armd*. The

scalarized regret of the scalarized multi-objective UC81hie
sum of all upper bounds of the scalarized UCB1s.

worst-case performance of this algorithm is when the number

of arms K equals the number of optimal armsl*|. The
algorithm reduces to the standard UCB1 for= 1. Then,
in most of the casesg,A*| ~ 1. In general, this Pareto UCB1

Proposition 1: Let policy scalarized multi-objective UCB1
from Algorithm 3 be run on aK-armed bandit problem
having arbitrary reward distribution®,...Px with sup-

performs similarly with the standard UCB1 for small numberport in [0,1]”. Consider a set of scalarization functions

of objectives and small Pareto optimal sets.

Empirical Pareto UCB1. The need to know apriori the
size of the Pareto optimal set of arrp&* is inconvenient.

If we consider this unknown, we may replace the secondhe uniformly chosen functions i€ [n/]

term of the Pareto UCB1's inde§§/2 In(n+/DJA*|)/n; with

a problem independent indey 2 In(n VDK)/n; that upper

bounds this index. This is a standard approach in PAC-legrni
We call this algorithm theempirical Pareto UCBL. In terms

of bounds, this means an increase in the bound magnitude
and decrease in the confidence interval. However, for some
experimental settings, as considered in the next sectien, t

S =(f',..., f%) and the corresponding scalarized regﬁt
described in Equation 4.

We consider that the expected number of plays for all
n/S. The ex-
pected scalarized regret of stratedly after any number of
n= Zf:l nd plays is equ_al to the sum of expected regret of
each scalarization UCB}’ and is at most

s 5 S ‘
> )Y DA

j=1igA* j=1ig A~

8 -In(n/S)
o

difference between the two indexes is small and thus does not

really affect the performance.

V. SCALARIZATED MULTI -OBJECTIVEUCB1 BANDITS

The following algorithms are extensions of single-objesti
UCB algorithms where the scalarized order relationshipnfro
Section Il is considered. The multi-objective UCB1 algimmit
using a set of scalarization functions introduced in SectiéA
is a straightforward generalization of the standard UCB#&ngh

Proof: The proof follows immediately if we consider
that the scalarized multi-objective UCB1 is a uniform ramdo
alternation of scalarized UCBL1. [ |

The leading constant of the above proposition is dominated
by the terme=1 D ig A S'MX;/S) . Thus, the scalarized multi-
objective UCB1 should be rus' times longer than a single-
objective UCB1, the bound in Proposition 1 increasing with

the number of scalarization functions




For a general Pareto optimal reward set, it is not known Algorithm 4: Improved scalarized multi-objective UCB1
which as well as how many function instances should be used; Require: S scalarized functionsk arms, andl” horizon

therefore a uniform distribution of sets of weights is used. SetA, « 1, andBy « S
o . S for all roundsm = 0,1,..., [31log, £ do

B. Discussion on the scalarized multi-objective UBC1 if |B,,| > 1 then

In case we can assume the Pareto front is convex and forall f/ € B, ‘?'0 2log (TA2 )
bounded we can use Lizotte et al [5]'s method, and obtain the Play the scalarized UCBL1 fot,, « [ =23~
minimum set of weights needed to generate the entire Pareto times "
front. Then, the scalarized multi-objective UCB1 is fairde- For each arm, updatex;
lecting the Pareto optimal arms. However, [5]'s approacisdo end for
not allow stochastic reward vectors, an important assumpti else
in MAB. Furthermore, it has computational problems in highl Chose the only function iB,,, until 7" is reached
dimensional reward spaces with irregular shapes that negui end if
large number of weight sets. Find the Pareto optimal reward set of round A,

Non-convex Pareto optimal setsin a general setup, where ;Josrw;g?l ”}? g]%an égward vectats
the shape of the Pareto optimal sets is unknown, several sets o m loa (TAZ) , Tog (TAZ)
of weights should be tried out in a scalarized multi-objexti if mingep,, of, +1\/ g < b, —\ g
UCBL1. then

. . L . Delete f7

Consider linear the scalarization function. As we have end if
showed in Example 1, not all the reward vectors frany end for
Pareto optimal reward set are reachable with this scataiza UpdateB,, 1 to the remaining scalarizations
In this case, there will be always a positive regret betw@&n A1 — A /2

and O;. The unfairness of this algorithm is increasing with
the number of plays because an arm frofii identified as
optimal is increasingly pulled whereas other optimal arhas t
are not recognized as optimal frod* are scarcely pulled.

end for

: N . . \UCB1, we compute its unfairnesg/, in the current round
Consider the Chebyshev scalarization function. It is possi . * A" scalarization function is deleted if its unfairess msnu

ble to obtain all the solutions int* by varying the reference the confidence interval is larger than the smallest unfasne

potlnts% bL]{t there is pct) |nd|gat|on ondr;ow to Sﬁ?rcthor these ;s the confidence interval. The process is repeated after
\?vii?eom?ﬁiririiinncetﬁglﬂnsfaailrnne;vserger(aet Icf)tiizarlgcareo&oriégapm pdating the set of remaining scalarizatiors,, ,,, and the
9 gret. factor related with the confidence intenal,, ;.

optimal arms identified with the Chebyshev multi-objective
UCB1 than with the linear multi-objective UCB1, then the  Note that the proposed algorithm is an adapted version

former UCB1 has a lower unfairness than its linear countepf the improved UCB algorithm from [2] but here scalarized

part. UCBL instances are considered for elimination insteadrofar
In Algorithm 4, the quality indicator is the unfairness ahdg
C. Improving scalarized multi-objective UCB1 there is a minimization MAB problem. To give an intuition on

_ _ . the behaviour of this improved UCB algorithm, we consider
A solution to the above described problem of scalarizedne reward vectors from Example 1. This algorithm prefers
multi-objective UCB1 is to design an algorithm that keeplyon e set of weights for which the Pareto optimal arms have

a minimal set with the best performing scalarized UCB1, ancypoyt the same value. In Figure 1 b) and d), the set of weights
deletes the redundant scalarized UCB1s. We call the spedri \yith jow unfairness corresponds with the intersection leetw

UCB1 which pullsall Pareto optimal arms often and evenly & ihe ypper lines. Thus, for the linear scalarization, theoget
useful UCB1. Thus, a scalarized UCB1 with low unfaimess isyejghts situated at the intersection between the two ujies |
considered useful. A scalarized UCB1 is removed if the Baret;g (0.6,0.4). For the Chebyshev scalarization, there are three

optimal arms are pulled seldom or unevenly and when a certaigets of weights with low unfairess corresponding to theehr
confidence level is attained. intersection points.

The pseudo-code for the improved scalarized multi- Provi : : .

" . L . ; . oving the upper bound of this algorithm is beyond the
ObJ.eCt'Ve UCB1 algorithm is given in AIgont'hm 4. The.hor'lzo scope of t%is papgrp, but we hint the rea?ier to [7]. Algorithm 4
T is assumed to be known and the starting scalarization S€hows that there are techniques that can ameliorate therperf

is By « S. Each scalarization functiorf’ is associated : o .
with a scalarized UCB1 instance from Algorithm 2. Each mance of the scalarized multi-objective MAB algorithms.

scalarized UCBL1 instance is run for a fix number of times

n.,. The improved scalarized multi-objective UCB1 algorithm VI. EXPERIMENTS

is run m rounds, in each round the number of times each

scalarized UCBL is runy,,, increases. After running all the The scope of this section is to experimentally com-
scalarized UCBL1 instances, a Pareto optimal set of arms fquare the behaviour of the three instances of multi-objectiv
the roundm, A},, is computed from the mean reward vectorsUCB1: 1) linear multi-objective UCB1 (lin), 2) Chebyshev
x; over all the scalarized UCBL1 instances. For each scalarizeahulti-objective UCB1 (Cheb), and 3) empirical Pareto UCB1



TABLE II. T HE USAGE OF OPTIMAL ARMS IN TWO MULTOBJECTIVEBERNOULLI DISTRIBUTIONS

A. The bi-objective Bernoulli distribution witl = 20 B. The five-objective Bernoulli distribution witli' = 30
MO-UCB1 Percent played arm(s) MO-UCB1 Percent played arm(s)
A I 3 w3 I A #i M3 13 1y 5 e Ji
Pareto 17 18+ 2 17+ 2 18+ 2 18+ 2 Pareto 64+ 6 9+1 9+1 941 941 941 941 9+1
Cheb 53+ 8 1442 7T+1 8+1 23+3 Cheb 54+ 8 13+ 2 7T+1 441 5+1 8+1 6+1 11+2
lin 46 £ 7 11+2 8+1 10+1 17+ 2 lin A7+ 7 941 6+ 1 541 6+1 8+1 641 8+1

Fig. 3. The performance of the three multi-objective UCB1 ap)tthe  Pareto optimal reward set unchanged.
o biecie Bermoull dstbuton it wenty s &t | 440" Figure 3 a), b) and ) and Table I1A show good perfor
two objectives five objectives mance for Pareto UCBL1, i.e. high and fair usage of the optimal
L ‘ L ‘ arms and low regret, as compared with the scalarized multi-
Cheb ------- Cheb ------- objective UCB1 algorithms. The worst multi-objective UCB1
i 21 i | algorithm, with the highest regret and lowest usage of the
' optimal arms, is the linear multi-objective UCB1. Chebyshe
1 % 1| multi-objective UCB1 has a better performance than itsdine
H%% s counter part and worse than Pareto UCB1.

*
*

%played A
Y%played A

100 510° 105 100 510° 108 B. Adding dimensions to Example_ 1in or_der to test the
algorithms on a more complex multi-objective environment,
nr plays, n nr plays, n . . . .
(@) (b) we add three dimensions for each reward vector in the previou
bi-objective environment antld suboptimal arms. The Pareto
two objectives five objectives optimal set of arms4* contains nowr arms.

14
4105 | _Par — % 1807 ™ pgr — Figure 3 d), e) and f) and Table 1l.B show a similar
Ch‘ﬁg % 1 performance of the three multi-objective UCB1 algorithms
on the five objective Bernoulli distribution. Pareto UCBL1 is
o again the best algorithm, the linear multi-objective UCRBL1 i
- the worst algorithm, and Chebyshev multi-objective UCB$& ha

e an intermediate performance.
0 = ' 0

10 5+10° 10° 100 5+10° 10° Discussion.Let’'s compare the performance of the multi-
nr plays, n nr plays, n objective UCB1 algorithms on the two multi-objective
© @ Bernoulli distributions. The percentage of time an optiaah

is played with one of the scalarized multi-objective UCBL1 is

about the same, because the proportion of optimal arms in

the two distributions is about the same. The percentage of

% Chﬁg _— playing an optimal arm with Pareto UCB1 decreases with the

4#10° | 1 increased number of elements in the Pareto optimal reward

-~ set. ForK = 30, the Pareto regret is larger and the unfairness
is smaller than forK' = 20 indicating a shortage in samples
for the larger multi-objective environment. Furthermdrareto

100 o105 0° 100 105 108 UCBL is more fair than both scalarization multi-objective

UCBL algorithms. In conclusion, Pareto UCB1 performs the
© plays, n 0 plays. n best and is the most robust from the three tested algorithms.

regret

8*10% |

regret

2*10° |

two objectives five objectives
7*10* ypg— 7*10*
Cheb -
podf M7 %

Par

fairness
Ha
fairness

VII. CONCLUSION
(Pareto). We have performed experiments also with the canon

ical Pareto UCB1 but the results were similar with the result . e introduced multi-objective multi-armed bandits algo-
of the empirical Pareto UCB1 because the values of thé'thms with mult|plle, pOSS|ny conflicting, rgwarq vaIuesrf_
two indices are similar. Ifk = 20 and |A*| = 4, then an arm. We considered partial order relationships assatiat
. B 7 ith reward vectors as well as linear and Chebyshev scalar-
VDK = 251 and {/D|A*| = 1.68. We measure: a) the " . .
Sereantage of ime One| Of|the otimal ame o used) b) thi7alion. By means of an example, we explain the difference.
percentage of time each of the optimal arms is pulled7 c) the elt_\(/jve_zen these approalchesi _ang_ we shovy ;Ehat the dls;gussmn IS
; : . . ' valid in a more general multi-objective reinforcement teag
regret, and d) the unfairness in using the optimal arms. setting. Three regret metrics that measure the performance
Each algorithm is runl00 times. We considei1 weight Of multi-objective MAB are introduced. The Pareto regret
sets for the linear and Chebyshev scalarization functiondN€tric measures the distance between a reward vector and
{(1,0),(0.9,0.1),...,(0.1,0.9), (0,1)}. For the Chebyshev the Pareto optimal reward set, whereas a scalarized regret
scalarization, we uniformly at random generate the pararset Metric measures the distance to a single optimal arm. The
¢l o [0,0.1] from Equation 1 for the reference poiat unfairness, an extra performance measure complementary to
the scalarized regret metric, measures the variance in the
A. Adding arms to Example 1. For the first simulation usage ofall the optimal arms. Instances of multi-objective
we have added anothéd arms in Example 1, resulting i20 UCB1 algorithms extending the standard UCB1 are designed
armed bandits. The added arms are dominated by all the arnusing the partially ordered reward vector sets. We showed
in A*. We takeu; = ... = pgo = (0.48,0.48), leaving the that even though the straightforward scalarized multeotiye



UCBL1 is not efficient, there are variants that can improveFollowing the same line of reasoning

its performance. We have proven logarithmic upper regret P
bounds for the Pareto UCB1 and compared the proposed multi= {(
objective UCBL1 algorithms on two multi-objective Bernaull

reward distributions. To conclude, our Pareto UCB1 alhonit
is the most suited to explore/exploit the multi-arm bandiith
reward vectors.
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APPENDIX

This proof of Theorem 1 follows the corresponding proof

from [1]. Let X, 1,...X; , be randomD-dimensional vari-
ables generated for armwith common rangg0, 1]°. The
expected reward vector for the arafter n pulls is

Xi,n=1/n-ZXi7t = Yy, Xg'7n=1/n.ZXf
t=1

co t—1
Chernoff-Hoeffding bound. We use a straightforward gen- : 8- 111(” D|A*
eralization of the standard Chernoff-Hoeffding bound forEm(n)] =1 +ZZ

D d|menS|onaI spaces. Consider thaf, 1 < j < D,
EX!, | Xl Lree-
relat|onsh|p from Table I. Theré{z n A Uz + a if there exists
at least a dimension; for which XJ > 1] +a. Translated in
Chernoff-Hoeffding bound, using ‘Union bound, for al> 0

P{(Xijn A pi+a)} = (6)

2
a

P{(X}, >pu +a)Vv...v(X], >ul +a)} < De?

,X/,_1] = 4. Recall, the non-dominated

2

< pf—a) V.. (XD <uP —a)} < De 2@

(7)
Let ¢ > 0 an arbitrary number. We denote with ; =

\/2 -In (ty/D|A*|)/s. Let A* be the set of optimal arms. We
now upper bound’;(n) on any sequence of plays by bounding
for eacht > 1 the indicator(l; = i). We have(l; =1i) =1 if
armi is played at time and (I, = ) = 0 otherwise. Here, we
consider that an arm can be selected if it is non-dominated
by all the optimal arms fromA4*.

t=K+1 t=K+1

a Xi,T,;(t—l) + ey, Ti(t — 1) < £}
no AT

e+ Z Z{XZ,TW—U + 1,1y (1-1)
t=K+1 h=1

# Xi 1) + C-1,1-1) ) < st TH(t—1)

i+ Ti(t—1)
oo t—1 t—1 |A¥|
£+ZZZZ{XhSh+Ct 15 %Xl‘sb_kct 157} (8)
t=1 s=1s;=¢ h=1

From Algorithm 1, we have thaX;; s A Crs X +
ct s; Which implies that at least one of the condltlons hold

h,s;; F R —Crst Xis, A HitCrs, s g, ¥ pit2-cos, (9)
We bound the probability of events from Inequality 9 using

the straightforward generalized Chernoff-Hoeffding badun
D dimensional reward vectors from Inequalities 6 and 7

= D t* 4
P{Xi,s,; 74,Ufi+ct,s} S T A2l — T a1
DAY A%
—4
P{X* % puf —crer ) <
{ sh?‘/% ct7h}—‘A*|
Fors; > & n(n AV Sn(n V' PIAD) e have that
2.1 Y/ D|A*
V;7Hi72'ct,s,, = V,*,u72\/ n(nSA | |) > I/**,Llli*Ai

Thus, we take/ = [312"V PIA"D V DA,

Then,
[ A"

>

8.In (n &/D[A*]), h=1
=i VRIATDy

t=1 s=1
S

(P{XG, o: # iy = sy} + P{Xis, A i+ s, }) <

8- In (ni/D|A*|) =, t=4
2. te - |A*
A LM
Approximating the Iazst term with the Riemann zeta function
¢(2) = 3,2, t? =~ = we obtain the bound from the theorem.
O




