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Abstract— In most existing motion control algorithms, a
reference trajectory is tracked, based on a continuous measure-
ment of the system’s response. In many industrial applications,
however, it is either not possible or too expensive to install
sensors which measure the system’s output over the complete
stroke: instead, the motion can only be detected at certain
discrete positions. The control objective in these systems is often
not to track a complete trajectory accurately, but rather to
achieve a given state at the sensor locations (e.g. to pass by
the sensor at a given time, or with a given speed). Model-based
control strategies are not suited for the control of these systems,
due to the lack of sensor data. We are currently investigating the
potential of a non-model-based learning strategy, Reinforcement
Learning (RL), in dealing with this kind of discrete sensor
information. Here, we describe ongoing experiments with a wet
clutch, which has to be engaged smoothly yet quickly, without
any feedback on piston position.

I. INTRODUCTION

RL problems [1] are a class of machine learning problems
where an agent must learn to interact with an unknown
environment, using a “trial and error” approach. At a given
timestept, the agent may execute one of a set ofactions
a ∈ A, possibly causing the environment to change itsstate
s ∈ S, and generate a (scalar)reward r ∈ R. Both state
and action spaces can be multidimensional, continuous or
discrete. An agent’s behavior is represented by itspolicy,
mapping states to actions. The aim of a RL algorithm is
to optimize the policy, maximizing the reward accumulated
by the agent. Simply stated, RL consists in learning from a
teacher (the environment) who cannot tell uswhat to do next
(the optimal policy), but onlyhow goodwe are doing so far
(the reward signal). It therefore offers a suitable tool forcon-
trolling systems with discrete sensor information. The target
state at the discrete sensors location can be incorporated in
the reward signal, favoring the desired behavior.

Two main families of RL approaches can be distinguished.
In value basedmethods, the expected future rewardQ(s, a)
allowed by taking actiona in state s is estimated: the
policy consists in selecting the actiona which maximizes
Q in the current states. This can be done storing and
updating estimates in tabular form, or resorting to function
approximators ifA andS are too big, or continuous. Indirect
policy search, the space of policies is searched for directly,
maximizing the reward.
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Fig. 1: Block representation of RL. Env: environment (plant being
controlled).Π: policy (controller), generating the action (control
signal)a(t) given the current state of the plants(t); RL: learning
algorithm, adapting the policy based on state, action, and reward
signals. Continuous lines indicate online interactions, while discon-
tinuous lines refer to the learning process, which can be online or
offline, depending on the particular algorithm.

In both cases, learning is organized in a sequence of
epochs, each consisting of a sequence of interactions with
the environment. Another independent classification can be
made amongoffline learning, where the policy is updated
only after one or more epochs have been completed; and
online learning, where such update can be performed also
during an epoch (Fig. 1).

II. EXPERIMENTAL SETUP

Fig. 2: Schematic representation of the wet clutch

The setup consists of a wet clutch (Figure 2), used in
heavy duty transmission systems to engage/disengage differ-



ent loads. We considered in particular the automatic control
of the engagement phase, which has to be fast enough, but
also smooth, in order to avoid disturbing the operator. This
latter requirement can be implemented minimizing thejerk,
defined as the second derivative of the slip, which is the
difference in angular speed among the two shafts.

The issue with this setup is that there is no sensor
providing information about the actual position of the piston,
which can only be detected when the piston actually touches
the plates, and the slip phase begins. Given the available
signals (oil pressure and temperature), there is no reference
trajectory that can be tracked using classical control methods.
In this sense, this setup is a good example of the discrete
sensor systems mentioned above (see also [2]). Moreover,
there currently is no reliable model of the whole engagement:
an approximate model is available for the filling phase,
until the piston touches the plates, but not for the following
slip phase, which would allow to simulate and optimize
the resulting jerk. However, it has been observed that the
jerk depends on the speed of the piston when this reaches
the plates: the lower the speed, the lower the jerk, and the
smoother the engagement. In other words, there is a trade-off
among the two objectives: on one hand, a very slow piston
movement will result in a smooth engagement, which takes
a long time; on the other hand, a fast piston will engage in
a short time, but it will also cause a jerky engagement, and
possibly damage the setup.

While the availability of a model is not in principle
necessary for RL, it can in practice allow us to speed up
the learning process, adopting an incremental approach. Ina
first phase, we can optimize the policy on the filling phase
model, aiming at obtaining a fast engagement, but with a low
piston velocity at engagement. In a second phase, we will
transfer the obtained policy on the real clutch, and further
improve its performance, reducing the actual jerk.

III. METHODS

Threedirect policy searchRL methods are being evaluated
on this setup, all representing the policy as a probability
density function (pdf) over actions, which is updated offline,
after each epoch: the policy gradient (PG) method [3], where
the actions are drawn from a Gaussian distribution; PG
with parameter exploration (PGPE) [4], where the pdf is a
mixture of Gaussians; and a continuous learning automa-
ton (CARLA) [5], where the pdf over the actions is non-
parametric. In the following three subsections, we briefly
describe each method.

A. Policy gradients (PG)

In Policy Gradients (PG) methods [3], the policy is repre-
sented as a parametric probability distribution over the action
space, conditioned by the current state of the environment.
Epochs are subdivided into discrete time steps: at every
step, an action is randomly drawn from the distribution,
conditioned by the current state, and executed on the envi-
ronment, which updates its state accordingly. After an epoch
has been completed, the parameters of the policy are updated,

following a Monte Carlo estimate of the expected cumulative
(discounted) reward. In this section we describe the basic
ideas behind this estimation, following [6], to which the
reader can refer for further details.

To avoid cluttering notation, we consider a RL problem
with a scalar actiona ∈ A ⊂ R, and scalar states ∈ S ⊂
R. Be θ ∈ R

d the d-dimensional parameter defining the
conditional distribution over actionsπθ(a | s), from which
actions are drawn, andrt ∈ R the reward obtained at timestep
t ∈ N. The index we intend to maximize is the cumulative
discounted rewardR0, with Rt =

∑
T

k=t
γt−krk being the

return at time t, where γ ∈ (0, 1) is a discount factor,
expressing a preference for early over late rewards, andT
is the duration of an epoch. BeH = {s0, a0, . . . , sT , aT }
the full history of state-action pairs,H ∈ H, andR(H) the
corresponding return. The probability of observing a given
history H depends onθ, on the unknown state transition
probability p(st+1 | st, at), and on the unknown initial state
probability p(s0), as

p(H) = p(s0)

T∏
t=0

p(st+1 | st, at)πθ(at | st). (1)

The expected value ofR is defined as

J = E{R(H)} =

∫
H

p(H)R(H)dH. (2)

The basic idea behind policy gradients is to follow the
gradient ofJ with respect toθ, in order to maximize the
expected return. While such gradient cannot be evaluated in
closed form, it can be estimated as follows. Bringing the
derivative operator inside the integral, we can write:

∇θJ =

∫
H

[∇θp(H)R(H) + p(H)∇θR(H)] dH. (3)

As the observed rewards do not depend onθ, but only on
H, we have∇θR(H) = 0, therefore the second term of the
addition can be discarded. The first term can be rewritten
using the “likelihood ratio” trick, multiplying and dividing
it by p(H), thus obtaining

∇θJ =

∫
H

p(H)∇θ log p(H)R(H)dH =

= E{∇θ log p(H)R(H)}. (4)

Given that (1) is a product, its logarithm can be expressed
as a sum

log p(H) = log p(s0) +

T∑
t=0

log p(st+1 | st, at) +

+
T∑

t=0

log πθ(at | st), (5)

with the advantage that deriving w.r.t.θ leaves only the
rightmost terms, which can be evaluated analytically asπ is
derivable. We can therefore perform a Monte Carlo estimate



of (4), after runningN epochs, as follows

∇θJ = E{∇θ log p(H)R(H)} ≈

≈
1

N

N∑
n=1

T
n∑

t=0

∇θ log πθ(a
n

t
| sn

t
)R(Hn), (6)

wheren is used as an index, to refer to then-th epoch.
In practice, most authors suggest to useN = 1, updating

θ after each epoch [3], [6]. Moreover, to reduce the variance
of the estimate, the termR(H) is replaced byT returnsRt,
each multiplied with the corresponding termlog πθ(at | st),
thus discarding past rewards; and shifted by a baseline
b, which, in the simplest case, is just the average return
observed so far:

∇θJ ≈
T∑

t=0

∇θ log πθ(at | st)(Rt − b). (7)

Intuitively, following the gradient (7), the probability of
taking actionat in state st is increased if the returnRt,
accumulated starting at timet, is larger than the baseline
b, representing the average return, while it is decreased
otherwise. Fig. 3 illustrates the effect of PG in a simple
case, with no state information,T = 1, and Gaussianπ,
with θ = (µ, σ).

B. PG with parameter exploration (PGPE)

A major disadvantage of PG methods is that drawing a
random action at every timestep may result in noisy control
signals, as well as noisy gradient estimates. Moreover, the
policy is required to be differentiable w.r.t. its parameters.
To overcome these issues, PG with Parameter Exploration
(PGPE) was introduced [7], [4]. In this method, the random
sampling and policy evaluation steps are, in a sense, “in-
verted”: the policy is a parametric function, not necessarily
differentiable, therefore it can be an arbitrary parametric
controller; the parameter value to be used is sampled at the
beginning of each epoch from a Gaussian distribution, whose
parameters are in turn updated at the end of the epoch, again
following a Monte Carlo estimate of the gradient of the
expected return. In other words, rather than searching the
parametric policy space directly, PGPE performs a search
in a “meta-parameter” space, whose points correspond to
probability distributions over the (parametric) policy space.

Be againθ the parameter of the policyf , whereat =
fθ(st); andα the meta-parameter defining the distribution
pα(θ) over parameter values. With passages analogous to
PG, we can again estimate the gradient of the expected
return, this time as

∇αJ ≈
1

N

N∑
n=1

∇α log pα(θ
n)(Rn

0 − b), (8)

whereθn is the parameter used at then-th of theN epochs
considered; also in this case, we can useN = 1. Compared
with PG, in PGPE the information about the state-action
pairs actually visited, conveyed by the historyH, is lost,
andθ is evaluated directly based on the returnR0 obtained
for the whole epoch. In the terminology of [8], PGPE

should therefore be considered aphylogeneticmethod, as
evolutionary computation, while PG isontogenetic.

A multimodal PGPE was proposed in [9]: in this case, the
distribution is a mixture of Gaussians,

pα(θ
i) =

K∑
k=1

wi

k
N (µi

k
, σi

k
), (9)

whereK is the number of modes,i = 1, . . . , d denotes one
of the d dimensions of the parameter, and the weightswi

k

are updated together with the parameters of each Gaussian,
following an approximated gradient, with the additional
constraint that

∑
k = 1Kwi

k
= 1.

C. Continuous action reinforcement learning automata
(CARLA)

Learning Automata [10] are simple reinforcement learners
for single-stage, stateless environments, and discrete actions.
In this kind of RL problems, which corresponds to the well-
known multi-armed bandit problem [1], an epoch consists
in the execution of a single action, followed by the ob-
servation of the corresponding reward. Also in this case,
the policy is represented as a probability distribution over
actions, which is updated after each epoch. An extensions
to continuous actions, similar to PG, has been proposed in
[11]; here, we adopt instead the alternative formulation of
[12], termed Continuous Actions Reinforcement Learning
Automata (CARLA). In this method, the distributionf(a)
over action space is non-parametric: its density, initially
uniform, is stored explicitly for all points of an equally
spaced grid. After each epoch, the probability of the action
executed is reinforced, mixing the current density with a
Gaussian function with constant standard deviationλ (termed
spreading rate), centered in the action itself, whose ampli-
tude is proportional to the observed reward:

ft+1(a) = γt[ft(a) + βt(at)αe
−

1

2
(
a−at

λ
)2 ] ∀a ∈ A. (10)

Figure 4 illustrates the learning mechanism of CARLA.

IV. APPLICATION TO SETUP

In this section we describe the design decisions taken to
apply RL to the wet clutch setup.

State and Action SpacesThe clutch is controlled by a
single continuous signal, the current to the valve controlling
oil pressure. In the model, the available signals are oil
pressure and estimated piston position. Of these, only oil
pressure is available on the real clutch, therefore we cannot
make use of the estimated piston position as state variable.
Initially, we will not consider any state information, and
control the clutch in open loop. The utility of adding oil
pressure is questionable, as this signal tends to follow the
input signal. When moving to the real setup, we will include
the slip signal.

Policy For the policy, we are considering an open loop
controller, defined by four parameters, the same one in the
evolutionary computation approach of [13] (Figure 5); a
simplified two-parameter version of the same signal, obtained



by fixing two of the four parameters; and a closed loop
controller, consisting of a recurrent neural network, along the
lines of [6]. In both cases, the RL problem can be represented
as a stateless, single stage problem, where an epoch lasts
for a single timestep, at which the policy, represented by a
multidimensional parameter which corresponds to the action
of the reinforcement learner, is applied to the system for a
given time. For PG, a multi-stage formulation is possible.

Reward Regarding the reward signal, this has to be a
scalar, favoring both objectives at once. For the simulated
model, we adopted a reward of the formr = c/(v + c),
where v is piston velocity at engagement,c = 10−3 is a
constant. Attributing this reward at engagement timet results
in a returnR = γtc/(v + c), whereγ ∈ [0, 1) is a constant
discount factor. Note that the termγt, typically used in RL to
discount rewards, favors early engagements; while the term
c/(v+c) tends to0 for large velocities, is0.5 for velocityv =
c, and it tends to1 whenv tends to0. In practice,γ can be
used to control the trade-off among the two objectives: a low
value favors early engagements, while a high value increases
the impact of the second term, favoring smooth engagements
(low piston velocity). Figure 6 plots the return, along with
the evolution of related signals in the simulated model. When
moving to the real clutch, we will instead minimize the jerk
g, again using a reward of the formconst/(g + const).

V. EXPERIMENTS

In this section we report example plots from experiments
with Multimodal PGPE, with2 and3 modes, using the two
parameter version of the open loop signal in Fig. 5. A learn-
ing rate of0.4 was used. After preliminary tests with higher
values, the discount rateγ was set to an intermediate value,
0.5, in order to obtain a good compromise among the two
objectives, favoring a smooth yet prompt engagement. Each
experiment was repeated25 times, using different random
seeds, each run lasting for2000 epochs. All runs converged
to a different set of parameters(a, d), but with a similar
performance in terms of piston velocity and engagement
time. Plotting the final parameters for each of the25 runs
(Figure 7) allows to identify a region of parameter settings
which produces a similarly good behavior, corresponding to
a “ridge” in the reward function.

To highlight the convergence of the algorithm, in Fig-
ures 8, 9 we report instead the evolution of the two objec-
tives, with2 and3 modes respectively. Aggregated statistics
for all 25 runs are reported in the form of box-plots, each
box corresponding to a group of100 consecutive epochs.
From top to bottom, the graphs represent, respectively, the
two objectives (piston velocity and engagement time), to be
minimized, and the corresponding rewards, to be maximized.

VI. CONCLUSIONS

The first results obtained are promising, as PGPE manages
to obtain a smooth engagement in a few hundred epochs. On-
going research is aimed at analyzing the effect of parameter
γ on the trade-off among the two objectives. We will then
proceed incrementally, first using the parameters found in

this phase to initialize(a, d) in the four parameter model,
and adapting all four parameters further in simulation; then
transferring the best obtained controllers to the real clutch,
optimizing the actual objective, i.e., reducing jerk.
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Fig. 3: A simple example illustrating the effect of one step of PG,
with no state information, single stage epochs (T = 1), A = [0, 1],
and Gaussianπ, with θ = (µ, σ). Left: the first epoch is executed,
drawing actiona0 ∼ π0(a), and observing rewardr0, which in this
case coincides with the returnR0. Center:asR0 > b, following the
gradient (7) increasesπ(a0). Right: updated distributionπ1, ready
for the next epoch.
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Fig. 4: An example illustrating CARLA.Left: the first epoch is
executed, drawing actiona0 ∼ π0(a), whereπ is initially uniform,
and observing rewardr0. Center: π is updated, mixing it with a
Gaussian bell centered ina0, with amplitude proportional tor0 as
R0 > b. An actiona1 is drawn from the updatedπ, resulting in
a larger rewardr1. Right: π is updated, this time mixing with a
larger bell, as the observed rewardr1 was bigger.

Fig. 5: Parametric input signal from [13], with four parameters
(a, b, c, d). In our implementation, all parameter ranges are mapped
to the unit interval[0, 1]. In the two parameter version, onlya and
d are free, whileb = 0, andc = d.
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Fig. 6: A capture of the different signals available in the filling phase
model of the wet clutch. Horizontal axes report time in seconds.
From top to bottom: an example input signal (witha = b = c =
d = 0.5); oil pressure; estimated piston position; reward signal,
consisting of a single peak at engagement time, just above1 second.
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Fig. 8: PGPE with2 modes: Performance for25 runs. Each box
corresponds to100 consecutive epochs. Top: piston velocity, to be
minimized. Center: engagement time, to be minimized. Bottom:
reward, to be maximized.
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Fig. 9: PGPE with3 modes: Performance for25 runs, divided in
bins of 100 epochs each. Top: piston velocity, to be minimized.
Center: engagement time, to be minimized. Bottom: reward, to be
maximized.


