
Knowledge Gradient for
Multi-objective Multi-armed Bandit Algorithms

Saba Q. Yahyaa, Madalina M. Drugan, Bernard Manderick

Department of Computer Science, Vrije Universiteit Brussel,
Pleinlaan 2, 1050 Brussels, Belgium

{syahyaa, mdrugan, bmanderi}@vub.ac.be

Abstract : We extend knowledge gradient (KG) policy for the multi-objective, multi-armed bandits pro-
blem to efficiently explore the Pareto optimal arms. We consider two partial order relationships to order the
mean vectors, i.e. Pareto and scalarized functions. Pareto KG finds the optimal arms using Pareto search,
while the scalarizations-KG transform the multi-objective arms into one-objective arm to find the optimal
arms. To measure the performance of the proposed algorithms, we propose three regret measures. We com-
pare the performance of knowledge gradient policy with UCB1 on a multi-objective multi-armed bandits
problem, where KG outperforms UCB1.
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1 Introduction
The single-objective multi-armed bandits (MABs) problem is a sequential Markov Decision Process

(MDP) of an agent that tries to optimize its decisions while improving its knowledge on the arms. At each
time step t, the agent pulls one arm and receives reward as a feedback signal. The reward that the agent
receives is independent from the past implementations and independent from all other arms. The rewards
are drawn from a static distribution, e.g. normal distributions N(µ, σ2), where µ is the true mean and σ2

is the variance. We assume that the true mean and variance parameters are unknown to the agent. Thus, by
drawing each arm, the agent maintains estimations of the true mean and the variance which are known as µ̂
and σ̂2, respectively.

The goal of the agent is to minimize the loss of not pulling the best arm i∗ that has the maximum mean
all the time. The loss, or total expected regret, is defined for any fixed time steps L as :

RL = Lµ∗ −
L∑
t=1

µt (1)

where µ∗ = maxi=1,··· ,|A| µi is the true mean of the greedy (best) arm i∗ and µt is the true mean of the
selected arm i at time step t.

In the multi-armed bandits problem, at each time step t, the agent either selects the arm that has the
maximum estimated mean (exploiting the greedy arm), or selects one of the non-greedy arms in order to be
more confident about its estimations (exploring one of the available arms). This problem is known as the
trade-off between exploitation and exploration Sutton & Barto (1998). To overcome this problem, Yahyaa
& Manderick (2012) have compared several action selection policies on the multi-armed bandits problem
(MABs) and have shown that Knowledge Gradient (KG) policy I.O. Ryzhov & Frazier (2011) outperforms
other MABs techniques.

In this paper, we extend knowledge gradient KG policy I.O. Ryzhov & Frazier (2011) to vector means,
obtaining the Multi-Objective Knowledge Gradient (MOKG). In the multi-objective setting, there is a set
of Pareto optimal arms that are incomparable, i.e. can not be classified using a designed partial order re-
lationship. Thus, the agent trades-off the conflicting objectives (or dimensions) of the mean vectors, the
exploration (finding the Pareto front set) and the exploitation (selecting fairly the optimal arms).

The Pareto optimal arm set is found either by using : i) the Pareto partial order relationship Zitzler &
et al. (2002), or ii) the scalarized functions Eichfelder (2008). Pareto partial order finds the Pareto front
set by optimizing directly the multi-objective space. The scalarized functions convert the multi-objective
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space to a single-objective space, i.e. the mean vectors are transformed in scalar values. There are two types
of scalarization functions, linear and non-linear (or Chebyshev) functions. Linear scalarization function is
simple and intuitive but can not find all the optimal arms in a non-convex Pareto front set. In opposition,
Chebyshev scalarization function has an extra parameter to be tuned, however can find all the optimal arms
in a non-convex Pareto front set. Recently, Drugan & Nowe (2013) have used a multi-objective version of
the Upper Confidence Bound (UCB1) policy to find the Pareto optimal arm set (exploring) and select fairly
the optimal arms (exploiting), i.e. solve the trade-off problem in the Multi-Objective, Multi-Armed Bandits
(MOMABs) problem. We compare KG policy and UCB1 on the MOMABs problem.

The rest of the paper is organized as follows. In Section 2 we present background information on the al-
gorithms and the used notation. In Section 3 we introduce multi-objective, multi-armed bandits framework
and upper confidence bound policy UCB1 in multi-objective normal distributions bandits. In Section 4 we
introduce knowldge gradient (KG) policy and we propose Pareto knowldge gradient algorithm, linear sca-
larized knowledge gradient across arms algorithm, linear scalarized knowledge gradient across dimensions
algorithm, and Chebyshev scalarized knowledge gradient algorithm. In Section 5 we present scalarized
multi-objective bandits. In Section 6, we describe the experiments set up followed by experimental results.
Finally, we conclude and discuss future work.

2 Background
In this section, we introduce the Pareto partial order relationship, order relationships for scalarization

functions and regret performance measures of the multi-objective, multi-armed bandits problem.
Let us consider the multi-objective, multi-armed bandits (MOMABs) problem with |A|, |A| ≥ 2 arms and

withD objectives (or dimensions). Each objective has a specific value and the objectives are conflicting with
each other. This means that the value of arm i can be better than the value of arm j in one dimension and
worse than the value of arm j in other dimension.

2.1 The Pareto Partial Order Relationship
Pareto partial order finds the Pareto optimal arm set directly in the multi-objective space Zitzler & et al.

(2002). Pareto partial order uses the following relationships between the mean vectors of two arms. We use i
and j to refer to the mean vector (estimated mean vector or true mean vector) of arms i and j, respectively :

1. Arm i dominates or is better than j, i � j, if there exists at least one dimension d for which id � jd
and for all other dimensions o we have io � jo.

2. Arm i weakly-dominates j, i � j, if and only if for all dimensions d, i.e. d = 1, · · · , D we have
id � jd.

3. Arm i is incomparable with j, i ‖ j, if and only if there exists at least one dimension d for which
id � jd and there exists another dimension o for which io ≺ jo.

4. Arm i is not dominated by j, j � i, if and only if there exists at least one dimension d for which
jd ≺ id. This means that either i � j or i ‖ j.

Using the above relationships, the Pareto optimal arm A∗ set, A∗ ⊂ A be the set of arms that are not
dominated by all other arms. Then :

∀a∗ ∈ A∗, and ∀o /∈ A∗(∀o ∈ A), we have o � a∗

Moreover, the Pareto optimal arms A∗ are incomparable with each other. Then :

∀a∗,b∗ ∈ A∗, we have a∗ ‖ b∗

2.2 The Scalarized Functions Partial Order Relationships
In general, scalarization functions convert the multi-objective into single-objective optimization Eichfel-

der (2008). However, solving a multi-objective optimization problem means finding the Pareto front set.
Thus, we need a set of scalarized functions S to generate a variety of elements belonging to the Pareto
front set. There are two types of scalarization functions that weigh the mean vector, linear and non-linear
(Chebyshev) scalarization functions.



The linear scalarization assigns to each value of the mean vector of an arm i a weight wd and the result
is the sum of these weighted mean values. The linear scalarized across mean vector is :

f j(µi) = w1µ1
i + · · ·+ wDµDi (2)

where (w1, · · · , wD) is a set of predefined weights for the linear scalarized function j, j ∈ S, such that∑D
d=1 w

d = 1 and µi is the mean vector of arm i. The linear scalarization is very popular because of its
simplicity. However, it can not find all the arms in the Pareto optimal set A∗ if the corresponding mean set
is a non-convex set.

The Chebyshev scalarization beside weights, Chebyshev scalarization has a D-dimensional reference
point, i.e. z = [z1, · · · , zD]T . The Chebyshev scalarized can find all the arms in a non-convex Pareto mean
front set by moving the reference point Miettinen (1999). For maximization multi-objective multi-armed
bandits problem, the Chebyshev scalarization is Drugan & Nowe (2013) :

f j(µi) = min
1≤d≤D

wd(µdi − zd), ∀i (3)

zd = min
1≤i≤A

µdi − εd, ∀d

where ε is a small value, ε > 0. The reference point z is dominated by all the optimal mean vectors. Thus,
it is the minimum of the current mean vector minus ε value.

After transforming the multi-objective problem to single-objective problem, the scalarized functions se-
lect the arm that has the maximum function value :

i∗ = max
1≤i≤A

f j(µi)

2.3 The Regret Metrics
To measure the performance of the Pareto, scalarized functions partial order relationships, Drugan &

Nowe (2013) have proposed three regret metric criteria.

1. Pareto regret metric RPareto measures the distance between a mean vector of an arm i that is pulled
at time step t and the Pareto optimal mean set. RPareto is calculated by finding firstly the virtual
distance dis∗. The virtual distance dis∗ is defined as the minimum distance that is added to the mean
vector of the pulled arm µt at time step t in each dimension to create a virtual mean vector µ∗t that is
incomparable with all the arms in Pareto set A∗, where µ∗t ||µi ∀i∈A∗ as follows :

µ∗t = µt + ε∗

where ε∗ is a vector, ε∗ = [dis∗,1, · · · , dis∗,D]T . Then, the Pareto regret RPareto is :

RPareto = dis(µt, µ
∗
t ) = dis(ε∗, 0) (4)

where dis, dis(µt, µ∗t ) =
√∑D

d=1(µ∗t − µt)2 is the Euclidean distance between the mean vector of
the virtual arm µ∗t and the mean vector of the pulled arm µt at time step t. Thus, the regret of the
Pareto front is 0 for optimal arms, i.e. the mean of the optimal arm coincides itself (dis∗ = 0 for the
arms in the Pareto front set).

2. The scalarized regret metric measures the distance between the maximum value of a scalarized func-
tion and the scalarized value of an arm that is pulled at time step t. Scalarized regret is the difference
between the maximum value for a scalarized function f j which is either Chebyshev or linear on the
set of arms A and the scalarized value for an arm k that is pulled by the scalarized f j at time step t,

Rscalarizedj (t) = max
1≤i≤A

f j(µi)− f j(µk)(t) (5)

3. The unfairness regret metric is related to the variance in drawing all the optimal arms. The unfairness
regret of multi-objective, multi-armed bandits problem is the variance of the times the arms in A∗ are
pulled :
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Runfairness(t) =
1

|A∗|
∑
i∗∈A∗

(Ni∗(t)−N|A∗|(t))
2 (6)

where Runfairness(t) is the unfairness regret at time step t, |A∗| is the number of optimal arms,
Ni∗(t) is the number of times an optimal arm i∗ has been selected at time step t and N|A∗|(t) is the
number of times the optimal arms, i∗ = 1, · · · , |A∗| have been selected at time step t.

3 MOMABs framework
At each time step t, the agent selects one arm i and receives a reward vector. The reward vector is

drawn from a normal distribution N(µi, σ
2
i ), where µi = [µ1

i , · · · , µDi ]T is the true mean vector and σi =
[σ1
i , · · · , σDi ]T is the standard deviation vector of arm i, and T is the transpose.
The true mean and standard deviation vectors of arms i are unknown to the agent. Thus, by drawing each

arm i, the agent estimates the mean vector µ̂i and the standard deviation vector σ̂2
i . The agent updates the

estimated mean µ̂i and the estimated variance σ̂2 in each dimension d as follows Powell (2007) :

Ni+1 = Ni + 1 (7)

µ̂di+1 = (1− 1

Ni+1
) µ̂di +

1

Ni+1
rdt+1 (8)

σ̂2,d
i+1 =

Ni+1 − 2

Ni+1 − 1
σ̂2,d
i +

1

Ni+1
(rdt+1 − µ̂di )2 (9)

where Ni is the number of times arm i has been selected, µ̂di+1 is the updated estimated mean of arm i

for dimension d, σ̂2,d
i+1 is the updated estimated variance of arm i for dimension d and rdt+1 is the collected

reward from arm i in the dimension d.

3.1 UCB1 in Normal MOMABs
In the single-obtimization bandits problem, upper confidence bound UCB1 policy P. Auer & Fischer

(2002) plays firstly each arm, then adds to the estimated mean µ̂ of each arm i an exploration bound. The
exploration bound is an upper confidence bound which depends on the number of times arm i has been

selected. UCB1 selects the optimal arm i∗ that maximizes the function µ̂i +
√

2 ln(t)
Ni

as follows :

i∗ = max
1≤i≤A

µ̂i +

√
2 ln(t)

Ni


where Ni is the number of times arm i has been pulled.

In the multi-objective multi-armed bandits problem MOMABs with Bernoulli distributions, Drugan &
Nowe (2013) have extended UCB1 policy to find the Pareto optimal arm set either by using UCB1 in Pareto
order relationship or in scalarized functions. In this paper, we use UCB1 in the multi-objective multi-armed
bandits problem with normal distributions.

3.1.1 Pareto-UCB1 in normal MOMABs

Pareto-UCB1 plays initially each arm i once. At each time step t, it estimates the mean vector of each
of the multi-objective arms i, i.e. µ̂i = [µ̂1

i , · · · , µ̂Di ]T and adds to each dimension an upper confidence
bound. Pareto-UCB1 uses a Pareto partial order relationships, Section 2.1 to find the Pareto optimal arm set
A∗PUCB1

. Thus, for all the non-optimal arms k /∈ A∗PUCB1
there exists a Pareto optimal arm j ∈ A∗PUCB1

that is not dominated by the arms k :

µ̂k +

√
2 ln(t 4

√
D|A∗|)

Nk
� µ̂j +

√
2 ln(t 4

√
D|A∗|)

Nj



Pareto-UCB1 selects uniformly, randomly one of the arms in the set A∗PUCB1
. The idea is to select most

of the times one of the optimal arm in the Pareto front set, i ∈ A∗. An arm j /∈ A∗ that is closer to the
Pareto front set according to metric measure is more selected than the arm k /∈ A∗ that is far from A∗.

3.1.2 Scalarized-UCB1 in normal MOMABs

Scalarized UCB1 adds an upper confidence bound to the pulled arm under the scalarized function j. Each
scalarized function j has associated a predefined set of weights, (w1, · · · , wD)j ,

∑D
d=1 w

d = 1. The upper
bound depends on the number of times the scalarized function j has been selected, N j and on the number
of times the arm i has been pulled N j

i under the scalarized function j. Firstly, the scalarized UCB1 plays
each arm once and estimates the mean vector of each arm, µ̂i, i = 1, · · · , |A|. At each time step t, it pulls
the optimal arm i∗ as follows :

i∗ = max
1≤i≤A

(
f j(µ̂i) +

√
2 ln(N j)

N j
i

)
where f j is either linear scalarized function, Equation 2, or Chebyshev scalarized function, Equation 3 with
a predefined set of weights and µ̂i is the estimated mean vector of arm i.

4 Multi objective knowledge gradient
Knowledge gradient (KG) policy I.O. Ryzhov & Frazier (2011) is an index policy that determines for arm

i the index V KGi as follows :

V KGi = ˆ̄σi ∗ x

−| µ̂i − max
j 6=i,j∈|A|

µ̂j

ˆ̄σi
|


where ˆ̄σi = σ̂i/Ni is the Root Mean Square Error (RMSE) of the estimated mean of an arm i. The function
x(ζ) = ζΦ(ζ) + φ(ζ) where φ(ζ) = 1/

√
2π exp(− ζ/2) is the standard normal density and its cumulative

distribution is Φ(ζ) =
∫ ζ
−∞ φ(ζ ′)dζ ′. KG chooses the arm i with the largest V KGi and it prefers those arms

about which comparatively little is known. These arms are the ones whose distributions around the estimate
mean, µ̂i have larger estimated standard deviations, σ̂i. Thus, KG prefers an arm i over its alternatives if its
confidence in the estimate mean µ̂i is low. This policy trades-off between exploration and exploitation by
selecting its arm i∗KG as follows :

i∗KG = max
i∈|A|

(
µ̂i + (L− t)V KGi

)
(10)

where t is a time step andL is the horizon of experiment which is the total number of plays that the agent has.
In Yahyaa & Manderick (2012), KG policy is the competitive policy for the single-objective multi-armed
bandits problem according to the collected cumulated average reward and average frequency of optimal
selection performances. Moreover, KG policy does not have any parameter to be tuned. Therefore, we used
KG policy in the MOMABs problem.

4.1 Pareto-KG Algorithm
Pareto order knowledge gradient (Pareto-KG) uses the pareto partial order relationship Zitzler & et al.

(2002) to order arms. The pseudocode of Pareto-KG is given in Figure 1. At each time step t, Pareto-KG
calculates an exploration bound ExpB for each arm a, (ExpBa = [ExpB1

a, · · · ,ExpBDa ]T ). The explora-
tion bound of arm a depends on the estimated mean of all arms and on the estimated standard deviation of
the arm a. The exploration bound of arm a for dimension d (ExpBda) is calculated as follows :

ExpBda = (L− t) ∗ |A|D ∗ vda

vda = ˆ̄σda x

−| µ̂da − max
k 6=a, k∈A

µ̂dk

ˆ̄σda
|

 , ∀d∈D
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where vda is the index of an arm a for dimension d, L is the horizon of experiment which is the total number
of time steps, |A| is the total number of arms,D is the number of dimensions and ˆ̄σda is the root mean square
error of an arm for dimension d which equals σ̂d

a/
√
Na. Na is the number of times arm a has been pulled.

After computing the exploration bound for each arm, Pareto-KG sums the exploration bound of arm a with
the corresponding estimated mean. Thus, Pareto-KG selects the optimal arms i that are not dominated by
all other arms k, k ∈ |A| (step : 4). Pareto-KG chooses uniformly, randomly one of the optimal arms in
A∗PKG

(step : 5). Where A∗PKG
is a set that contains Pareto optimal arms using KG policy. After pulling the

chosen arm i, Pareto-KG algorithm, updates the estimated mean µ̂i vector, the estimated standard deviation
σ̂2
i vector, the number of times arm i is chosen Ni and computes the Pareto and the unfairness regrets.

1. Input: length of trajectory L;time step t;
number of arms |A|;number of dimensions D;
reward distribution r ∼ N(µ, σ2

r).

2. Initialize: plays each arm Initial steps to
estimate mean vectors µ̂i = [µ̂1

i , · · · , µ̂D
i ]T;

standard deviation vectors σ̂i = [σ̂1
i , · · · , σ̂D

i ]T.

3. For t = 1 to L
4. Find the Pareto optimal arms set A∗

PKG

such that ∀i ∈ A∗
PKG

and ∀j /∈ A∗
PKG

µ̂j + ExpBj � µ̂i + ExpBi

5. Select i uniformly, randomly from A∗
PKG

6. Observe: reward vector ri, ri = [r1i , · · · , rDi ]T

7. Update: µ̂i; σ̂i; Ni ← Ni + 1
8. Compute: the unfairness regret;Pareto regret
9. End for

10. Output: Unfairness regret, Pareto regret, N.

FIGURE 1 – Algorithm : (Pareto-KG).

4.2 Scalarized-KG Algorithm

Scalarized knowledge gradient (scalarized-KG) functions convert the multi-dimensions MABs to one-
dimension MABs and make use of the estimated mean and estimated variance.

4.2.1 Linear Scalarized-KG across Arms

Linear scalarized-KG across arms (LS1-KG) converts immediately the multi-objective estimated mean
µ̂i and estimated standard deviation σ̂i of each arm to one-dimension, then computes the corresponding
exploration bound ExpBi. At each time step t, LS1-KG weighs both the estimated mean vector, i.e.
([µ̂1

i , · · · , µ̂Di ]T ) and estimated variance vector, i.e. ([σ̂2,1
i , · · · , σ̂2,D

i ]T ) of each arm i, converts the multi-
dimension vectors to one-dimension by summing the elements of each vector. Thus, we have one-dimension
multi armed bandits problem. KG calculates for each arm, an exploration bounds which depends on all other
arms and selects the arm that has the maximum estimated mean plus exploration bounds. LS1-KG is as fol-
lows :



µ̃i = f j(µ̂i) = w1µ̂1
i + · · ·+ wDµ̂Di ∀i (11)

σ̃2
i = f j(σ̂2

i ) = w1σ̂2,1
i + · · ·+ wDσ̂2,D

i ∀i (12)˜̄σ2
i = σ̃

2
i/Ni ∀i (13)

vi = ˜̄σi x
−| µ̃i − max

j 6=i, j∈A
µ̃j˜̄σi |

 ∀i (14)

where f j is a linear scalarization function that has a predefined set of weight (w1, · · · , wD), µ̃i, σ̃2
i are

the modified estimated mean and variance of an arm i, respectively which are one-dimension values and˜̄σ2
i is the modified RMSE of an arm i which is a one-dimension value. vi is the KG index of an arm i.
x(ζ) = ζΦ(ζ) +φ(ζ) where Φ and φ are the cumulative distribution and the density of the standard normal
density, respectively. Linear scalarized-KG across arms selects the optimal arm i∗ according to :

i∗LS1KG = max
i=1,··· ,|A|

(µ̃i + ExpBi) (15)

= max
i=1,··· ,|A|

(µ̃i + (L− t) ∗ |A|D ∗ vi) (16)

where ExpBi is the exploration bound of arm i, |A| is the number of arms, D is the number of dimension,
L is the horizon of an experiments, i.e. length of trajectories and t is the time step.

4.2.2 Linear Scalarized-KG across Dimensions

Linear scalarized-KG across dimensions (LS2-KG) computes the exploration bound ExpBi for each arm,
i.e. ExpBi = [ExpB1

i , · · · ,ExpBDi ], adds the ExpBi to the corresponding estimated mean vector µ̂i, then
converts the multi-objective problem to one dimension. At each time step t, LS2-KG computes exploration
bounds for all dimensions of each arm, sums the estimated mean in each dimension with its corresponding
exploration bound, weighs each dimension, then converts the multi-dimension to one-dimension value by
taking the summation over each vector of each arm. Linear scalarized-KG across dimensions is as follows :

f j(µ̂i) = w1(µ̂1
i + ExpB1

i ) + · · ·+ wD(µ̂Di + ExpBDi )∀i (17)

where
ExpBdi = (L− t) ∗ |A|D ∗ vdi , ∀d∈D

vdi = ˆ̄σdi x

−| µ̂di − max
j 6=i, j∈A

µ̂dj

ˆ̄σdi
|

 , ∀d∈D

|A| is the number of arms, L is the horizon of each experiment, vdi is the index of arm i for dimension d, µ̂di
is the estimated mean for dimension d of arm i, ˆ̄σdi is the RMSE of arm i for dimension d, ExpBdi is the
exploration bound of arm i for dimension d and x(ζ) = ζΦ(ζ) + φ(ζ) where Φ and φ are the cumulative
distribution and the density of the standard normal density, respectively. LS2-KG selects the optimal arm i∗

that has maximum f j(µ̂i) as follows :

i∗LS2KG = max
i=1,··· ,|A|

f j(µ̂i)

4.2.3 Chebyshev Scalarized-KG

Chebyshev scalarized-KG (Cheb-KG) computes the exploration bound of each arm in each dimension,
i.e. ExpBi = [ExpB1

i , · · · ,ExpBDi ], then converts the multi-objective problem to one-dimension problem.
Cheb-KG is as follows :

f j(µ̂i) = min
1≤d≤D

wd(µ̂di + ExpBdi −zd) ∀i (18)
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where f j is a Chebyshev scalarization function that has a predefined set of weights (w1, · · · , wD), ExpBdi
is the exploration bound of arm i for dimension d which is calculated as follows :

ExpBdi = (L− t) ∗ |A|D ∗ vdi , ∀d∈D

vdi = ˆ̄σdi x

−| µ̂di − max
j 6=i, j∈A

µ̂dj

ˆ̄σdi
|

 , ∀d∈D

And, z = [z1, · · · , zD]T is a reference point. For each dimension d, the corresponding reference is the
minimum of the current estimated means of all arms minus a small positive value, εd > 0. The reference zd

for dimension d is calculated as follows :

zd = min
1≤i≤|A|

µ̂di − εd, ∀d

Cheb-KG selects the optimal arm i∗ that has maximum f j(µ̂i) as follows :

i∗Cheb−KG = max
i=1,··· ,|A|

f j(µ̂i)

5 The scalarized multi-objectieve bandits
The pseudocode of the scalarized MOMABs problem Drugan & Nowe (2013) is given in Figure 2. Given

the type of the scalarized function f , (f is either linear-scalarized-UCB1, Chebyshev-scalarized-UCB1,
linear scalarized-KG across arms, linear scalarized-KG across dimensions or Chebyshev scalarized-KG)
and the scalarized function set (f1, · · · , fS) where each scalarized function fs has different weight set,
ws = (w1,s, · · · , wD,s).

1. Input: length of trajectory L;reward vector
r ∼ N(µ, σ2

r);type of scalarized function f;set
of scalarized function S = (f1, · · · , fS).

2. Initialize: For s = 1 to S
plays each arm Initial steps;
observe (ri)

s;
update: Ns ← Ns + 1;Ns

i ← Ns
i + 1;(µ̂i)

s;(σ̂i)
s

End
3. Repeat
4. Select a function s uniformly, randomly
5. Select the optimal arm i∗ that maximizes the
scalarized function fs

6. Observe: reward vector ri∗, ri∗ = [r1i∗ , · · · , rDi∗ ]
T

7. Update: µ̂i∗;σ̂i∗;N
s
i∗ ← Ns

i∗ + 1;Ns ← Ns + 1
8. Compute: unfairness regret;scalarized regret
9. Until L

10. Output: Unfairness regret;Scalarized regret.

FIGURE 2 – Algorithm : (Scalarized multi-objective function).

The algorithm in Figure 2 plays each arm of each scalarized function fs, Initial plays (step : 2). Ns is
the number of times the scalarized function fs is pulled and Ns

i is the number of times the arm i under
the scalarized function fs is pulled. (ri)

s is the reward of the pulled arm i which is drawn from a normal
distributionN(µ, σ2

r) where µ is the true mean and σ2
r is the true variance of the reward. (µ̂i)

s and (σ̂i)
s are

the estimated mean and standard deviation vectors of the arm i under the scalarized function s, respectively.
After initial playing, the algorithm chooses randomly at uniform one of the scalarized function (step : 4),
selects the optimal arm i∗ that maximizes the type of this scalarized function (step : 5) and simulates the
selected arm i∗. The estimated mean vector (µ̂i∗)s, estimated standard deviation vector (σ̂i∗)s, and the



number Ns
i∗ of the selected arm and the number of the pulled scalarized function are updated (step : 7).

This procedure is repeated until the end of playing L steps which is the horizon of an experiment.

6 Experiments
In this section, we experimentally compare Pareto-UCB1, and Pareto-KG and we compare linear-scalarized-

UCB1, Chebyshev-scalarized-UCB1, linear scalarized-KG across arms, linear scalarized-KG across dimen-
sions, and Chebyshev scalarized-KG. The performance measures are :

1. The percentage of time optimal arms are pulled, i.e. the average of M experiments that optimal arms
are pulled.

2. The percentage of time each of the optimal arms is drawn, i.e. the average of M experiments that
each one of the optimal arms is pulled.

3. The average regret at each time step which is the average of M experiments.

4. The average unfairness regret at each time step which is the average of M experiments.

We used the algorithm in Figure 2 for the scalarized functions, and the algorithm in Figure 1 for the Pareto-
KG. To compute the Pareto regret, we need to calculate the virtual distance. The virtual distance dis∗ that is
added to the mean vector µt of the pulled arm at time step t (the pulled arm is not element in the Pareto front
(Pareto optimal arm) set A∗) can be calculated by firstly ranking all the Euclidean distance dis between the
mean vectors of the Pareto optimal arm set and 0 as follows :

dis(µ∗1, 0) < dis(µ∗2, 0) < · · · < dis(µ∗|A∗|, 0)

dis1 < dis2 < · · · < dis|A∗|

where 0 is a vector, 0 = [01, · · · , 0D]T . Secondly, finding the minimum added distance dis∗ which is
calculated as follows :

dis∗ = dis1 − dis(µt, 0) (19)

where dis1 is the Euclidean distance between 0 vector and the Pareto optimal mean vector µ∗1, and dis(µt, 0)
is the Euclidean distance between the mean vector of the pulled arm that is not element in the Pareto front set
and vector 0. Then, add dis∗ to the mean vector of the pulled arm µt to create a mean vector that is element
in the Pareto optimal mean set, i.e. µ∗t = µt + dis∗ and check if µ∗t is a virtual vector that is incomparable
with the Pareto front set. If µ∗t is incomparable with the mean vectors of Pareto front set, then dis∗ is the
virtual distance, calculate the regret. Otherwise, reduce the added distance to find dis∗ as follows :

dis∗ = (dis1 −
dis2 − dis1

1/D
)− dis(µt, 0)

where D is the number of dimensions. And, check if dis∗ creates µ∗t that is incomparable with the Pareto
front set. If not reduce again the dis∗ by using dis3 instead of dis2 and so on.

The number of experiments M is 1000. The horizon of each experiment L is 1000. The rewards of
each arm i in each dimension d, d = 1, · · · , D are drawn from normal distribution N(µi, σ

2
i,r) where

µi = [µ1
i , · · · , µDi ]T is the true mean and σi,r = [σ1

i,r, · · · , σDi,r]T is the true standard deviation of the
reward. The true means and the true standard deviations of arms are unknown parameters to the agent.

First of all, we used the same example in Drugan & Nowe (2013) because it contains non-convex
mean vector set. The number of arms |A| equals 6, the number of dimensions D equals 2. The stan-
dard deviation for arms in each dimension is either equal and set to 1, 0.1, or 0.01 or different and ge-
nerated from a uniform distribution over the closed interval [0, 1], i.e. taken from a normal distribution
N(0.5, 1/12). The true mean set vector is (µ1 = [0.55, 0.5]T , µ2 = [0.53, 0.51]T , µ3 = [0.52, 0.54]T ,
µ4 = [0.5, 0.57]T , µ5 = [0.51, 0.51]T , µ6 = [0.5, 0.5]T ). Note that the Pareto optimal arm set (Pareto
front set) is |A∗| = (a∗1, a

∗
2, a
∗
3, a
∗
4) where a∗i refers to the optimal arm i∗. The suboptimal a5 is not domi-

nated by the two optimal arms a∗1 and a∗4, but a∗2 and a∗3 dominates a5 while a6 is dominated by all the other
mean vectors. For upper confidence bounce UCB1, each arm is played initially one time, i.e. Initial = 1
as Drugan & Nowe (2013) (for Pareto-, linear-, Chebyshev-UCB1), then the estimated mean of arms are
calculated and the scalarized or Pareto selection is computed. Knowledge gradient KG needs the estimated
standard deviation for each arm, σ̂i, therefore, each arm is either played initially 2 times, Initial = 2 which
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is the minimum number to estimate the standard deviation or each arm is considered unknown until it is
visited Initial times. If the arm is unknown, then the estimated mean of that arm has a maximum value, i.e.
µ̂di = maxd∈D µ

d
j , ∀j, j∈|A| and the estimated standard deviation, i.e. σ̂di = maxd∈D σ

d
j , ∀j,j∈|A| to increase

the exploration of arms. We compare the different setting for KG and found out that playing each arm ini-
tially 2 times, KG performance is increased, therefore, we used this to compare with UCB1, i.e. after playing
each arm initially 2 times, we compare KG policy to UCB1 policy. The number of Pareto optimal arms |A∗|
is unknown to the agent, therefore, |A∗| = 6. We consider 11 weight sets for the linear-, and Chebyshev-
UCB1 and linear scalarized-KG across arms (LS1-KG), linear scalarized-KG across dimensions (LS2-KG),
and Chebyshev-KG (Cheb-KG) functions, i.e. w = {(1, 0)T , (0.9, 0.1)T , · · · , (0.1, 0.9)T , (0, 1)T }. For
Chebyshev-UCB1 and Chebyshev-KG, ε was generated uniformly, randomly, ε ∈ [0, 0.1].

Table 1 gives the average number± the upper and lower bounds of the confidence interval that the optimal
arms are selected in column A∗, the average number ± the upper and lower bounds of the confidence
interval that one of the optimal arm a∗ is pulled in columns a∗1, a∗2, a∗3, and a∗4 using the scalarized functions
in column Functions.

TABLE 1 – Percentage of times optimal arms A∗ are pulled and percentage of times each one of the optimal
arm is pulled performances on bi-objective MABs with number of arms |A| = 6 and the standard deviation
of rewards are equal for each arm i, i ∈ A σi,r = 0.01.

Functions A∗ a∗1 a∗2 a∗3 a∗4
LS2-KG 999± .33 368± 17.6 303± 18.2 96± 9.3 232± 8.5

Pareto-KG 998± .02 250± .85 249± .87 250± .83 249± .82
LS1-KG 998± .04 222± 9.7 122± 7.4 301± 14.4 353± 12.2
Cheb-KG 998± .25 279± 6 228± 7 264± 6 227± 4.3

Pareto-UCB1 714± .41 180± .3 163± .21 173± .23 198± .54
Cheb-UCB1 677± .07 168± .08 166± .06 170± .06 173± .07
LS-UCB1 669± .08 167± .06 168± .06 168± .06 166± .06

Table 1 shows the number of selecting the optimal arms is increased by using knowledge gradient.
Pareto-KG plays fairly the optimal arms. Although ε set to a fixed value for all the scalarized functions
set (j = 1, · · · , 11), Chebyshev-KG performs better than the linear scalarization-KG across arms (LS1-
KG) and linear scalarization-KG across dimensions (LS2-KG ) in playing fairly the optimal arms. While,
the performance of linear scalarized-KG across arms (LS1-KG) in playing fairly the optimal arms is as
same as linear scalarized-KG across dimensions (LS2-KG). Moreover, LS1-KG prefers the optimal arms
a∗4 and a∗3 then a∗1 and a∗2 and LS2-KG prefers the optimal arms a∗1 and a∗2 then a∗4 and a∗3. Pareto-UCB1
performs better than linear- and Chebyshev-scalarization-UCB1, (LS-UCB1 and Cheb-UCB1, respectively)
according to the number of selecting optimal arms. This is the same result in Drugan & Nowe (2013) when
the rewards are drawn form Bernoulli distributions. Cheb-UCB1 performs better than LS-UCB1 in selecting
the optimal arms. We also see that LS-UCB1 performs better than LS1-KG and LS2-KG in playing fairly
the optimal arms. And, Cheb-UCB1 performs better than Cheb-KG in playing fairly the optimal arms. Fi-
gure 3 shows the average regret performances. The x-axis is the horizon of each experiments and the y-axis
is the average of 1000 experiments. From Figure 3, we see that how the regret performance is improved
by using KG policy. Minimum Pareto regret is achieved by using Pareto-KG in subfigure (a). Minimum
scalarized regret is achieved by using LS2-KG in subfigure (b) and maximum regret is achieved by using
linear-scalarized-UCB1. From subfigure (b), we also see Chebyshev-UCB1 performs better than linear-
scalarized-UCB1 and linear-scalarized-KG across dimensions performs better than linear scalarized-KG
across arms and Chebyshev scalarized-KG.

Secondly, we added another 14 arms to the previous example as Drugan & Nowe (2013). The added arms
are dominated by all other in A∗ and have equal mean vectors, i.e. µ7 = · · ·µ20 = [0.48, 0.48]T . Figure 4
gives the average regret and the average unfairness regret performances of the Pareto-KG and Pareto-UCB1.
The x-axis is the horizon of each experiments and the y-axis is the average of 1000 experiments. Figure 4
shows the average regret performance is improved by using Pareto-KG in subfigure (a), while, the average
unfairness performance in subfigure (b) is improved using Pareto-UCB1.

Thirdly, we added extra dimension to the previous example. The Pareto front set A∗ contains 7 arms.
Figure 5 gives the average regret performance using σr = 0.01. The y-axis is the average regret perfor-
mance and the x-axis is the horizon of experiments. Figure 5 shows how the performance is improved



(a) Average Pareto regret performance

(b) Average scalarized regret performance

FIGURE 3 – Average regret performance on bi-objective, 6-armed bandit problems.
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(a) Average regret performance.

(b) Average unfairness regret performance.

FIGURE 4 – Performance comparison of Pareto-KG and Pareto-UCB1on bi-objective MABs with 20 arms
using standard deviation of reward σr = 0.1 for all arms. Subfigure (a) is the average regret performance
and subfigure (b) is the average unfairness regret performance.



TABLE 2 – Percentage of times optimal arms A∗ are pulled and percentage of times each one of the optimal
arm is pulled performances on 5-objective MABs with number of arms |A| = 20 and the standard deviation
of rewards are equal for each arm i, i ∈ A σi,r = 0.01.

Functions A∗ a∗
1 a∗

2 a∗
3 a∗

4 a∗
5 a∗

6 a∗
7

LS1-KG 1000 ± 0 143.1 ± 6.273 76.6 ± 4.566 154.1 ± 7.459 195 ± 7.633 135.8 ± 7.25 164.8 ± 8.353 130.6 ± 6.336

Cheb-KG 999.7 ± .023 507.3 ± 4.111 63.6 ± 4.263 111.7 ± 4.043 29.2 ± 3.076 73.9 ± 4.752 193.5 ± 4.883 20.5 ± 2.574

LS2-KG 601.1 ± 8.993 109.2 ± 6.439 121.8 ± 6.827 57.9 ± 4.454 57.1 ± 4.093 79.3 ± 5.668 79.1 ± 5.536 96.7 ± 6.271

Pareto-KG 571.3 ± 3.54 81.4 ± .723 81.7 ± .738 81.6 ± .72 81.7 ± .72 81.9 ± .688 81.6 ± .72 81.4 ± .72

Pareto-UCB1 455.1 ± .21 64.2 ± .095 60.3 ± .066 62.7 ± .073 69.1 ± .116 65.1 ± .076 65.1 ± .077 68.6 ± .114

LS-UCB1 379.7 ± .278 53.9 ± .061 53.7 ± .063 54.5 ± .064 54.7 ± .064 54.4 ± .066 54.6 ± .068 53.9 ± .066

Cheb-UCB1 367.9 ± .219 53.4 ± .073 54.1 ± .075 52.9 ± .073 52.7 ± .075 51.9 ± .074 51.6 ± .077 51.3 ± .077

using KG policy in the MOMABs. Subfigure a shows Pareto-KG performs Pareto UCB1. Subfigure b
shows best performance (the average regret is decreased) for Chebyshev-KG and worst performance for
linear-UCB1. Chebyshev-UCB1 performs better than linear-scalarized-KG across dimensions and worse
than linear-scalarized-KG across arms. And, the Chebyshev scalarized- (KG and UCB1) is better than the
linear scalarized- (KG and UCB1) according to the regret performance.

Finally, we added extra 2 objectives in the previous triple-objective in order to compare the KG and UCB1
performances on a more complex MOMABs problem. Table 2 gives the average number ± the upper and
lower bounds of the confidence interval that the optimal arms are selected in columnA∗, the average number
± the upper and lower bounds of the confidence interval that one of the optimal arm a∗ is pulled in columns
a∗1, a

∗
2, a
∗
3, a
∗
4, a
∗
5, a
∗
6, and a∗7 using the scalarized functions in column Functions.

Table 2 shows the number of selecting the optimal arms is increased by using KG policy. Pareto-KG
outperforms Pareto-UCB1 in selecting and playing fairly the optimal arms. Scalarized functions-KG out-
perform scalarized functions-UCB1 in selecting the optimal arms, while scalarized functions-UCB1 out-
perform scalarized functions-KG in playing fairly the optimal arms. LS1-KG (linear scalarized-KG across
arms) performs better than LS2-KG and Cheb-KG in selecting the optimal arms. Cheb-KG performs bet-
ter than LS2-KG and worse than LS1-KG in selecting the optimal arms. LS2-KG performs better than
LS1-KG and Cheb-KG in playing fairly the optimal arms and prefers playing a∗2, a

∗
1, a
∗
7, a
∗
5, a
∗
6, a
∗
3 then a∗4.

LS1-KG performs better than Cheb-KG and worse than LS2-KG in playing fairly the optimal arms and
prefers a∗4, a

∗
6, a
∗
3, a
∗
1, a
∗
5, a
∗
7 then a∗2. Cheb-KG prefers the optimal arms a∗1, a

∗
6, a
∗
3, a
∗
5, a
∗
2, a
∗
4, then a∗7. LS-

UCB1 and Cheb-UCB1 play fairly the optimal arms, while LS-UCB1 performs better than Cheb-UCB1 in
selecting the optimal arms.

From the above figures and tables, we conclude that the average regret is decreased using KG policy in the
MOMABs problem. Pareto-KG outperforms Pareto-UCB1 and scalarized functions-KG outperform scalari-
zed functions-UCB1 according to the average regret performance. While Pareto-UCB1 outperforms Pareto-
KG according to the unfairness regret, where the unfairness regret is increased using knowledge gradient
policy. However, when the number of objective is increased Pareto-KG performs better than Pareto-UCB1
in playing fairly the optimal arms. According to the average regret performance, Chebyshev scalarized-KG
performs better than linear scalarized-KG across arms and dimensions when the number of arms is increa-
sed, while LS1-KG outperforms all other scalarization functions when the number of objectives is increased
to 5.

7 Conclusions and future work

We presented multi-objective, multi-armed bandits problem MOMABs, the regret measures in the MO-
MABs and Pareto-UCB1, linear-UCB1, and Chebyshev-UCB1. We also presented knowledge gradient po-
licy KG. We proposed Pareto-KG. We also proposed two types of linear scalarized-KG (linear scalarized-
KG across arms (LS1-KG) and linear scalarized-KG across dimensions (LS2-KG) and Chebyshev-scalarized-
KG. Finally we compared KG and UCB1 and concluded that the average regret is improved using KG policy
in the MOMABs. Future work must provide theoretical analysis for the KG in MOMABs and must com-
pare the family of upper confidence bound UCB1, and UCB1-Tuned policies P. Auer & Fischer (2002), and
knowledge gradient KG policy on the correlated MOMABs. and must compare KG, UCB1, and UCB1-
Tuned policies in sequential ranking and selection P.I. Frazier & Dayanik (2008) MOMABs.
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(a) Average Pareto regret performance

(b) Average scalarized regret performance

FIGURE 5 – Average regret performance on triple-objective, 20-armed bandit problems.
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