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Abstract

In most existing motion control algorithms, a ref-
erence trajectory is tracked, based on a continu-
ous measurement of the system’s response. In
many industrial applications, however, it is ei-
ther not possible or too expensive to install sen-
sors which measure the system’s output over the
complete stroke: instead, the motion can only be
detected at certain discrete positions. The con-
trol objective in these systems is often not to
track a complete trajectory accurately, but rather
to achieve a given state at the sensor locations
(e.g. to pass by the sensor at a given time, or
with a given speed). Model-based control strate-
gies are not suited for the control of these sys-
tems, due to the lack of sensor data. We are cur-
rently investigating the potential of a non-model-
based learning strategy, Reinforcement Learning
(RL), in dealing with this kind of discrete sen-
sor information. Here, we describe experiments
with a simple yet challenging system, where a
single sensor detects the passage of a mass being
pushed by a linear motor.

RL problems (Sutton & Barto, 1998) are a class of machine
learning problems, where an agent must learn to interact
with an unknown environment, using a “trial and error” ap-
proach. At a given timestept, the agent may execute one of
a set ofactions a∈A, possibly causing the environment to

Appearing inProceedings of the 20th Machine Learning confer-
ence of Belgium and The Netherlands. Copyright 2011 by the au-
thor(s)/owner(s).

change itsstate s∈ S, and generate a (scalar)reward r∈R.
An agent is represented by apolicy, mapping states to ac-
tions. The aim of a RL algorithm is to optimize the policy,
maximizing the reward accumulated by the agent. Learn-
ing is organized in a sequence ofepochs, each consisting
of a sequence of interactions with the environment. Simply
stated, RL consists in learning from a teacher (the envi-
ronment) who cannot tell uswhat to do next (the optimal
policy), but onlyhow goodwe are doing so far (the reward
signal). It therefore offers a suitable framework for the con-
trol of systems with discrete sensor information. The target
state at the discrete sensors location can be incorporated in
the reward signal, in order to favor the desired behavior.

The potential of different RL techniques is validated on
a set-up consisting of a linear motor and a moving mass
mounted on a straight horizontal guide (Figure 1). The po-
sition of the moving mass is monitored via a single discrete
sensor, set along the guide, which fires at the passage of a
small (1 cm) element attached to the mass. When the motor
is activated, the mass is “punched” forward, and slides up
to a certain position, depending on the duration and speed
of the motor’s stroke, and on the unknown friction among
the mass and its guide.
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Figure 1: Sketch set-up, position measurement at one location

Two tasks are defined on this setup, with different objec-
tives: a) let the mass pass the sensor at a predefined time
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(time task); b) let the mass stop exactly in front of the sen-
sor (position task). As the motor movement precedes the
passing of the sensor, conventional feedback control meth-
ods cannot obviously be applied to solve these tasks. For
simplicity, we only consider constant speed signals, with
duration varying on a closed interval, such that an action
consists of a single scalar, which we normalize in[0,1], and
an epoch consists of a single action, followed by a scalar
reward. For each task, a corresponding reward function is
implemented, favoring the desired behavior1. Fig. 2 reports
samples of the two reward functions: note that the system is
highly stochastic, and repeating the same action twice can
lead to different rewards.
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Figure 2: Reward functions for the two tasks, sampled for 500
randomly chosen actions on a subset of the unit interval.

Threedirect policy searchRL methods are evaluated on
this setup, all representing the policy as a probability den-
sity function (pdf) over actions, which is updated offline,
after each epoch: the policy gradient (PG) method (Peters
& Schaal, 2006), where the actions are drawn from a Gaus-
sian distribution; PG with parameter exploration (PGPE)
(Sehnke et al., 2010), where the pdf is a mixture of Gaus-
sians2; and a continuous learning automaton (CARLA)
(Rodŕıguez et al., 2011), where the pdf over the actions is
non-parametric.

While all three methods can successfully solve both tasks,
CARLA displays faster convergence in both cases. Fig. 3,
4 report example runs on the two tasks. The position
task turns out to be more difficult: this can easily be ex-
plained comparing the reward samples (Fig. 2). The best
action for the position task, around 0.25, is a “needle in
a haystack” compared to the time task, where the reward
function changes more gradually around the optimal action.

1For the time task, given a target timet0, reward is given as
r = exp{−c(t − t0)2}, wherec is a constant, andt is the time at
which the sensor starts firing, which is∞ if the mass does not
reach it. For the position task, the reward is given as the portion
of time during which the sensor fires, over a constant time interval
measured from the beginning of the motor’s movement.

2This method is conceptually different from PG in that the pdf
is not over actions, but over parameters of the policy, which are
drawn at the beginning of an epoch. In this case, however, the
action is a single parameter, and the epoch a single time step, so
the two methods differ only for the pdf used (single Gaussian vs.
mixture)
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fmtcsetup;param.nact=1;param.posRew=1;param.time=1;param.targetT=0.55;param.length=1;

Figure 3: Time task, CARLA
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Figure 4: Position task, CARLA
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