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Abstract—In most existing motion control algorithms, a
reference trajectory is tracked, based on a continuous measar
ment of the system’s response. In many industrial applications, } 77777 Env
however, it is either not possible or too expensive to install |
sensors which measure the system’s output over the complete !
stroke: instead, the motion can only be detected at certain 1
discrete positions. The control objective in these systems is eft (L
not to track a complete trajectory accurately, but rather to : %
achieve a given state at the sensor locations (e.g. to pass by | ‘
the sensor at a given time, or with a given speed). Model-based ‘ :
control strategies are not suited for the control of these sysims, L L RL
due to the lack of sensor data. We are currently investigating the
potential of a non-model-based learning strategy, Reinforcemen
Learning (RL), in dealing with this kind of discrete sensor
information. Here, we describe ongoing experiments with a wet
clutch, which has to be engaged smoothly yet quickly, without  Fig 1: Block representation of RL. Env: environment (plant being
any feedback on piston position. controlled). IT: policy (controller), generating the action (control

I. INTRODUCTION signal) a(t) given the current state of the plasft); RL: learning
’ ) . algorithm, adapting the policy based on state, action, and reward
RL problems [1] are a class of machine learning problemsignals. Continuous lines indicate online interactions, while discon-

where an agent must learn to interact with an unknowtinuous lines refer to the learning process, which can be online or
environment, using a “trial and error” approach. At a giver?ffline, depending on the particular algorithm.
timestept, the agent may execute one of a setastions
a € A, possibly causing the environment to changesitte
s € §, and generate a (scalagward r € R. Both state
and action spaces can be multidimensional, continuous
discrete. An agent’'s behavior is represented bypitdicy,
mapping states to actions. The aim of a RL algorithm i
to optimize the policy, maximizing the reward accumulated
by the agent. Simply stated, RL consists in learning from %
teacher (the environment) who cannot tellwisatto do next
(the optimal policy), but onlhow goodwe are doing so far I[I. EXPERIMENTAL SETUP
(the reward signal). It therefore offers a suitable tooldon-
trolling systems with discrete sensor information. Theear
state at the discrete sensors location can be incorpomated
the reward signal, favoring the desired behavior.

Two main families of RL approaches can be distinguishec
In value basednethods, the expected future rewapds, a)
allowed by taking actiona in state s is estimated: the 15 valva

In both cases, learning is organized in a sequence of

pochs each consisting of a sequence of interactions with
the environment. Another independent classification can be
gnade amongpffline learning, where the policy is updated
nly after one or more epochs have been completed; and
nline learning, where such update can be performed also
uring an epoch (Fig. 1).
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policy consists in selecting the actianwhich maximizes Ingoing shaft Outgoing shaft
Q@ in the current states. This can be done storing and _ _ _
updating estimates in tabular form, or resorting to functio Fig. 2: Schematic representation of the wet clutch

approximators ifA andS are too big, or continuous. lirect
policy search the space of policies is searched for directly, The setup consists of a wet clutch (Figure 2), used in
maximizing the reward. heavy duty transmission systems to engage/disengage- diffe



ent loads. We considered in particular the automatic cbntréollowing a Monte Carlo estimate of the expected cumulative
of the engagement phase, which has to be fast enough, lfdiscounted) reward. In this section we describe the basic
also smooth, in order to avoid disturbing the operator. Thigleas behind this estimation, following [6], to which the
latter requirement can be implemented minimizing jibx, reader can refer for further details.
defined as the second derivative of the slip, which is the To avoid cluttering notation, we consider a RL problem
difference in angular speed among the two shafts. with a scalar actiont € A C R, and scalar state € S C

The issue with this setup is that there is no sens@. Be 8 € R? the d-dimensional parameter defining the
providing information about the actual position of the pist conditional distribution over actionsg(a | s), from which
which can only be detected when the piston actually touchestions are drawn, and € R the reward obtained at timestep
the plates, and the slip phase begins. Given the availalile= N. The index we intend to maximize is the cumulative
signals (oil pressure and temperature), there is no rafererdiscounted reward?y, with R, = Zf:t vt~Fr, being the
trajectory that can be tracked using classical control oash return at time ¢, wherey € (0,1) is a discount factor,
In this sense, this setup is a good example of the discreégpressing a preference for early over late rewards, And
sensor systems mentioned above (see also [2]). Moreoviy,the duration of an epoch. BE = {sqg,aq,...,sT,ar}
there currently is no reliable model of the whole engagementhe full history of state-action paird/ € H, and R(H) the
an approximate model is available for the filling phasegorresponding return. The probability of observing a given
until the piston touches the plates, but not for the follayvin history H depends orf, on the unknown state transition
slip phase, which would allow to simulate and optimizgprobability p(s;+1 | s¢, a;), and on the unknown initial state
the resulting jerk. However, it has been observed that thgobability p(sg), as
jerk depends on the speed of the piston when this reaches
the plates: the lower the speed, the lower the jerk, and the
smoother the engagement. In other words, there is a trdde-of p(H) = p(so) [ [ p(ses1 | se,a)mo(ar | s1). (1)
among the two objectives: on one hand, a very slow piston =0
movement will result in a smooth engagement, which takebhe expected value aR is defined as
a long time; on the other hand, a fast piston will engage in
a short time, but it will also cause a jerky engagement, and J=FE{R(H)} = / p(H)R(H)dH. 2)
possibly damage the setup. H

While the availability of a model is not in principle 1o pagic idea behind policy gradients is to follow the
necessary for RL, it can in practice allow us to speed Upy,gient of 7 with respect tod, in order to maximize the

t_he learning process, a‘?'OF_’““g an inc_remental aPPmaCﬂ“- Irl@xpected return. While such gradient cannot be evaluated in
first phase, we can optimize the policy on the filling phasg|oseq form, it can be estimated as follows. Bringing the

model, aiming at obtaining a fast engagement, but with a loye jative operator inside the integral, we can write:
piston velocity at engagement. In a second phase, we will

transfer the obtained policy on the real clutch, and further
improve its performance, reducing the actual jerk.

T

Vol = /H (Nop(H)R(H) + p(H)VoR(H)] dH.  (3)

1. METHODS As the observed rewards do not depend@yrbut only on

Threedirect policy searciRL methods are being evaluated: We haveVe R(H) = 0, therefore the second term of the
on this setup, all representing the policy as a probabiligfddition can be discarded. The first term can be rewritten
density function (pdf) over actions, which is updated oflin USing the “likelihood ratio” trick, multiplying and dividig
after each epoch: the policy gradient (PG) method [3], whedk PY P(H), thus obtaining
the actions are drawn from a Gaussian distribution; PG
with parameter exploration (PGPE) [4], where the pdf is a Vol = /HP(H)VG logp(H)R(H)dH =
mixture of Gaussians; and a continuous learning automa-
ton (CARLA) [5], where the pdf over the actions is non- = E{Velogp(H)R(H)} )

parametric. In the following three subsections, we brieflysien that (1) is a product, its logarithm can be expressed
describe each method. as a sum

A. Policy gradients (PG) T

In Policy Gradients (PG) methods [3], the policy is repre- 108P(H) = logp(so) + Zlogp(st“ | sea¢) +
sented as a parametric probability distribution over th&ac . =0
space, conditioned by the current state of the environment.
Epochs are subdivided into discrete time steps: at every + Zlogﬂ"(at | 50), ®)
step, an action is randomly drawn from the distribution, =0
conditioned by the current state, and executed on the enwiith the advantage that deriving w.r@ leaves only the
ronment, which updates its state accordingly. After an bBpoaightmost terms, which can be evaluated analyticallyras
has been completed, the parameters of the policy are updatddrivable. We can therefore perform a Monte Carlo estimate



of (4), after runningN epochs, as follows should therefore be consideredpaylogeneticmethod, as
evolutionary computation, while PG @ntogenetic

VoJ = E{V;’ IZ%p(H)R(H)} ~ A multimodal PGPE was proposed in [9]: in this case, the
1 it , distribution is a mixture of Gaussians,
~ 5 > Velogm(ap | sp)R(H™), (6) -
n=11t=0 i i i i
wheren is used as an index, to refer to theth epoch. Pa(8') = ;wk/\/(ﬂkvak% )

In practice, most authors suggest to use= 1, updating ) )
6 after each epoch [3], [6]. Moreover, to reduce the varianc@here K is the number of modes,= 1,..., d denotes one
of the estimate, the ter () is replaced byl returnsR,, ©f the d dimensions of the parameter, and the weighfs
each multiplied with the corresponding teing mo(az | s;), € updated together' with the parameters of each Gaussian,
thus discarding past rewards; and shifted by a baselif@/owing an approxwp(ated gradient, with the additional
b, which, in the simplest case, is just the average retuifPnstraint thad k= 17w = 1.

observed so far: C. Continuous action reinforcement learning automata
T (CARLA)
Vol ~ ) Velogma(a | 5:)(Re —b). ™ Learning Automata [10] are simple reinforcement learners

=0 . . . 5
¢ for single-stage, stateless environments, and discrétmac

Intuitively, following the gradient (7), the probabilityfo | thjs kind of RL problems, which corresponds to the well-
taking actiona; in states; is increased if the returi®;, known multi-armed bandit problem [1], an epoch consists
accumulated starting at time is larger than the baseline iy the execution of a single action, followed by the ob-
b, representing the average return, while it is decrease@yation of the corresponding reward. Also in this case,
otherwise. Fig. 3 illustrates the effect of PG in a simplgne policy is represented as a probability distribution rove
case, with no state informatiori, = 1, and Gaussiam,  gctions, which is updated after each epoch. An extensions
with 6 = (u, o). to continuous actions, similar to PG, has been proposed in
B. PG with parameter exploration (PGPE) [11]; here, we adopt instead the alternative formulation of

12], termed Continuous Actions Reinforcement Learning

A major 'dlsadvantage. of PG methods is .that QraW|ng %utomata (CARLA). In this method, the distributiofi(a)
random action at every timestep may result in noisy contro

: . . . over action space is non-parametric: its density, initiall
signals, as well as noisy gradient estimates. Moreover, the . X L .
ST ) ) . . uniform, is stored explicitly for all points of an equally
policy is required to be differentiable w.r.t. its paraniste spaced arid. After each epoch. the probability of the action

To overcome these issues, PG with Parameter EproratioH grid. poch, P y

(PGPE) was introduced [7], [4]. In this method, the rando executgd s re!nforqed, mixing the current ersity with a
sampling and policy evaluéltion steps are, in 'a sense. “jzaussian function with constant standard deviahgtermed

verted”: the policy is a parametric function, not necedgari spreading rat§; centered in the action itself, whose ampli-

differentiable, therefore it can be an arbitrary parametritude is proportional to the observed reward:

controller; the parameter value to be used is sampled at the B

beginning of each epoch from a Gaussian distribution, whose £, , 1 (a) = v [fi(a) + Bi(a)ae 25 Va € A (10)
parameters are in turn updated at the end of the epoch, again_. . . .
following a Monte Carlo estimate of the gradient of the Figure 4 illustrates the learning mechanism of CARLA.
expected return. In other words, rather than searching the IV. APPLICATION TO SETUP

parametric policy space directly, PGPE performs a search , g section we describe the design decisions taken to
in a “meta-parameter” space, whose points correspond A%DW RL to the wet clutch setup

probability distributions over the (parametric) policyase. State and Action SpacesThe clutch is controlled by a

Be againg the parameter of the policy, wherea; = ginaie continuous signal, the current to the valve coritrgll
fo(s:); and o the meta-parameter defining the distribution,; " ossure. In the model, the available signals are oil

Pa(8) over parameter values. With passages analogous gpessure and estimated piston position. Of these, only oil

PG, Wehpaq again estimate the gradient of the expect qessure is available on the real clutch, therefore we danno
return, this time as make use of the estimated piston position as state variable.

1 X . Initially, we will not consider any state information, and
Vad ~ sza log pa (6")(Ry — b), (8)  control the clutch in open loop. The utility of adding oil
n=1 pressure is questionable, as this signal tends to follow the

wheref” is the parameter used at theth of the NV epochs input signal. When moving to the real setup, we will include
considered; also in this case, we can Bée- 1. Compared the slip signal.

with PG, in PGPE the information about the state-action Policy For the policy, we are considering an open loop
pairs actually visited, conveyed by the histaR), is lost, controller, defined by four parameters, the same one in the
and@ is evaluated directly based on the retutp obtained evolutionary computation approach of [13] (Figure 5); a
for the whole epoch. In the terminology of [8], PGPEsimplified two-parameter version of the same signal, obthin



by fixing two of the four parameters; and a closed looghis phase to initializga, d) in the four parameter model,

controller, consisting of a recurrent neural network, gltime

and adapting all four parameters further in simulationnthe

lines of [6]. In both cases, the RL problem can be representénsferring the best obtained controllers to the realcblut
as a stateless, single stage problem, where an epoch lagtéimizing the actual objective, i.e., reducing jerk.

for a single timestep, at which the policy, represented by a
multidimensional parameter which corresponds to the actio
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model, we adopted a reward of the form= c/(v + ¢),
where v is piston velocity at engagement,= 1073 is a
constant. Attributing this reward at engagement timesults
in a returnR = ~'¢/(v + ¢), wherey € [0,1) is a constant
discount factor. Note that the term, typically used in RL to
discount rewards, favors early engagements; while the term
¢/(v+c) tends ta) for large velocities, i9.5 for velocityv = [3]
¢, and it tends ta whenv tends to0. In practice,y can be
used to control the trade-off among the two objectives: a lo
value favors early engagements, while a high value inceease
the impact of the second term, favoring smooth engagements
(low piston velocity). Figure 6 plots the return, along with 5
the evolution of related signals in the simulated model. When
moving to the real clutch, we will instead minimize the jerk [6]
g, again using a reward of the forronst/(g + const). [7]

(1]
(2]

V. EXPERIMENTS

In this section we report example plots from experiments
with Multimodal PGPE, with2 and 3 modes, using the two [g]
parameter version of the open loop signal in Fig. 5. A learn-
ing rate of0.4 was used. After preliminary tests with higher [9]
values, the discount rate was set to an intermediate value,
0.5, in order to obtain a good compromise among the two
objectives, favoring a smooth yet prompt engagement. Eadl?
experiment was repeateth times, using different random
seeds, each run lasting f8000 epochs. All runs converged [11]
to a different set of parameter,d), but with a similar
performance in terms of piston velocity and engagemeniy
time. Plotting the final parameters for each of theruns
(Figure 7) allows to identify a region of parameter settingﬁgl
which produces a similarly good behavior, corresponding to
a “ridge” in the reward function.

To highlight the convergence of the algorithm, in Fig-
ures 8, 9 we report instead the evolution of the two objec-
tives, with2 and3 modes respectively. Aggregated statistics
for all 25 runs are reported in the form of box-plots, each
box corresponding to a group df0 consecutive epochs.
From top to bottom, the graphs represent, respectively, the
two objectives (piston velocity and engagement time), to be
minimized, and the corresponding rewards, to be maximized.

VI. CONCLUSIONS

The first results obtained are promising, as PGPE manages
to obtain a smooth engagement in a few hundred epochs. On-
going research is aimed at analyzing the effect of parameter
~ on the trade-off among the two objectives. We will then
proceed incrementally, first using the parameters found in
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Fig. 3: A simple example illustrating the effect of one step of PG 10f\\_1

with no state information, single stage epochis= 1), A = [0, 1], ‘ ‘ ‘ ‘ ‘ ‘
and Gaussiamr, with @ = (i, o). Left: the first epoch is executed, % 0.2 04 0.6 0.8 1 12 14 16
drawing actiorag ~ mo(a), and observing rewareh, which in this 0.05
case coincides with the retufy. Center:as Ry > b, following the
gradient (7) increases(ao). Right: updated distributionr;, ready
for the next epoch.
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0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
1 T T T T T T
0.5r | b
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
2 Fig. 6: A capture of the different signals available in the filling phase
o ™ model of the wet clutch. Horizontal axes report time in seconds.
From top to bottom: an example input signal (with=b = ¢ =
d = 0.5); oil pressure; estimated piston position; reward signal,
consisting of a single peak at engagement time, just ab@ezond.
0 al 0@ 1 0 1

Fig. 4: An example illustrating CARLALEeft: the first epoch is
executed, drawing actiom ~ mo(a), wherer is initially uniform,
and observing reward,. Center: 7 is updated, mixing it with a
Gaussian bell centered iy, with amplitude proportional tey as
Ro > b. An actiona, is drawn from the updated, resulting in
a larger rewardr;. Right: 7 is updated, this time mixing with a
larger bell, as the observed rewardwas bigger.
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Fig. 7: PGPE with2 (left) and 3 modes (right): Final parameter
values for25 runs, identifying a region of high reward.

Time

Fig. 5: Parametric input signal from [13], with four parameters
(a,b,c,d). In our implementation, all parameter ranges are mapped
to the unit interval0, 1]. In the two parameter version, ondyand

d are free, whileb = 0, andc = d.



Lr: 0.4Modes: 3

Lr: 0.4Modes: 2

?\9\%

+ - ] - -

o= ] —

S — ]} — -

+ - T -

- — [} —

H-— L [ ]- -+

+ i — — -t

- - ]-—

A — ] - —

+ e — — - —

- — — ] - —

- — — [ - — — -
- — — = | - - — -+

SRR T ----- .
————o- T ----- -
b T - -

i B R -

| |- - -

R PR ftstietutintiafits
288588388 3
c @ @ @ @ g o <o 9o Q9
o o o o o o o o o

A1100jaA uoisid

+Hw— {]-

e — {T]-

W — LT F -

- {1 F -+

- - L1 F -

+--4{TF-+

- - {1 - A4

+ o — — L ]——

+ - — -

+ 4+ e = — =

A - — — -—d

+ - — — ] - — —

H b — — — | - — — <4
= == - T 3----~

it T r----- -

b T ------ .

s B B LR TR -

| e -

R T
288588388 3
c @ @ @ @ g 9o <o o Q9
o o o o o o o o o

Ano0jan uoisid

9 10 11 12 13 14 15 16 17 18 19 20

6 7 8
Hundreds of epochs (25 runs)

5

9 10 11 12 13 14 15 16 17 18 19 20

6 7 8
Hundreds of epochs (25 runs)

5

Lr: 0.4Modes: 3

Lr: 0.4Modes: 2

+ +am— {1

- — ]
He— — - o

+ = - [} -

S — — ] ] —

+ - — ] —

+ e — — ] - o

+ o+ e — ] -

+ + - — — -

9 10 11 12 13 14 15 16 17 18 19 20

6 7 8
Hundreds of epochs (25 runs)

5

avem— ] |

+Hmm— {1

v — ] ]—

i — [ | —

- — { [ ]+

+ il — — -4

- — — 1 - o

- — ] | —

+ - — = L [ F -4

+ oA - — -

+ S — — -~

+ o+ e — — — [ |- — o

+ - - — — | - — — o

+ b — — — — | F - — — o

+ o — — — — — — T T 3----H

A - -~ — — — — — 4 T 3 ----- -

b oo oo T -

e T 3------ .

“““““ I R SRR

- -- T -------- .

N« o @ < «N o
~N L — — —

awn Juawabebug

9 10 11 12 13 14 15 16 17 18 19 20

6 7 8
Hundreds of epochs (25 runs)

5

+ o A - — — — - -

o - — — — [ | — — —

+ o A — — — — — — T ----4

FHE - — — — — — 4 T t----- 5

o - — = = = = = = T }F----- B

B S — .

““““““ T -------1

Fo-------- 1 F------- ]

N N ©  © ¥ o -
~N L — — —

awn Juawabebug

Lr: 0.4Modes: 3

Lr: 0.4Modes: 2

T T T
i — - A 5
+ - — [ |- 4+ ]
+ e — [ ] — i+ X
e — ] — 5
e — L T} - = 2

e — - Bt

c

wemam- - {11~ {33

++ e — ] - m%

=

b —-— — - S0

<

+ - HHH - — - um

Q.

- — - -4+ +3 0

—

- - — ] - o QM

T - — - sw

=

T — I =

=]

+ o+ Hmm— - { [ ] - oI

+ - — — ~
A — — -
I L I L L I L | I
o o N 9 1 ¥ ® & o O
o o o o o o o o o
uinlay
T T T T T
+ 4 - — i+ +8
+ - - - —+ +3
HilH- — - +93
- — [ |- o TS
i - ] ] - o +9
- —-— - 9%
c
v - - {T1-- 133
T - m%
=
+ i — [ ] - A ‘um
b — — - - ‘nm
Q.
+ o H— — — Qo
—
S+ HH—— — -4 1s©
3
At — ] -+ o @
=
A — BN
=]
- — -q oI
A+t — - o o
A ————— B
+ .- — { ] o o
- —— — — ~
+ o - — — —
I L I L L I L 1 I
o 0O N~ © 1 T M N < O
o o o o o o o o o

maximized.

Fig. 8: PGPE with2 modes: Performance fa5 runs. Each box Fig. 9: PGPE with3 modes: Performance fa&5 runs, divided in
corresponds td00 consecutive epochs. Top: piston velocity, to bebins of 100 epochs each. Top: piston velocity, to be minimized.
minimized. Center: engagement time, to be minimized. BottomCenter: engagement time, to be minimized. Bottom: reward, to be

reward, to be maximized.



