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Abstract—We propose an algorithmic framework for multi-
objective multi-armed bandits with multiple rewards. Different
partial order relationships from multi-objective optimization can
be considered for a set of reward vectors, such as scalarization
functions and Pareto search. A scalarization function transforms
the multi-objective environment into a single objective environ-
ment and are a popular choice in multi-objective reinforcement
learning. Scalarization techniques can be straightforwardly im-
plemented into the current multi-armed bandit framework, but
the efficiency of these algorithms depends very much on their
type, linear or non-linear (e.g. Chebyshev), and their parameters.
Using Pareto dominance order relationship allows to explore the
multi-objective environment directly, however this can result in
large sets of Pareto optimal solutions. In this paper we propose
and evaluate the performance of multi-objective MABs using
three regret metric criteria. The standard UCB1 is extended to
scalarized multi-objective UCB1 and we propose a Pareto UCB1
algorithm. Both algorithms are proven to have a logarithmic
upper bound for their expected regret. We also introduce a
variant of the scalarized multi-objective UCB1 that removes on-
line inefficient scalarizations in order to improve the algorithm’s
efficiency. These algorithms are experimentally compared on
multi-objective Bernoulli distributions, Pareto UCB1 being the
algorithm with the best empirical performance.

I. I NTRODUCTION

Many real-world problems are inherently multi-objective
environments with conflicting objectives. Multi-armed bandits
is a machine learning paradigm used to study and analyse
resource allocation in stochastic and noisy environments.We
consider the classical definition for the multi-armed bandits
where only one arm is played at a time and each arm is
associated with a fixed equal range stochastic reward vectors.
When armi is played at time stepst1,t2,. . ., the corresponding
reward vectorsXi,t1 , Xi,t2 , . . . are independently and identi-
cally distributed according to an unknown law with unknown
expectation vector. The independence holds between the arms.

In this paper, we design a novel multi-armed bandit frame-
work that considers multi-objective (or multi-dimensional)
rewards and that imports techniques from multi-objective
optimization into the multi-armed bandits algorithms. We
call this frameworkmulti-objective multi-armed bandits (MO-
MABs). Some of these techniques were also imported in other
related learning paradigms: multi-objective Markov Decision
Processes (MDPs) [5], [10], and multi-objective reinforcement
learning [8], [9].

Multi-objective MABs lead to important differences com-
pared to the standard MABs. There could be several arms
considered to be the best according to their reward vectors.
In Section II, we consider two order relationships.Scalar-
ization functions [3], like linear and Chebyshev functions,
transform the reward vectors into scalar rewards.Pareto partial
order [11] allows to maximize the reward vectors directly in
the multi-objective reward space. By means of an example,
we compare these approaches on a non-convex distribution of
the best arms. We highlight the difficulty of the linear scalar-
ization functions in optimizing non-convex shapes. Linear
scalarization is currently a popular choice in designing multi-
objective reinforcement learning algorithms, like the multi-
objective MDPs from [5] but these algorithms have the same
limitations as scalarized MO-MABs in exploring non-convex
shapes. We consider a variety of scalarisation functions, and
compare their performance to our Pareto MAB algorithm.

In Section III, we propose three regrets metrics for multi-
objective MAB algorithms. A straightforward regret for scalar-
ized multi-objective MAB transforms the regret vector into
a value using scalarization functions. This regret measure,
however, does not give any information on the dynamics of
the multi-objective MAB algorithm as a whole. Multi-objective
MAB algorithms should pullall optimal arms frequently,
therefore we also introduce anunfairness indicator to measure
lack of variance in pulling the optimal arms. This measure
is similar to the risk analysis metric from economy and it is
especially useful in pointing out the weakness of scalarized
multi-objective MAB in discovering and choosing a variety
of optimal arms. An adequate regret definition for the Pareto
MAB algorithm measures the distance between theset of
optimal reward vectors and a suboptimal reward vector. Our
measure is inspired byǫ-dominance as proposed in [4].

Section IV introduces a Pareto UCB1 algorithm that uses
the Pareto dominance relationship to store and identify all
the optimal arms in each iteration. The regret bound for
the multi-objective UCB1 algorithm using Pareto regrets is
logarithmic in the number of plays for a suboptimal arm,
the size of the reward vectors and the number of optimal
arms. Section V proposes two scalarization multi-objective
variants of the UCB1 classical multi-armed bandits [1], [2]: i) a
straightforward generalization of the single-objective UCB1 by
arbitrarily alternate different scalarization-based UCB1s, and
ii) an improved UCB1 that removes scalarization functions
considered not to be useful.



TABLE I. RELATIONS BETWEEN REWARD VECTORS.
relationship notation relationships

µ dominatesν ν ≺ µ ∃j, νj < µj and
∀o, j 6= o, νo ≤ µo

µ weakly dominν ν � µ ∀j, νj ≤ µj

µ is incomp withν ν‖µ ν 6≻ µ andµ 6≻ ν
µ is non-domin byν ν 6≻ µ ν ≺ µ or ν‖µ

In Section VI, we compare runs of the proposed multi-
objective UCB1 algorithms on multi-objective Bernoulli re-
ward distributions, the standard stochastic environment used
to test multi-armed bandits. Section VII concludes the paper.

II. ORDER RELATIONSHIPS FOR REWARD VECTORS

Let’s consider aK-armed bandit,K ≥ 2. In the multi-
objective setting, the expected reward of each banditi is multi-
dimensional,µi = (µ1

i , . . . , µ
D
i ), whereD is a fixed number of

dimensions, or objectives. We consider the general case where
a reward vector can be better than another reward vector in one
dimension, and worse than another reward vector in another
dimension. This means that the objectives might be conflicting.

A. The Pareto partial order

We consider that the reward vectors are ordered using the
partial order on multi-objective spaces [11]. The following
order relationship between two reward vectors,µ and ν, are
considered. A reward vectorµ is considered better than, or
dominating, another reward vectorν, ν ≺ µ, if and only if
there exists at least one dimensionj for which νj < µj ,
and for all other dimensionso we haveνo ≤ µo. We say
that µ is weakly-dominatingν, ν � µ, if and only if for
all dimensionsj, we haveνj ≤ µj . A reward vectorµ is
consideredincomparable with another reward vectorν, ν‖µ,
if and only if there exists at least one dimensionj for which
νj < µj , and there exists another dimensiono, for which
νo > µo. We say thatµ is non-dominated by ν, ν 6≻ µ, if and
only if there exists at least one dimensionj for whichνj < µj .
These Pareto relationships are summarized in Table I.

Let thePareto optimal reward set O∗ be the set of reward
vectors that are non-dominated by any of the reward vectors.
Let thePareto optimal set of arms A∗ be the set of arms whose
reward vectors belong toO∗. Then:

∀µ∗
ℓ ∈ O∗, and ∀µo, we have µ∗

ℓ 6≺ µo

All the Pareto optimal rewards are incomparable:

∀µ∗
ℓ , µ

∗
o ∈ O∗, we have µ∗

ℓ‖µ∗
o

We further assume that it is impossible, from the appli-
cation point of view, to determine a-priori which arm inA∗

is better than another arm fromA∗. Therefore, the reward
vectors in the Pareto optimal reward setO∗ are considered
equally important.

B. Order relationships for scalarization functions

A conventional way to transform a multi-objective environ-
ment into a single-objective environment is to usescalarization
functions. However, since single-objective environments, in
general, results in a single optimum, we need a set of scalar-
ization functions to generate a variety of elements belonging to
the Pareto optimal set. We consider two types of scalarization
functions that weight the values of the reward vector, but
with different properties because of their (non)-linearity. We
consider each set of weights to generate a scalarization
function.

The linear scalarization is the most popular scalarization
function due to its simplicity. It weighs each value of the
reward vector and the result is the sum of these weighted
values. The linear scalarized reward is

f(µi) = ω1 · µ1
i + . . . ωD · µD

i , ∀i
where (w1, . . . , wD) is a set of predefined weights and
∑D

j=1 ω
j = 1. A known problem with linear scalarization is

its incapacity to potentially find all the points in a non-convex
Pareto set.

The Chebyshev scalarizationhas the advantage that in
certain conditions it can find all the points in a non-convex
Pareto set. The Chebyshev transformation was originally de-
signed for minimization problems, but we adapt it for the
maximization goal of multi-armed bandits. TheChebyshev
scalarization reward is

f(µi) = min
1≤j≤D

ωj · (µj
i − zj), ∀i

where z = (z1, . . . , zD) is a reference point that is
dominated by all the optimal reward vectorsµ∗

i . For each
objectivej, this reference point is the minimum of the current
optimal rewards minus a small positive value,ǫj > 0. Then:

zj = min
1≤i≤D

µj
i − ǫj , ∀j (1)

[6] shows that all the points in a Pareto set can be found by
moving the reference pointz.

The optimum reward valueµ∗ is the reward for which the
function f , linear or Chebyshev, attains its maximum value

f(µ∗) =def max
1≤i≤K

f(µi) (2)

We denote the Pareto optimal set of arms identifiable by the
linear scalarization withA∗

L and the Chebyshev scalarization
with A∗

C . The corresponding set of Pareto optimal reward
set is O∗

L for linear scalarization andO∗
C for Chebyshev

scalarization.The set of optimal arms might be different for
the different scalarizations.

C. Comparing the partially ordered reward vector sets

To highlight differences in these scalarizations, we consider
in Figure 1 a set of bi-objective rewards with a non-convex
Pareto optimal reward setO∗. We show by means of an
example thatO∗

L ⊆ O∗.

Example 1: Consider six bi-dimensional reward vectors
from Figure 1 a). Let there be four optimal reward vectors,



Fig. 1. a) Six reward vectors, where four are optimal:µ
∗
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4
. Computing the reward values for b) the linear scalarization, and d) the

Chebyshev scalarization. c) The reference pointz.
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µ∗
1 = (0.55, 0.5), µ∗

2 = (0.53, 0.51), µ∗
3 = (0.52, 0.54)

and µ∗
4 = (0.5, 0.57) in O∗ and two suboptimal reward

vectors,µ5 = (0.51, 0.51) andµ6 = (0.5, 0.5). Note that the
suboptimal rewardµ5 is non-dominated by two optimal reward
vectors fromO∗, µ∗

1 andµ∗
4, but µ5 is dominated byµ∗

2 and
µ∗
3. µ6 is dominated by all the other reward vectors.

Figures 1 b) and d) show the values of the linear and
Chebyshev scalarization functions for different weight sets
(w1, 1 − w1). In Figure 1 b), the optimum reward vectors
for any set of weights areµ∗

1 and µ∗
4 but neverµ∗

2 or µ∗
3.

O∗
L therefore does not includeµ∗

2 and µ∗
3 from the non-

convex Pareto optimal reward setO∗. In Figure 1 c) and d),
we consider Chebyshev scalarization with the reference point
z = (0.495, 0.495) as it allows to discover all the optimal
rewards fromO∗, and thusO∗

C = O∗.

With the Pareto partial order, all the arms inA∗ are
identifiable because of the dominance relationships described
in Table I. For each of the non-selected arms,µ5 andµ6, there
exists at least one arm inA∗ that dominates that arm.�

Scalarized multi-objective Markov Decision Processes.
We now argue that the above observations on the inefficiency
of linear scalarization function are valid for more general
types of reinforcement learning algorithms, like the Markov
Decision Processes (MDPs). Multi-armed bandits is considered
a special case of reinforcement learning with only a single
state. An MDP is defined as a dynamical and uncertain
environment where the states and the actions of an agent
are associated with density functions and reward probabilities
that are explored/exploited, for example, using a reinforcement
learning algorithm. Lizotte et al [5] propose a linear scalarized
multi-objective MDPs with a bi-dimensional reward vector that
iteratively discovers the Pareto front using different sets of
weights. For a convex Pareto front, they show that the entire
Pareto shape can be learned with a set of linear scalarization
functions whose weights can be analytically determined.

However, they do not discuss the behaviour of their al-
gorithm for non-convex Pareto fronts. Let’s reconsider the

previous example. As shown in Figure 1 b), there isno
set of weights for the linear scalarization that can express
the middle optimal rewardsµ∗

2 and µ∗
3. We conclude that

the learning of a non-convex Pareto front is impossible with
linear scalarization. The Chebyshev scalarization functions can
potentially expresses the full Pareto front, however it should
be recognized that this depends on the chosen reference point,
which also needs to be optimized.

A multi-objective MDP that uses Pareto relationships is
presented in Wiering and De Jong [10]. It can learn any
discrete Pareto front but it has a rather complicated and
computational expensive mechanism to update and propagate
the probabilities of the states and falls out of the scope of
the paper. Moreover, it should be noted that it is limited to
deterministic settings, and therefore not applicable to the MO-
MABs we consider here.

III. PERFORMANCE OF MULTI-OBJECTIVEMAB
ALGORITHMS

The goal of multi-objective multi-armed bandits is to
simultaneously minimize the regret in all objectives by fairly
playing all the arms in the Pareto optimal arm set using a
policy π. In this section, we propose three metrics to measure
the performance of multi-objective MABs. ThePareto regret
metric measures the distance between a reward vector and
the Pareto optimal reward set, whereas thescalarized regret
metric measures the distance between the maximum value of
a scalarized function and the scalarized value of an arm. The
unfairness metric is related to the variance in pulling all the
optimal arms.

A. A Pareto regret metric

Intuitively, a regret metric measures how far a suboptimal
reward vectorµi is from being an optimal arm itself. Inspired
by ǫ-dominance technique that measures the distance between
µi and the Pareto optimal reward setO∗, we propose a new
regret metric. Because the considered Pareto optimal reward set
has a discrete number of component rewards, to approximate
the closest distance betweenO∗ andµi, we need to construct a
virtual reward vector that is incomparable withall the reward
vectors fromO∗. By definition, we add toµi a positive value
ǫ in all objectives, resulting in a so called virtual reward vector
νi,ǫ. Thus:

νi,ǫ = µi + ǫ where ∀j νji,ǫ = µj
i + ǫ, and ǫ > 0

The virtual optimal reward for the armi, ν∗i has the minimum
value for ǫ for which νi,ǫ is incomparable to all the rewards
in O∗. Thus,

ν∗i ← min
ǫ→∞

νi,ǫ, for which ∀µ∗
ℓ ∈ O∗, ν∗i ‖µ∗

ℓ

We denote the correspondingǫ for ν∗i with ǫ∗i .

The regret of the armµi is equal to the distance between
the virtual optimal reward vector of the armi, ν∗i , and the
reward vector of the same arm,µi. Thus,

∆i = ν∗i − µi = ǫ∗i (3)

Since by definitionǫ∗i is always positive, this regret is always
positive. Note that the regret of the arms belonging toO∗ is
0 since the virtual reward coincides with the optimal reward
vector itself.



B. A scalarized regret metric

Now we introduce the regret measure that will be used in
combination with the scalarisation functions. Thescalarized
regret for a particular scalarized functionf j and for the arm
i is

∆j
i =

def max
k∈A

f j(µk)− f j(µi) (4)

Thus, the scalarized regret is the difference between the
maximum value for a scalarization function on the set of arms
A and the scalarized value for an armi.

The linear scalarized regret for an armi is

∆j
i =

D
∑

t=1

ωt
j · (µ∗t − µt

i), where f j(µ∗) = max
k∈A

f j(µk)

where f j is a linear scalarization function with the set of
weightsωj = {ω1

j , . . . , ω
D
j }. TheChebyshev scalarized regret

for an armi and a Chebyshev scalarization functionf j is

∆j
i = max

1≤t≤D
ωt
j · (µ∗t − µt

i), where f j(µ∗) = max
k∈A

f j(µk)

It is straightforward to show that the maximum value for
any set of weights in the linear and Chebyshev functions is
one of the Pareto optimal arms. Thus,

∀j ∈ S, ∃! i ∈ A∗ such thatf j(µ∗
i ) = max

k∈A
f j(µk)

with S referring to the set of weights. While this definition
of regret seems natural, it is improper for our goal because it
gathers a collection of independent regrets instead of minimiz-
ing the regret of a multi-objective strategy in all objectives. In
Example 1, we have shown that the scalarization functions do
not always identify all the arms inA∗ as such. Therefore, there
is a measure needed to indicate the exploration of all optimal
arms.

C. Play fairly the optimal arms

We considerT ∗
i (n) the number of times an optimal armi

is pulled, andIE[T ∗(n)] the expected number of times optimal
arms are selected. Theunfairness of a multi-objective multi-
armed bandits algorithm is defined as thevariance of the arms
in A∗,

φ =
1

|A∗| ·
∑

i∈A∗

(T ∗
i (n)− IE[T ∗(n)])2 (5)

For a perfectly fair usage of optimal arms, we have that
φ → 0. When a multi-objective strategy uses only samples a
subset ofA∗, then the variance is large. Note the resemblance
between this measure and the risk metric from economy. In
other words, a well performing multi-objective MAB algorithm
has low risk of unevenly choosing between optimal arms.

Algorithm 1: Pareto UCB1
Play each armi once
n← K; ni ← 1, ∀i
repeat

Find the Pareto setA′ such that∀i ∈ A′, ∀ℓ,

x̄ℓ +

√

2 ln(n 4
√

D|A∗|)
nℓ

6≻ x̄i +

√

2 ln(n 4
√

D|A∗|)
ni

Pull i uniform randomly chosen fromA
n← n+ 1; ni ← ni + 1
Updatex̄i

until stopping condition is met

IV. T HE PARETO UBC1 BANDITS ALGORITHM

The following multi-objective UCB1 instance uses the
Pareto dominance relationships from Table I to order the
reward vectors of arms. Like for the single-objective UCB1,
the index for this policy has two terms: the mean vector, and
the second term related to the size of a one-sided confidence
interval of the average reward according with the Chernoff-
Hoeffding bounds. The pseudo-code for the Pareto UCB1 is
given in Algorithm 1.

As initialization step, each arm is played once. Each
iteration, for each arm, we compute the sum of its mean reward
vector and its associated confidence interval. A Pareto optimal
reward setA′ is calculated from these resulting vectors. Thus,
for all the non-optimal armsℓ 6∈ A′, there exists a Pareto
optimal armi ∈ A′ that dominates the armℓ:

x̄ℓ +

√

2 ln(n 4
√

D|A∗|)
nℓ

6≻ x̄i +

√

2 ln(n 4
√

D|A∗|)
ni

We select uniformly at random an optimal arm fromA and
pull it. Thus, by design, this algorithm is fair in selecting
Pareto optimal arms. After selection, the mean valuex̄i and
the common counters are updated. A possible stopping criteria
is a maximum number of iterations.

In Figure 2, the dynamics of Algorithm 1 is illustrated. A
suboptimal armµ5 that is closer to the Pareto front according
to the Pareto regret metric from Equation 3 is more often
selected than an worse armµ6, but less than the Pareto optimal
arms. The following theorem provides an upper bound for the
Pareto regret of the Pareto UCB1 strategy.

Theorem 1: Let policy Pareto UCB1 from Algorithm 1
be run on aK-armedD-objective bandit problem,K > 1,

Fig. 2. The dynamics of Pareto UCB1.
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Algorithm 2: Scalarized UCB1

Require: The scalarization functionf j = (wj
1, . . . , w

j
m)

Play each arm once
∀j, i, nj ← K; nj

i ← 1;

Pull arm i that maximizesIE[f j(xi)] +
√

2 ln(nj)/nj
i

Updatex̄j
i ; n

j ← nj + 1 ; nj
i ← nj

i + 1;

Algorithm 3: Scalarized multi-objective UCB1

Require: S = (f1, . . . , fS) scalarized functions
Initialize the scalarized UCB1 for allf j

n← S ·K; ni ← S
repeat

Choose uniform randomly a functionf j

Play one time scalarized UCB1 forf j

Updatex̄i; ni ← ni + 1; n← n+ 1
until a stopping condition is met

having arbitrary reward distributionsP1, . . .PK with support
in [0, 1]D. Consider the Pareto regret defined in Equation 3.

The expected Pareto regret of a policyπ after any number
of n plays is at most

∑

i6∈A∗

8 · log(n 4
√

D|A∗|)
∆i

+ (1 +
π2

3
) ·

∑

i6∈A∗

∆i

whereA∗ is the set of Pareto optimal arms.

The expected upper bound of the Pareto regret for Pareto
UCB1 is logarithmic in the number of playsn, the number
of dimensionsD and the number of optimal armsA∗. The
worst-case performance of this algorithm is when the number
of arms K equals the number of optimal arms|A∗|. The
algorithm reduces to the standard UCB1 forD = 1. Then,
in most of the cases,|A∗| ≈ 1. In general, this Pareto UCB1
performs similarly with the standard UCB1 for small number
of objectives and small Pareto optimal sets.

Empirical Pareto UCB1. The need to know apriori the
size of the Pareto optimal set of armsA∗ is inconvenient.
If we consider this unknown, we may replace the second

term of the Pareto UCB1’s index
√

2 ln(n 4
√

D|A∗|)/ni with

a problem independent index
√

2 ln(n 4
√
DK)/ni that upper

bounds this index. This is a standard approach in PAC-learning.
We call this algorithm theempirical Pareto UCB1. In terms
of bounds, this means an increase in the bound magnitude
and decrease in the confidence interval. However, for some
experimental settings, as considered in the next section, the
difference between the two indexes is small and thus does not
really affect the performance.

V. SCALARIZATED MULTI -OBJECTIVEUCB1 BANDITS

The following algorithms are extensions of single-objective
UCB algorithms where the scalarized order relationship from
Section II is considered. The multi-objective UCB1 algorithm
using a set of scalarization functions introduced in Section V-A
is a straightforward generalization of the standard UCB1 where

scalarization functions are alternated uniformly at random.
In Section V-C, a scalarized multi-objective UCB1 algorithm
is described which removes scalarization functions deemed
redundant.

A. The scalarized multi-objective UBC1

This algorithm is a UCB1 algorithm assumes a set of
scalarizated reward vectorsS = (f1, . . . , fS), S ≥ 1, with
different weights. The pseudo-code for a scalarized UCB1 that
uses a scalarization functionf j to reward arms is given in
Algorithm 2. The pseudo-code for scalarizated multi-objective
UCB1 that alternates scalarized UCB1 with different scalar-
ization functions is given in Algorithm 3.

In Algorithm 2, letnj be the number of times the function
f j is pulled, and letnj

i be the number of times the armi
under functionf j is pulled. LetIE[f j(µi)] be the expected
reward of arm i under scalarization functionf j . Given a
scalarization functionf j , pull the arm that maximizes the term

IE[f j(µi)]+
√

2 ln(nj)/nj
i , and update the counters, wherex̄

j
i

is the counter for armi and scalarization functionf j .

To initialize Algorithm 3, each scalarization function from
S for each arm is considered once. Until a stopping criteria
is met, choose a scalarization function fromS uniformly at
random and run the corresponding scalarized UCB1. Update
the counters and the expected value ofx̄i = (x̄1

i , . . . , x̄
D
i ).

Note that each scalarized UCB1 has its own counter, and its
individual expected value for each arm is updated separately.
Therefore, the upper scalarized regret bound is the same as in
[1]. The next proposition shows that the upper bound for the
scalarized regret of the scalarized multi-objective UCB1 is the
sum of all upper bounds of the scalarized UCB1s.

Proposition 1: Let policy scalarized multi-objective UCB1
from Algorithm 3 be run on aK-armed bandit problem
having arbitrary reward distributionsP1, . . .PK with sup-
port in [0, 1]D. Consider a set of scalarization functions
S = (f1, . . . , fS) and the corresponding scalarized regret∆j

i
described in Equation 4.

We consider that the expected number of plays for all
the uniformly chosen functions isIE[nj ] = n/S. The ex-
pected scalarized regret of strategyA after any number of
n =

∑S
j=1 n

j plays is equal to the sum of expected regret of
each scalarization UCB1f j and is at most

S
∑

j=1

∑

i6∈A∗

8 · ln(n/S)
∆j

i

+ (1 +
π2

3
) ·

S
∑

j=1

∑

i6∈A∗

∆j
i

Proof: The proof follows immediately if we consider
that the scalarized multi-objective UCB1 is a uniform random
alternation of scalarized UCB1.

The leading constant of the above proposition is dominated
by the term

∑S
j=1

∑

i6∈A∗
8·ln(n/S)

∆j

i

. Thus, the scalarized multi-
objective UCB1 should be runS times longer than a single-
objective UCB1, the bound in Proposition 1 increasing with
the number of scalarization functions inS.



For a general Pareto optimal reward set, it is not known
which as well as how many function instances should be used,
therefore a uniform distribution of sets of weights is used.

B. Discussion on the scalarized multi-objective UBC1

In case we can assume the Pareto front is convex and
bounded we can use Lizotte et al [5]’s method, and obtain the
minimum set of weights needed to generate the entire Pareto
front. Then, the scalarized multi-objective UCB1 is fair inse-
lecting the Pareto optimal arms. However, [5]’s approach does
not allow stochastic reward vectors, an important assumption
in MAB. Furthermore, it has computational problems in highly
dimensional reward spaces with irregular shapes that require a
large number of weight sets.

Non-convex Pareto optimal sets.In a general setup, where
the shape of the Pareto optimal sets is unknown, several sets
of weights should be tried out in a scalarized multi-objective
UCB1.

Consider linear the scalarization function. As we have
showed in Example 1, not all the reward vectors fromany
Pareto optimal reward set are reachable with this scalarization.
In this case, there will be always a positive regret betweenO∗

andO∗
L. The unfairness of this algorithm is increasing with

the number of plays because an arm fromA∗
L identified as

optimal is increasingly pulled whereas other optimal arms that
are not recognized as optimal fromA∗ are scarcely pulled.

Consider the Chebyshev scalarization function. It is possi-
ble to obtain all the solutions inA∗ by varying the reference
points, but there is no indication on how to search for these
sets of reference points and we need to search for these points
while minimizing the unfairness regret. If there are more Pareto
optimal arms identified with the Chebyshev multi-objective
UCB1 than with the linear multi-objective UCB1, then the
former UCB1 has a lower unfairness than its linear counter
part.

C. Improving scalarized multi-objective UCB1

A solution to the above described problem of scalarized
multi-objective UCB1 is to design an algorithm that keeps only
a minimal set with the best performing scalarized UCB1, and
deletes the redundant scalarized UCB1s. We call the scalarized
UCB1 which pullsall Pareto optimal arms often and evenly a
useful UCB1. Thus, a scalarized UCB1 with low unfairness is
considered useful. A scalarized UCB1 is removed if the Pareto
optimal arms are pulled seldom or unevenly and when a certain
confidence level is attained.

The pseudo-code for the improved scalarized multi-
objective UCB1 algorithm is given in Algorithm 4. The horizon
T is assumed to be known and the starting scalarization set
is B0 ← S. Each scalarization functionf j is associated
with a scalarized UCB1 instance from Algorithm 2. Each
scalarized UCB1 instance is run for a fix number of times
nm. The improved scalarized multi-objective UCB1 algorithm
is run m rounds, in each round the number of times each
scalarized UCB1 is run,nm, increases. After running all the
scalarized UCB1 instances, a Pareto optimal set of arms for
the roundm, A∗

m, is computed from the mean reward vectors
x̄i over all the scalarized UCB1 instances. For each scalarized

Algorithm 4: Improved scalarized multi-objective UCB1
Require: S scalarized functions,K arms, andT horizon

Set ∆̃0 ← 1, andB0 ← S
for all roundsm = 0, 1, . . . , ⌊ 12 log2 T

e ⌋ do
if |Bm| > 1 then

for all f j ∈ Bm do
Play the scalarized UCB1 fornm ← ⌈ 2·log (T ∆̃2

m)

∆̃2
m

⌉
times
For each armi, updatex̄i

end for
else

Chose the only function inBm until T is reached
end if
Find the Pareto optimal reward set of roundm, A∗

m,
using the mean reward vectorsx̄i

for all f j ∈ Bm do

if minℓ∈Bm
φℓ
m +

√

log (T ∆̃2
m)

2nm
< φj

m −
√

log (T ∆̃2
m)

2nm

then
Deletef j

end if
end for
UpdateBm+1 to the remaining scalarizations
∆̃m+1 ← ∆̃m/2

end for

UCB1, we compute its unfairnessφj
m in the current round

m. A scalarization function is deleted if its unfairness minus
the confidence interval is larger than the smallest unfairness
plus the confidence interval. The process is repeated after
updating the set of remaining scalarizations,Bm+1, and the
factor related with the confidence interval∆̃m+1.

Note that the proposed algorithm is an adapted version
of the improved UCB algorithm from [2] but here scalarized
UCB1 instances are considered for elimination instead of arms.
In Algorithm 4, the quality indicator is the unfairness and thus
there is a minimization MAB problem. To give an intuition on
the behaviour of this improved UCB algorithm, we consider
the reward vectors from Example 1. This algorithm prefers
the set of weights for which the Pareto optimal arms have
about the same value. In Figure 1 b) and d), the set of weights
with low unfairness corresponds with the intersection between
the upper lines. Thus, for the linear scalarization, the setof
weights situated at the intersection between the two upper lines
is≈ (0.6, 0.4). For the Chebyshev scalarization, there are three
sets of weights with low unfairness corresponding to the three
intersection points.

Proving the upper bound of this algorithm is beyond the
scope of this paper, but we hint the reader to [7]. Algorithm 4
shows that there are techniques that can ameliorate the perfor-
mance of the scalarized multi-objective MAB algorithms.

VI. EXPERIMENTS

The scope of this section is to experimentally com-
pare the behaviour of the three instances of multi-objective
UCB1: 1) linear multi-objective UCB1 (lin), 2) Chebyshev
multi-objective UCB1 (Cheb), and 3) empirical Pareto UCB1



TABLE II. T HE USAGE OF OPTIMAL ARMS IN TWO MULTI-OBJECTIVEBERNOULLI DISTRIBUTIONS
A. The bi-objective Bernoulli distribution withK = 20

MO-UCB1 Percent played arm(s)
A∗ µ∗

1 µ∗
2 µ∗

3 µ∗
4

Pareto 71 ± 7 18 ± 2 17 ± 2 18 ± 2 18 ± 2
Cheb 53 ± 8 14 ± 2 7 ± 1 8 ± 1 23 ± 3
lin 46 ± 7 11 ± 2 8 ± 1 10 ± 1 17 ± 2

B. The five-objective Bernoulli distribution withK = 30
MO-UCB1 Percent played arm(s)

A∗ µ∗
1 µ∗

2 µ∗
3 µ∗

4 µ∗
5 µ∗

6 µ∗
7

Pareto 64 ± 6 9 ± 1 9 ± 1 9 ± 1 9 ± 1 9 ± 1 9 ± 1 9 ± 1
Cheb 54 ± 8 13 ± 2 7 ± 1 4 ± 1 5 ± 1 8 ± 1 6 ± 1 11 ± 2
lin 47 ± 7 9 ± 1 6 ± 1 5 ± 1 6 ± 1 8 ± 1 6 ± 1 8 ± 1

Fig. 3. The performance of the three multi-objective UCB1 on (top) the
bi-objective Bernoulli distribution with twenty arms and|A∗| = 4 and on
(bottom) five objective Bernoulli distribution with thirty arms and|A∗| = 7.
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(Pareto). We have performed experiments also with the canon-
ical Pareto UCB1 but the results were similar with the results
of the empirical Pareto UCB1 because the values of the
two indices are similar. IfK = 20 and |A∗| = 4, then
4
√
DK = 2.51 and 4

√

D|A∗| = 1.68. We measure: a) the
percentage of time one of the optimal arms is used, b) the
percentage of time each of the optimal arms is pulled, c) the
regret, and d) the unfairness in using the optimal arms.

Each algorithm is run100 times. We consider11 weight
sets for the linear and Chebyshev scalarization functions,
{(1, 0), (0.9, 0.1), . . . , (0.1, 0.9), (0, 1)}. For the Chebyshev
scalarization, we uniformly at random generate the parameters
ǫj ∝ [0, 0.1] from Equation 1 for the reference pointz.

A. Adding arms to Example 1. For the first simulation
we have added another14 arms in Example 1, resulting in20
armed bandits. The added arms are dominated by all the arms
in A∗. We takeµ7 = . . . = µ20 = (0.48, 0.48), leaving the

Pareto optimal reward set unchanged.

Figure 3 a), b) and c) and Table II.A show good perfor-
mance for Pareto UCB1, i.e. high and fair usage of the optimal
arms and low regret, as compared with the scalarized multi-
objective UCB1 algorithms. The worst multi-objective UCB1
algorithm, with the highest regret and lowest usage of the
optimal arms, is the linear multi-objective UCB1. Chebyshev
multi-objective UCB1 has a better performance than its linear
counter part and worse than Pareto UCB1.

B. Adding dimensions to Example 1.In order to test the
algorithms on a more complex multi-objective environment,
we add three dimensions for each reward vector in the previous
bi-objective environment and10 suboptimal arms. The Pareto
optimal set of armsA∗ contains now7 arms.

Figure 3 d), e) and f) and Table II.B show a similar
performance of the three multi-objective UCB1 algorithms
on the five objective Bernoulli distribution. Pareto UCB1 is
again the best algorithm, the linear multi-objective UCB1 is
the worst algorithm, and Chebyshev multi-objective UCB1 has
an intermediate performance.

Discussion.Let’s compare the performance of the multi-
objective UCB1 algorithms on the two multi-objective
Bernoulli distributions. The percentage of time an optimalarm
is played with one of the scalarized multi-objective UCB1 is
about the same, because the proportion of optimal arms in
the two distributions is about the same. The percentage of
playing an optimal arm with Pareto UCB1 decreases with the
increased number of elements in the Pareto optimal reward
set. ForK = 30, the Pareto regret is larger and the unfairness
is smaller than forK = 20 indicating a shortage in samples
for the larger multi-objective environment. Furthermore,Pareto
UCB1 is more fair than both scalarization multi-objective
UCB1 algorithms. In conclusion, Pareto UCB1 performs the
best and is the most robust from the three tested algorithms.

VII. C ONCLUSION

We introduced multi-objective multi-armed bandits algo-
rithms with multiple, possibly conflicting, reward values for
an arm. We considered partial order relationships associated
with reward vectors as well as linear and Chebyshev scalar-
ization. By means of an example, we explain the difference
between these approaches and we show that the discussion is
valid in a more general multi-objective reinforcement learning
setting. Three regret metrics that measure the performance
of multi-objective MAB are introduced. The Pareto regret
metric measures the distance between a reward vector and
the Pareto optimal reward set, whereas a scalarized regret
metric measures the distance to a single optimal arm. The
unfairness, an extra performance measure complementary to
the scalarized regret metric, measures the variance in the
usage ofall the optimal arms. Instances of multi-objective
UCB1 algorithms extending the standard UCB1 are designed
using the partially ordered reward vector sets. We showed
that even though the straightforward scalarized multi-objective



UCB1 is not efficient, there are variants that can improve
its performance. We have proven logarithmic upper regret
bounds for the Pareto UCB1 and compared the proposed multi-
objective UCB1 algorithms on two multi-objective Bernoulli
reward distributions. To conclude, our Pareto UCB1 algorithm
is the most suited to explore/exploit the multi-arm banditswith
reward vectors.
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APPENDIX

This proof of Theorem 1 follows the corresponding proof
from [1]. Let Xi,1,. . .,Xi,n be randomD-dimensional vari-
ables generated for armi with common range[0, 1]D. The
expected reward vector for the armi after n pulls is

X̄i,n = 1/n ·
n
∑

t=1

Xi,t ⇒ ∀j, X̄j
i,n = 1/n ·

n
∑

t=1

Xj
i,t

Chernoff-Hoeffding bound. We use a straightforward gen-
eralization of the standard Chernoff-Hoeffding bound for
D dimensional spaces. Consider that∀j, 1 ≤ j ≤ D,
IE[Xj

i,t | X
j
i,1, . . . ,X

j
i,t−1] = µj

i . Recall, the non-dominated
relationship from Table I. There,̄Xi,n 6≺ µi + a if there exists
at least a dimensionj for which X̄j

i,n > µj
i + a. Translated in

Chernoff-Hoeffding bound, using union bound, for alla ≥ 0

IP{
(

X̄i,n 6≺ µi + a
)

} = (6)

IP{
(

X̄1
i,n > µ1

i + a
)

∨ . . . ∨
(

X̄D
i,n > µD

i + a
)

} ≤ De−2na2

Following the same line of reasoning

IP{
(

X̄1
i,n < µ1

i − a
)

∨ . . . ∨
(

X̄D
i,n < µD

i − a
)

} ≤ De−2na2

(7)

Let ℓ > 0 an arbitrary number. We denote withct,s =
√

2 · ln (t 4
√

D|A∗|)/s. LetA∗ be the set of optimal arms. We
now upper boundTi(n) on any sequence of plays by bounding
for eacht ≥ 1 the indicator(It = i). We have(It = i) = 1 if
arm i is played at timet and(It = i) = 0 otherwise. Here, we
consider that an armi can be selected if it is non-dominated
by all the optimal arms fromA∗.

Ti(n) = 1+
n
∑

t=K+1

{It = i} ≤ ℓ+
n
∑

t=K+1

{It = i, Ti(t−1) ≥ ℓ}

6≻ X̄i,Ti(t−1) + ct−1,Ti(t−1), Ti(t− 1) ≤ ℓ}

≤ ℓ+
n
∑

t=K+1

|A∗|
∑

h=1

{X̄∗
h,T∗

h
(t−1) + ct−1,T∗

h
(t−1)

6≻ X̄i,Ti(t−1) + ct−1,Ti(t−1)} ≤ s∗h ← T ∗
h (t− 1)

si ← Ti(t− 1)

ℓ+

∞
∑

t=1

t−1
∑

s=1

t−1
∑

si=ℓ

|A∗|
∑

h=1

{X̄∗
h,s∗

h
+ ct−1,s∗

h
6≻ X̄i,si + ct−1,si} (8)

From Algorithm 1, we have that̄X∗
h,s∗

h
+ ct,s∗

h
6≻ X̄i,si +

ct,si which implies that at least one of the conditions hold

X̄
∗
h,s∗

h
6≻ µ∗

h−ct,s∗h ; X̄i,si 6≺ µi+ct,si ; µ
∗
h 6≻ µi+2·ct,si (9)

We bound the probability of events from Inequality 9 using
the straightforward generalized Chernoff-Hoeffding bound to
D dimensional reward vectors from Inequalities 6 and 7

IP{X̄i,si 6≺ µi + ct,s} ≤
D

D
· t

−4

|A∗| =
t−4

|A∗|

IP{X̄∗
s∗
h
6≻ µ∗

h − ct,s∗
h
} ≤ t−4

|A∗|

For si ≥ 8·ln(n 4
√

D|A∗|)
∆2

i

, we have that

ν∗i −µi−2·ct,si = ν∗i −µi−2·

√

2 · ln(n 4
√

D|A∗|)
si

≥ ν∗i −µi−∆i

Thus, we takeℓ = ⌈ 8·ln(n
4
√

D|A∗|)
∆2

i

⌉.
Then,

IE[Ti(n)] ≤ ⌈
8 · ln(n 4

√

D|A∗|)
∆2

i

⌉+
∞
∑

t=1

t−1
∑

s=1

∑

si=⌈ 8·ln (n 4
√

D|A∗|)

∆2
i

⌉

|A∗|
∑

h=1

(IP{X̄∗
h,s∗

h
6≻ µ∗

h − ct,s∗
h
}+ IP{X̄i,si 6≺ µi + ct,si}) ≤

⌈8 · ln (n
4
√

D|A∗|)
∆2

i

⌉+ 2 ·
∞
∑

t=1

t2 · |A∗| t
−4

|A∗|
Approximating the last term with the Riemann zeta function
ζ(2) =

∑∞
t=1 t

−2 ≈ π2

6 we obtain the bound from the theorem.
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