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Abstract. Local search based algorithms are a general and computational ef-

ficient metaheuristic. Restarting strategies are used in order to not be stuck in

a local optimum. Iterated local search restarts the local search using perturba-

tor operators, and the variable neighbourhood search alternates local search with

various neighbourhoods. These two popular restarting techniques, or operators,

evolve independently and are disconnected. We propose a metaheuristic frame-

work, we call it multi-operator metaheuristics, which allows the alternative or

simultaneously usage of the two restarting methods.

Tuning the parameters, i.e. the neighbourhood size and the perturbation rate, is

essential for the performance of metaheuristics. We automatically adapt the pa-

rameters for the two restarting operators using variants of adaptive pursuit for the

multi-operators metaheuristic algorithms.

We experimentally study the performance of several instances of the new class

of metaheuristics on the quadratic assignment problem (QAP) instances, a well-

known and difficult combinatorial optimization problem.

1 Introduction

Metaheuristics (Talbi, 2009; Hoos and Stutzle, 2005) is a general, successful and pow-

erful search method for difficult optimization problems. Local search (LS) based meta-

heuristics starts from an initial solution and iteratively generates new solutions using a

neighbourhood strategy. Each step, a solution that improves over the existing best-so-

far solution is chosen. The local search stops when there is no possible improvement,

i.e. in a local optimum. Because LS can be stuck in local optima, some advanced local

search algorithms consist in restarting the LS.

We consider two basic techniques to restart the local search. Variable neighbour-

hood search (VNS) (Mladenovic and Hansen, 1997; Hansen et al., 2008) is a variant of

local search that changes the neighbourhood function to escape local optimum. A set

of neighbourhood functions are alternated either in a predefined or uniform randomly

order.

Multi-restart local search (MLS) restarts local search multiple times from uniform

randomly chosen initial solutions in order to find different basin of attractions in differ-

ent part of the search space. There are certain limitations in the design of multi-restart

LS because it is basically random sampling in the space of local optima, it does not

scale up for large number of local optima.
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To improve upon multi-restart LS’s performance, stochastic local search aims to es-

cape from local optimal sets by stochastic perturbation operators that preserve partial

information of the perturbed solutions. In case of iterated LS (ILS) (Hoos and Stut-

zle, 2005), the perturbation operator is mutation. It has been pointed out (Drugan and

Thierens, 2010; Drugan and Thierens, 2012) that the experimental performance is sen-

sitive to the choice of the mutation’ parameters.

The two different techniques restart the local search using two different parameters:

i) the neighbourhood functions for VNS, and ii) the mutation rate for the iterated LS.

Section 2 gives some background on metaheuristic algorithms and we show a detailed

example of metaheuristics for the quadratic assignment problem (QAP).

Quadratic assignment problem (QAP). Intuitively, QAPs can be described as the

optimal assignment of a number of facilities to a number of locations. QAPs are NP-

hard combinatorial optimization problems that model many real-world problems (i.e.,

scheduling, vehicle routing). Let us consider N facilities, a set Π(N) of all permuta-

tions of {1, . . . , N} and the N×N distance matrix A = (aij), where aij is the distance

between location i and location j. We assume a flow matrix B = (bij) where bij repre-

sents the flow from facility i to facility j. The goal is to minimize the cost function

c(π) =
N∑

i=1

N∑

j=1

aij · bπ(i)π(j) (1)

where π(·) is a permutation. It takes quadratic time to evaluate this function.

The main contributions. In general, certain metaheuristic algorithm instances are

preferred to solve specific problem instances. For example, iterated local search is com-

monly used to optimize QAP instances, but seldom used with variable size neighbour-

hood. There is no study to indicate when and for which instances one of the two methods

is superior and, even more, if the alternative or simultaneously use of the two restarting

methods is beneficial or not.

We propose a class of metaheuristic that allows the use of both operators to restart

the search: i) variable neighbourhood search, and ii) stochastic perturbator operators.

We call this the Multi-operator MetaHeuristics (MMH) problem and we introduce it in

Section 3.

We assume that these two restarting techniques are complementary but with the

same goal of finding better local optimum. The stochastic perturbator operators exploit

the structure of the search space, and thus they can be considered the diversification

technique of LS. The variable neighbourhood search is the intensification technique for

the MMH problem because it explores the search space by changing the size of the

neighbourhood.

The multi-operator metaheuristic problem has several parameters to tune. The pa-

rameters of the variable neighbourhood search are the size of the neighbourhoods, and

we need a strategy to decide when and how to alternate the neighbours. The iterated

local search has similar parameters that are the size of the stochastic perturbator oper-

ator(s). Again, we need a strategy to decide which mutation rate to use. In addition, an

adaptive multi-operator metaheuristic algorithm needs a strategy to decide when and

how to use each restarting method.
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Tuning the parameters, and in particular tuning parameters of the restarting strate-

gies for metaheuristics, is a complex process that is preferable to carry out automati-

cally. Pursuit allocation strategies (AP) (Thierens, 2005) are on-line operator selection

algorithms that adapt a selection probability distribution such that the operator with the

maximal estimated reward is often pursued. The second contribution of this paper is

the generalization of the adaptive pursuit algorithm to adapt more than one parameter,

e.g. the size of the neighbourhood and the mutation step. We call this multi-operator

adaptive pursuit and introduce it in Section 4. We assume that the two parameters are

correlated and their alternatively or simultaneously usage helps the exploration of the

search space. Although we apply this type of algorithms on multi-restart adaptive meta-

heuristics, the scope of the multi-operator adaptive pursuit is broader. For example, it

could be used to simultaneously adapt the mutation and recombination operators of

evolutionary algorithms, or any other set of operators of an evolutionary algorithm.

In Section 5, we show preliminary experimental results of the proposed algorithms

on several instances of the quadratic assignment problem (QAP) (Loiola et al., 2007;

Drugan, 2014). Section 6 concludes the paper.

2 Metaheuristics: background

In this section, we present background knowledge on two, up to date, independent meta-

heuristic algorithms. Iterated Local search (ILS) (Stützle, 2006) is a very popular local

search based metaheuristic because of its simplicity and the ease in usage. Variable

Neighbourhood search (VNS) (Mladenovic and Hansen, 1997) is one of the first meta-

heuristic popular in solving specific type of problems like the min-max combinatorial

optimization problems. We show an effective implementation of local search for QAP

instances, which is a permutation problem.

The common part of the two metaheuristics is the local search function. Consider

that local search as a combination of: i) a neighbourhood function, and ii) a neighbour-

hood exploration strategy, or an improvement strategy.

The neighbourhood function, N , generates solutions in the neighbourhood of a

given solution s. N (s) has as input a solution s and returns the set of neighbours for

that solution. Thus, N : S ← P(S) is a function that maps the solution space S to sets

of solutionsP(S). The neighbourhood function depends on the problem (e.g., quadratic

assignment problem) is applied on.

A suitable neighbourhood function for QAPs is the 2-exchange swapping operator

that swaps two different facilities. This operator is attractive because of its linear time to

compute the difference in the cost function with the condition that the flow and distance

matrices are symmetrical.

The size of a neighbourhood increases quadratically with the number of facilities.

This means that for a 2-exchange swapping operator, there are
(
N

2

)
neighbours for a

solution, and for a m-exchange swapping operator, there are
(
N

m

)
for a single solution.

We call this the m-th neighbourhood exchange rate.

The neighbourhood exploration strategy, I, decides when to stop the expansion

of a neighbourhoodN (s). We consider I(s,N ) a tuple of solutions and neighbourhood
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t← 0 ;

s′ ← GenerateInitialSolution ;

s(0) ← LocalSearch(s′) ;

while the stopping criteria is NOT met do

s′ ← Perturbation(s(t)) ;

s′′ ← LocalSearch(s′) ;

if s′′ is an improvement over s(t) then s(t+1)
← s′′ ;

t← t+ 1
end

return The local optimum solution s(t)

Algorithm 1: Iterated local search (ILS)

functions. There are mainly two neighbourhood exploration techniques (Hansen and

Mladenovic, 2006): i) the first improvement, and ii) the best improvement. The best

improvement explores all the individuals in the neighbourhood of a solution and selects

the best solution that improves over the initial solution of a neighbourhood. The first

improvement stops when the first improvement to the initial solution is found.

Note that the best improvement strategy does not depend on the problem because

the entire neighbourhood is expanded. The first improvement strategy depends on the

definition of the improvement (Drugan and Thierens, 2012).

For the QAP problems, which is a minimization problem, a solution s is considered

better than another solution s′ iff c(s) < c(s′). The cost function to optimize is c(·),
where c : S ← R, and S is the solution space and R is the real valued space.

Furthermore, for large neighbourhoods, the first improvement strategies are more

efficient than the best improvement strategies which will spend considerable amount

of times in the neighbourhood of the first, suboptimal solutions. Also experimentally,

the first improvement based metaheuristics are acknowledged to outperform the best

improvement metaheuristics for some combinatorial optimization problems (Hansen

and Mladenovic, 2006; Drugan and Thierens, 2012).

2.1 Iterated local search (ILS)

Iterator local search (Stützle, 2006) restarts local search from solutions generated with

perturbator operators, like the mutation operator, in order to escape the local optimum.

The neighbourhood function, N , is assumed to be fixed, e.g. for the QAP instances is

a 2-exchange operator. The pseudo-code for iterated local search is presented in Algo-

rithm 1.

The ILS algorithm starts with a uniform randomly generated solution s(0). A lo-

cal search function is called on this randomly generated solution, LocalSearch(s(0)).
With a standard ILS algorithm, this is the only local search call started from a uniform

randomly generated solution. Until a stopping criteria is met, we perform the following

loop which has a counter t. A new solution s′ is generated from the current local opti-

mum solution s(t) using a perturbator operator. We assume that the generated solution

is a sub-optimal solution. The local search is restarted from the new solution and the
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returned solution s′′ replace the current local optimum s(t) iff it is better than s(t). The

algorithm returns the best found so far local optimum.

The perturbator operator. Like the neighbourhood function, the perturbator op-

erator depends on the problem instance. In permutation problems like QAPs, the mu-

tation operator exchanges facilities between different positions. The m-exchange mu-

tation uniform randomly selects m distinct pairs of positions which are sequentially

exchanged.

We assume a mutation exchange rate that is larger than the neighbourhood exchange

rate. When LS uses the 2-exchange operator to generate a neighbourhood, the mutation

operator should exchange at least 3 facilities to escape from the region of attraction of

a local optimum.

In practice, this mutation operator is often tuned. A small m could mean that the

local search cannot escape the basin of attraction. A large m means basically random

sampling in the search space and then the structure of the search space cannot be ex-

ploited. The optimal value for m depends on the landscape of the search space (Drugan

and Thierens, 2010), i.e. the size of the basin of attractions.

The stopping criterion of the iterated LS is chosen to fairly compare its perfor-

mance with the multi-restart LS. The search in the iterated LS is halted when it reaches

the same number of swaps as the multi-restart LS. The distance between two solutions is

defined as the minimum number of exchanges necessary to obtain one solution from an-

other. The distance between a solution and its m-exchange solution is m− 1. Counting

the number of swaps is equivalent with counting the number of function evaluations.

The acceptance criteria. The solution returned by local search s′′ is accepted, iff

it improves the current local optimum solution, s(t). Thus, if a solution is accepted,

then s(t) ← s′′. Recall that for the QAP instances, a solution s′′ is better than s(t) iff

c(s′′) < c(s(t)).

2.2 Variable neighbourhood search (VNS)

VNS (Hansen et al., 2008) is a metaheuristic that systematically change its neighbour-

hood function in order to escape from the current local optimal solution. A VNS algo-

rithm considers that two neighbourhood functions started from the same solution can

have different local optimal solutions. The global optimal solution is considered the

best local optimal solution of all neighbourhood functions.

Local search. The definition of local search for VNS generalizes the previous defi-

nition of local search from Section 2.1 because it uses a set of neighbourhood functions

that are alternated during a local search run. The pseudo-code for the local search algo-

rithm is given in Algorithm 2.

The input for the local search requires an initial solution s and a set of P neighbour-

hood functions N = (N1, . . . ,NP ). For the local search function from Section 2.1,

we have that the set of neighbourhood functions contains only one neighbourhood

functions. We use a counter t for the number of neighbourhood exploration functions.

Until an improvement is still possible, we select a neighbourhood function, N (t) ∈
(N1, . . . ,NP ), from the set of neighbourhoods in order to explore the corresponding
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t← 0 ;

while An improvement is possible do

N
(t)
← SelectNeighbourhood(N1, . . . ,NP ) ;

s′ ← I(s(t),N (t)) ;

if s′ is an improvement over s(t) then s(t) ← s′ ;

t← t+ 1
end

return The local optimum solution s(t)

Algorithm 2: Local search LS(s, (N1, . . . ,NP ))

neighbourhood of the current solution s(t). If the resulting solution s′ is an improvement

over s(t), the current solution is replaced by s′ and the counter t is updated.

SelectNeighbourhood. There are various techniques to alternate the neighbour-

hood functions (Hansen et al., 2008). The most popular VNS variant is the variable

neighbourhood descend that deterministically changes the size of the neighbourhood

and performs a local search with all neighbourhood functions. The resulting local op-

timum is the optimum for all the neighbourhood functions. The reduced VNS changes

uniform randomly the neighbourhood functions each time the exploration neighbour-

hood function is called. The skewed VNS variant resemble, in some extend, the multi-

restart LS because it explores regions that are far from the initial solution by generating

random restarting solutions.

3 Multi - operator metaheuristics

In this section, we propose a class of metaheuristic algorithms that use two (possible

more) schemes that restart the local search. This algorithm is a combination of two

metaheuristics, i.e. the iterated local search and the variable neighbourhood search. ILS

and VNS have in common the local search function call, but have different restarting

strategies. The two restarting strategies can be used simultaneously or alternatively. If

the two strategies are used alternatively, another strategy to decide the restarting tech-

nique at a time step is needed.

This hybrid types of metaheuristics are motivated by the QAP problems. For the

QAP using a neighborhood based on the exchange operator, the cost of exploring local

search is quadratic with the size of the neighbourhood. Thus, it is computational ineffi-

cient to use neighbourhood functions of large size like required by VNS algorithms. The

computational cost of the mutation operator, however, does not change much with the

exchange rate. This unbalance between the computational cost of the two techniques

for the QAP problem makes the study of the alternation between the two techniques

relevant for this class of problems.

3.1 A baseline algorithm

In this setting both restarting strategies can be used simultaneously. The pseudo-code

for this algorithm is given in Algorithm 3.
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At the initialization, a solution s′ is generated uniform randomly with GenerateIni-

tialSolution. The local search function LocalSearch is initialized with the initial so-

lution s′ and with the set of neighbourhood strategies (N1, . . . ,NP ). The solution re-

turned by local search is an initial local optimum s(0).
Each iteration, until a stopping criteria is met, a new restarting solution s′ is pro-

posed with a perturbator operator over the current local optimum solution s(t). The local

search is restarted from this newly generated solution s′ and using the set of neigh-

bourhood functions N . The new local optimum s(t+1) improves or it is equal with the

current local optimum s(t). The counter of iterations is updated t← t+ 1.

Remark 3.1. We assume here a small number of neighbourhoods in the neighbour-

hood setN . Then, the local optimum resulted from the local search function is probable

not the global optimum and the search needs to be restarted from another region of the

search space.

Remark 3.2. The m-exchange rate of the mutation operator needs to be larger than

the largest neighbourhood from the neighbourhood set in order to escape the basin of

attraction of the current local optimum. A smaller m-exchange rate still make sense with

the first improvement strategy where the search is stopped at the first improvement.

Remark 3.3. If the perturbator operator is a uniform random generator, then we

have a skewed VNS because the local search is uniform randomly restarted in the search

space. If there is only one neighbourhood function in the neighbourhood set, then we

have a standard ILS search like in Algorithm 1.

3.2 Selecting one restarting strategy

The baseline algorithm can be quite computational demanding especially for the QAP

problem where the size of the neighbourhoods increase quadratically. We propose a

variant of the multi-restart strategies metaheuristics where the restarting techniques are

alternated rather then simultaneously used.

At the initialization, an uniform random solution is generated s′ and a neighbour-

hood strategy is uniform randomly selectedN (0). The local search LocalSearch(s′,N (0))
returns the first local optimum.

Each iteration, until a stopping criteria is met, a restarting strategy is chosen using a

function SelectRestartStategy. This strategy can be simply a uniform generator, and

then the two restart strategies are uniform randomly selected.

t← 0 ;

s′ ← GenerateInitialSolution ;

s(0) ← LocalSearch(s′, (N1, . . . ,NP )) ;

while The stopping criteria is NOT met do

s′ ← Perturbation(s(t)) ;

s(t+1)
← LocalSearch(s′, (N1, . . . ,NP )) ;

t← t+ 1
end

return The local optimum solution s(t)

Algorithm 3: Multi - operator MetaHeuristics (MMH)
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t← 0 ;

s′ ← GenerateInitialSolution ;

N
(0)
← SelectInitialNeighbourhood(N1, . . . ,NP ) ;

s(0) ← LocalSearch(s′,N (0)) ;

while the stopping criteria is NOT met do

if SelectRestartStategy is mutation then

s′ ← Perturbation(s(t)) ;

s(t+1)
← LocalSearch(s′,N1)

else

N
(t)
← SelectNeighbourhood(N1, . . . ,NP ) ;

s(t+1)
← LocalSearch(s(t),N (t))

end

t← t+ 1
end

return The local optimum solution s(t)

Algorithm 4: Alternating operators MetaHeuristics (AMH)

If the selected strategy is the mutation operator, then a (probable suboptimal) solu-

tion is generated with the perturbator function in order to restart local search. Like in

ILS, the local search will now use a small neighbourhood, where we assume that N1

is the smallest neighbourhood from the set N . If the variable neighbourhood search is

selected then only the neighbourhood is selected with SelectNeighbourhood and the

local search is restarted from the current local optimal solution s(t).
Remark 3.4. If only one of the restarting strategies is used, this algorithm is a

standard ILS or a standard VNS, after case.

3.3 Setting-up the parameters

The two restart strategies have two operators whose parameters need to be set: i) the

mutation operator, and ii) the set of neighbourhood functions. For each operator, we

consider a fixed set of parameters.

The set of mutation parameters. For the mutation operator, we consider K param-

eters, whereM = (M1, . . . ,MK). A mutation operator that uniform randomly select

each parameter from the setM is shown to outperform the ILS algorithms that use a

mutation operator with a single parameter fromM.

For the QAP instances, we consider each mutation exchange rate to be a mutation

parameter.

Adaptive operator selection. We correlate the usage of a specific mutation oper-

ator with the improvement resulted by applying this mutation operator on the current

solution. The adaptive pursuit (AP) strategy (Thierens, 2005) is often used for adaptive

operator selection. The mutation operator for which the restarted local search improves

the most the current solution, will be pursuit often.

The set of neighbourhood function. We assume a fixed set of P neighbourhood

functions, N = (N1, . . . ,NP ). The problem of selecting one neighbourhood function

from a set of neighbourhood functions is similar to selecting a perturbator operator from
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a set of perturbator operators. Thus, we could uniform randomly select these operators

or we could adaptively select the neighbourhoods that improve the most the current

solution.

Remark 3.5. In general, in Evolutionary Computation, the parameters of different

operators are selected independently. For our problem, the parameters from the muta-

tion set are independently selected from the parameters of the neighbourhood set.

In the next section, we propose a new adaptive operator selection algorithm that

consider that the performance of the two operators is correlated and thus that their

selection mechanisms should be correlated.

4 Adaptive Multi-operator MetaHeuristics

In this section, we consider an adaptive version of the multi-operator metaheuristics

that includes an extension of the adaptive pursuit strategy (Thierens, 2005; Drugan and

Thierens, 2011) for multi-operator selection. The two operators can be adapted sepa-

rately, independently or simultaneously.

The standard adaptive pursuit (AP) algorithm adapts a probability vector P(t) such

that the operator that has the highest estimated reward is chosen with very high prob-

ability. The target distribution does not change in time and the target distribution is

associated with a step-like distribution where one operator has a very large selection

probability whereas the probability of selecting the rest of the operators is much smaller.

The biggest difference between the single and the multi-operator adaptive pursuit is

that now the rewards are vectors, R(t), instead of values. Consequently, the temporal

probabilities vectors, i.e. P(t) and Q(t), are also matrices. Consider the mutation and

the neighbourhood operators, each operator with K and P parameters as before. The

probability distribution for the mutation operator and for the neighbourhood operator is

P
(t)
N

= {P
(t)
11 , . . . ,P

(t)
1K}, P

(t)
M

= {P
(t)
21 , . . . ,P

(t)
2P }

where ∀t, and ∀j, and 0 ≤ P
(t)
1j ≤ 1,

∑K

j=1 P
(t)
1j = 1, and ∀t, and ∀j, and 0 ≤ P

(t)
2j ≤ 1,

∑P

j=1 P
(t)
1j = 1. The quality distribution (or the estimated reward) for the mutation

operator and for the neighbourhood operator is

Q
(t)
N

= {Q
(t)
11 , . . . ,Q

(t)
1K}, Q

(t)
M

= {Q
(t)
21 , . . . ,Q

(t)
2P }

4.1 A baseline algorithm

We consider the multi-operator adaptive pursuit algorithm where the probability of se-

lecting a parameter is independently adapted for each operator. Algorithm 5 represents

the pseudo-code of this algorithm.

InitializeAdaptationVectors. In the initialization step, t ← 0 and the vectors of

each parameter are initialized separately. For the mutation operator, we have P
(t)
1j ←

1/K such that
∑K

i=1 P
(t)
1j = 1. For all j, 1 ≤ j ≤ K, the quality values are equal
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t← 0 ;

(P(0),Q(0))← InitializeAdaptationVectors ;

s′ ← GenerateInitialSolution ;

s(0) ← LocalSearch(s′, (N1, . . . ,NP )) ;

while The stopping criteria is NOT met do

(vM, vN )← SelectParameters(P(t)) ;

s′ ← Perturbation(s(t),M, vM) ;

N
(t)
← SelectNeighbourhood(N , vN ) ;

s(t+1)
← LocalSearch(s(t),N (t)) ;

R
(t)
v ← UpdateRewardVector(vM, vN ) ;

Update Q(t+1) with reward R
(t)
v ;

r← HighRankQ(Q(t+1)) ;

P(t+1)
← UpdateProbability(P(t),Dr, β) ;

t← t+ 1
end

return The local optimum solution s(t)

Algorithm 5: Adaptive Multi - operator MetaHeuristics (AMMH)

Q
(t)
1j ← 0.5 meaning that all the parameters are considered equally important at the

initialization. In the sequel, for the neighbourhood operator, we have P
(t)
2i ← 1/P and

Q
(t)
2i ← 0.5, where ∀i, 1 ≤ i ≤ P .

SelectParameters independently selects parameters for each operator. For the

mutation operator, an operator vM ∈ M is selected proportionally with the corre-

sponding probability distribution P
(t)
M
← (P

(t)
11 , . . . ,P

(t)
1K). For the neighbourhood

operator, an operator vN ∈ N is selected proportionally with the probability dis-

tribution P
(t)
N
← (P

(t)
21 , . . . ,P

(t)
2P ). The resulting parameter vector is denoted with

v← (vM, vN ).

UpdateRewardVector. An improvement in the cost of the candidate solution

s(t+1) when compared with the cost of the current solution s(t) means that c(s(t+1)) <

c(s(t)). The reward R
(t)
v for using the vector of parameters v in restarting the local

search is connected with the improvement over the current solution

Q
(t)
M

=
# improv of vM
# trials of vM

, Q
(t)
N

=
# improv of vN
# trials of vN

In the initialization step, we ensure that all the operators are tried at least once. If ap-

plying vM results in an improvement, Q
(t)
M

is increasing

Q
(t)
M

< Q
(t+1)
M

⇔
# improv vM
# total vM

<
# improv vM + 1

# total vM + 1

Otherwise, Q
(t)
M

decreases

Q
(t)
M

> Q
(t+1)
M

⇔
# improv vM
# total vM

>
# improv vM
# total vM + 1
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Similar properties we have for Q
(t)
N

.

Rank quality vectors. The function call HighRankQ independently high ranks the

quality vectors for each operator Q
(t+1)
M

and Q
(t+1)
N

. There is a quality ranking matrix

r that has an independent quality vector for each operator, r = (rM, rN ). Thus, an

instance of a quality vector r can be highly ranked for one operator and lower ranked

for the other operator.

Update probabilities. The two probability distributions of P(t) are also indepen-

dently updated for each operator. For all j, 1 ≤ j ≤ K, we have that

P
(t+1)
1j ← P

(t)
1j + β · (Dr1j − P

(t)
1j )

and for all i, 1 ≤ i ≤ P , we have that

P
(t+1)
2i ← P

(t)
2i + β · (Dr2i − P

(t)
2i )

The target distribution, D, is a step-like distribution for each operator. Thus,

DM = [pM , pm, . . . , pm
︸ ︷︷ ︸

K−1

], where pM = 1− (K − 1) ∗ pm

and

DN = [pN , pn, . . . , pn
︸ ︷︷ ︸

P−1

], where pN = 1− (P − 1) ∗ pn

For each operator, only one element has the maximum value pM or pN and the rest

of the operators are updated with a low probability, pm or pn, after case. In updating

the j-th element in P
(t)
M

, the rank j in DM is used. If DM is a valid probability vector,

i.e.,
∑K

j=1D1j = 1, then the elements in the probability vector P
(t)
M

sum up to 1. In the

sequel, if DN is a valid probability vector, i.e.,
∑P

i=1D2i = 1, then the elements in the

probability vector P
(t)
N

sum up to 1.

The algorithm. The adaptive multi-operator metaheuristics algorithm starts by ini-

tializing the adaptation probability distributions. The initial solution s′ and the initial

neighbourhood N (0) are used to restart local search.

Each iteration, two parameters, vM and vN , which is one parameter for each opera-

tor, are generated using the function SelectParameters. A new solution s′ is generated

using the perturbator function over the current solution s(t), and the given mutation pa-

rameter vM. A neighbourhood functionN (t) is selected from the set of neighbourhoods

N as indicated by the parameter vN . The local search is restarted from solution s′ using

the neighbourhood N (t). The reward vector is updated

Remark 4.1. Adaptive pursuit has two extra parameters that could be tuned: i) min-

imum (and maximum) selection probabilities, and ii) the learning rate β. Let β ∈ [0, 1]
be the learning rate that determines the speed with which the algorithm converges to the

maximum and minimum estimated reward values. A large β value means faster conver-

gence of the algorithm to the target probabilities, which means a poorer use of certain
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operators. A small β value means slower convergence and thus more chances for the

less rewarded operators to be tested.

Remark 4.2. From the three proposed multi-operator metaheuristics, Algorithm 5

and Algorithm 3 resemble the most since both algorithms will simultaneously use both

operators to restart the local search, whereas Algorithm 4 alternatively uses the two

operators.

5 Experimental results

In this section, we show preliminary experimental results that compare the performance

of seven metaheuristics on two QAP instances.

Tested metaheuristics algorithms. We compare the performance of the following

metaheuristics:

MLS the multi-restarted local search algorithm uniform randomly restarts LS;

ILS the iterated local search algorithm uses a set of mutation exchange ratesM;

ALS the adaptive iterated local search algorithm uses adaptive pursuit on a set of mu-

tation exchange ratesM;

VNS the variable neighbourhood search algorithm uses a set of neighbourhood func-

tions N ;

MMH the multi-operator metaheuristic algorithm uses simultaneously a set of muta-

tion exchange ratesM and a set the neighbourhood functions N ;

AMH the alternating operators metaheuristic algorithm alternates the restarting opera-

tors;

AMMH the adaptive multi-operator metaheuristic algorithm adaptively selects the pa-

rameters for mutation and the neighbourhood function.

Note that four algorithms can be classified as iterated local search algorithms, MLS,

ILS, ALS and AMMH. Four of the above algorithms can be classified as variable neigh-

bourhood search algorithms, VNS, MMH, AMH and AMMH. The AMMH algorithm can

be classified both as ILS and VNS since it uses both type operators to restart LS.

Tested QAP instances. We use composite QAP (cQAP) instances (Drugan, 2014)

to test the seven metaheuristic algorithms. These QAP instances are automatically gen-

erated such that they have the following properties: i) large size, ii) difficult and inter-

esting to solve with both heuristics and exact algorithms, iii) known optimum solution,

and iv) not trivial asymptotic behaviour (i.e., the difference between the lower and the

upper cost functions does not go to 0 when the number of facilities goes to∞).

For our experiments, we consider two cQAP instances with a medium number of

facilities, N = {20, 32}. The optimum solution is always the identity permutation.

Setting the parameters. The set of the mutation exchange rates is set to M =
{3, 4, 5, 6, 7}. Thus, K = |M| = 5. The set of neighbourhood functions cannot be very

large for the QAP instances because the exploration of their neighbourhood increases

quadratically with the exchange rates N = {2, 3, 4}. Thus, P = |N | = 3.

Each metaheuristic algorithm is run for 100 times for an equal amount of exchanges

106.
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Fig. 1: (On the left) The percent of runs in which of the local optima value for cQAP with N = 20
is found for the seven algorithms. (In the middle) The mean cost function of the seven algorithms

when N = 20, and (on the right) the mean cost function when N = 32. (On the top) The four

iterative based metaheuristic algorithms, and (on the bottom) the four variable neighbourhood

search based metaheuristic algorithms.

For the multi-operator adaptive pursuit, we consider a standard learning rate of

β = 0.01. We set the maximum and the minimum probability distribution such that

the proportion between these probabilities is 6. Then, for the mutation operator we have

pM = 0.6 and pm = 0.1, and for the neighbourhood operator we have pN = 0.7 and

pn = 0.15.

5.1 Results

In Figure 1, to compare the performance of the discussed metaheuristics, we measure

the percentage of times the global optima is found. For N = 32, the number of identi-

fied local optima is 0 for all the algorithms showing the increase in complexity of the

problem with the increase in number of facilities.

N = 20. The best algorithm is the iterated local search (ILS) followed by multi-

restart local search (MLS). The worst algorithm is the variable neighbourhood search

algorithm (VNS). In general, the meta-heuristics algorithms that use mutation perturba-

tors, in Figure 1 on the left, outperform the algorithms that alternates the neighbourhood

functions, in Figure 1 on the right. The adaptive multi-operator metaheuristics (AMMH)
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has a better performance than both the multi-operator metaheuristics (MMH) and the

adaptive iterated local search (ALS).

N = 32. For larger cQAP instances, the adaptive iterated local search (ALS) is

performing similarly with the iterative local search (ILS). The adaptive multi-operator

metaheuristics (AMMH) is again the best algorithm that uses variable neighbourhood

search, but this time is outperformed by the adaptive iterated local search (ALS).

Discussion. We conclude that for smaller size cQAPs, adaptation of the neighbour-

hood function is more beneficial than the adaptation of the mutation operators, whereas

for larger size cQAPs, this situation is vice-versa. This could indicate that the the usage

of multi restarting operators can be beneficial in certain cases.

6 Conclusions

We have proposed a new class of metaheuristics that uses two operators to restart the

search, i.e. the stochastic perturbator operators and the neighbourhood function. We mo-

tivate the multi-operator metaheuristic algorithms with the quadratic assignment prob-

lem where the size of the neighbourhood increases quadratically with the exchange rate,

whereas the generation of a solution with mutation increases only linearly.

We propose two instances of multi-operator metaheuristic algorithms. One instance

uses the two restarting techniques simultaneously, but the alternation of the neighbour-

hood functions is the most important procedure in the local search call. The second

multi-operator metaheuristics algorithm uses the two operators alternatively: i) the mu-

tation operator is used with the small neighbourhood function, and ii) the local search

is now using a single, uniformly selected, neighbourhood function. We consider the

last algorithm to be more balanced in using the two restarting operators than the first

algorithm. The third proposed algorithm is an adaptive multi-operator metaheuristic al-

gorithm where the adaptive pursuit is extended to a multi-objective adaptive pursuit. In

this variant of multi-operator adaptive pursuit, both operators are adapted separately.

Preliminary experimental results compare the performance of the discussed meta-

heuristics and show a better performance of the multi-operator metaheuristics as com-

pared with the variable neighbourhood search metaheuristics for the tested QAP in-

stances. An interesting perspective is to apply the same methodology to solve multi-

objective combinatorial optimization problems.
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