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1 Introduction
In most existing motion control algorithms, a reference tra-
jectory is tracked based on a continuous measurement of
the system’s response. However, in some industrial ap-
plications, it is either not possible or too expensive to install
a sensor which measures the system’s output over the com-
plete stroke. The motion is only detected at certain discrete
positions. The control objective in these systems is often
not to follow a complete trajectory accurately, but to realize
a certain state of the output at the sensor locations (e.g. to
pass by the sensor at a certain time, or to obtain a certain
speed at the sensor location). Model-based control strate-
gies are not suited for the control of these systems, since it
is not straightforward to derive a reliable plant model, due
to the lack of sensor data. Here we investigate the poten-
tial of a non-model-based learning strategy, Reinforcement
Learning (RL), in dealing with this kind of discrete sensor
information.

2 Reinforcement learning
RL problems [1] are a class of machine learning problems,
where an agent must learn to interact with an unknown en-
vironment, using a “trial and error” approach. At a given
timestep t, the agent may execute one of a set of actions
a ∈ A, possibly causing the environment to change its state
s ∈ S, and generate a (scalar) reward r ∈ R. An agent is
represented by a policy, mapping states to actions. The aim
of a RL algorithm is to optimize the policy, maximizing the
reward accumulated by the agent.

Simply stated, RL consists in learning from a teacher (the
environment) who cannot tell us what to do next (the op-
timal policy), but only how good we are doing so far (the
reward signal). It therefore offers a suitable framework for
the control of systems with discrete sensor information. The
desired state at the discrete sensor positions can be incor-
porated in the reward signal. The control output is repre-
sented as a parameterized signal and the action set consists
of (continuous or discrete) adaptations of the parameters of
this signal. After each time that the complete control signal
is applied and the discrete sensor signals are available, the
policy is updated based on the new reward signal.

3 Experimental validation
The potential of different RL techniques is validated on
a set-up consisting of a linear motor and a moving mass

mounted on a linear guide (Fig. 1). The position of the mo-
ving mass is monitored via a single discrete sensor set along
this guide. When the motor is activated, the mass is pushed
forward and slides to a certain position. The objective is to
find the motor control signal which passes the mass in front
of the sensor at a predefined time. On top of this, the dissi-
pated energy should be minimized and the controller should
be robust to system variations.
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Figure 1: Sketch set-up, position measurement at one location

Several RL methods are evaluated on this setup. Two are
based on value function estimation: SARSA [1], where ac-
tions are discretized, and Ex< a> [2], where continuous ac-
tion values are estimated using a non parametric model. Two
are based on direct policy search, both representing their
policy as a probability density function (pdf) over actions,
which is updated during learning: a policy gradient method
[3], where the actions are drawn from a Gaussian distribu-
tion; and a learning automaton [4], where the pdf over the
actions is non-parametric.
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