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Abstract. Indicator-based evolutionary algorithms are amongst the best
performing methods for solving multi-objective optimization (MOO) prob-
lems. In reinforcement learning (RL), introducing a quality indicator in
an algorithm’s decision logic was not attempted before. In this paper, we
propose a novel on-line multi-objective reinforcement learning (MORL)
algorithm that uses the hypervolume indicator as an action selection
strategy. We call this algorithm the hypervolume-based MORL algorithm
or HB-MORL and conduct an empirical study of the performance of
the algorithm using multiple quality assessment metrics from multi-
objective optimization. We compare the hypervolume-based learning al-
gorithm on different environments to two multi-objective algorithms that
rely on scalarization techniques, such as the linear scalarization and the
weighted Chebyshev function. We conclude that HB-MORL significantly
outperforms the linear scalarization method and performs similarly to
the Chebyshev algorithm without requiring any user-specified emphasis
on particular objectives.

Keywords: multi-objective optimization, hypervolume unary indicator,
reinforcement learning

1 Introduction

Multi-objective optimization (MOO) is the process of simultaneously optimizing
multiple objectives which can be complementary, conflicting or independent.
MOO is omnipresent in real-life and comprises a large part of the current research
landscape involving optimization techniques.

Most of the research concerning this domain is being focused on evolutionary
algorithms (EAs), such as NSGA-II [1]. A popular approach to solving MOO
problems is to transform the multi-objective problem into a single-objective
problem by employing scalarization functions. These functions provide a sin-
gle figure indicating the quality over a combination of objectives, which allows a
simpler and fast ordering of the candidate solutions. Recently, quality indicators,
such as the hypervolume measure that are usually used for performance assess-
ment, are introduced into the decision making process of these EAs. Searching
the decision space using quality indicators is a fruitful technique in EAs, but in
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reinforcement learning, this approach remained untouched. This paper fills this
gap by proposing a novel reinforcement learning algorithm based on Q-learning
that uses the hypervolume metric as an action selection strategy.

Contributions. There exist several algorithms that focus on multi-objective
reinforcement learning (MORL) [2,3,4], but they only take into account the
linear scalarization function. We combine ideas from two machine learning tech-
niques (i.e. optimization and reinforcement learning) that have different goals in
exploiting the multi-objective environments. We propose a novel multi-objective
reinforcement learning algorithm where the hypervolume unary indicator is used
to evaluate action selection. We call it hypervolume MORL (HB-MORL) and
conceptually compare it two two scalarization-based MORL algorithms on envi-
ronments consisting of two and three objectives. The experimental results show
that HB-MORL outperforms the linear scalarization algorithm and performs
similar to the Chebyshev-based algorithm.

Outline. In Section 2, we provide an overview of background concepts such as
multi-objective optimization and we introduce reinforcement learning in Section
3. Subsequently, in Section 4, we reveal our novel algorithm, HB-MORL and
conduct experiments in Section 5. Finally, we draw conclusions in Section 6.

2 Preliminaries

A multi-objective optimization problem optimizes a vector function whose el-
ements represent the objectives. A maximization multi-objective problem is
max F(x) = max{f1(x), f2(x), ..., fm(x)}, where m is the number of objectives,
and f i is the value for the i-th objective. A solution x1 is said to dominate an-
other solution x2, F(x2) ≺ F(x1), iff for all objectives j, f j(x2) ≤ f j(x1), and
there exists a objective i, for which f i(x2) < f i(x1).

2.1 Scalarization functions

Scalarization functions transform a multi-objective problem to a single-objective
problem. The scalarization functions often take into consideration weighting co-
efficients which allow the user some control over the chosen policy, by placing
more or less emphasis on each objective. In this paper, we consider two instances
of scalarization functions:

Linear scalarization function. In the linear weighted-sum method a weighted
coefficient wi is associated with each objective function. A weighted-sum is per-
formed over all objectives and their corresponding weights. The value of a so-
lution x is

∑m
i=1 wifi(x). The benefit of the linear scalarization functions is its

simplicity and intuitive representation.

Chebyshev scalarization function. Also for this scalarization, we have
weights associated to each objective. The Chebyshev metric [5] calculates for
each objective the weighted distance between a reference point, z∗ and a point
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of interest in the multi-objective environment. For maximization problems, it
chooses the greatest of these distances. The scalarized value for a solution x is
maxi=1,...,m wi|fi(x) − z∗i |. The reference point z∗ is a parameter that is con-
stantly being updated with the best value for each objective of solutions in the
current Pareto set plus a small constant, i.e. z∗ is z∗i = f besti (x) + ε, where ε is
a small number.

2.2 Indicator-based Evolutionary Algorithms

Indicator-based evolutionary algorithms or IBEA is the class of algorithms that
rely on a quality indicators in their selection process. Let Ψ ⊆ 2X be the set of
all possible Pareto set approximations. A unary quality indicator is a function
I : Ψ → R, assigning a Pareto set approximations, A1, a real value I(A1). Many
quality indicators exist, but the one that is most interesting for our context is the
hypervolume indicator. This metric calculates the volume of the area between a
reference point and the Pareto set obtained by a specific algorithm.

The hypervolume measure is of particular interest in this context as it is the
only single set quality measure known to be strictly increasing with regard to
Pareto dominance. The drawback of calculating the exact hypervolume remains
its computation time, as it is an NP-hard problem [6]. Over the years, several
hypervolume-based EAs for MOO have been proposed, such as MO-CMA-ES [7]
and SMS-EMOA [8].

3 Multi-objective reinforcement learning

Evolutionary methods optimize an explicit objective function where reinforce-
ment learning (RL) optimizes an implicit objective function. More precisely, RL
involves an agent operating in a certain environment and receiving reward or
punishment for certain behaviour. The focus of this paper is on multi-objective
reinforcement learning (MORL) and how to combine it with the hypervolume
unary indicator. In the following sections, we give a brief overview of exist-
ing multi-objective reinforcement learnings algorithms that utilize scalarization
functions to transform the multi-objective search space of a problem into a single-
objective environment.

Markov decision process. The principal structure for RL is a Markov
Decision Process (MDP). An MDP can be described as follows. Let the set
S = {s1, . . . , sN} be the state space of a finite Markov chain {xl}l≥0 and A =
{a1, . . . , ar} the action set available to the agent. Each combination of starting
state si, action choice ai ∈ Ai and next state sj has an associated transition
probability T (sj , si, ai) and and immediate reward R(si, ai). The goal is to learn
a policy π, which maps each state to an action so that the expected discounted
reward is maximized. [9] proposed Q-learning, an algorithm that expresses this
goal by using Q-values which explicitly store the expected discounted reward for
every state-action pair. Each entry contains the value for Q̂(s, a) which represents
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the learning agent’s current hypothesis about the actual value of Q(s, a). The
Q̂-values are updated according to the following update rule:

Q̂(s, a)← (1− αt)Q̂(s, a) + αt[r(s, a) + γmax
a′

Q̂(s′, a′)] (1)

where αt is the learning rate at time step t and r(s, a) is the reward received for
performing action a in state s.

Multi-objective MDPs. In MOO, MDPs are replaced by multi-objective
MDPs or MO-MDPs [10]. These extend MDPs by replacing the single reward

signal by a vector of rewards, i.e. ~R(si, ai) = (R1(si, ai), . . . Rm(si, ai)), where m
represents the number of objectives. Since the reward vector consists of multiple
components, each representing different objectives, it is very likely that conflicts
arise between them. In such case, trade-offs between these objectives have to be
learned, resulting in a set of different policies compared to a single optimal policy
in single-objective learning. The overall goal of solving MO-MDPs is to find a
set of policies that optimize different objectives. The set of optimal policies for
each objective or a combination of objectives is referred to as the Pareto optimal
set.

Multi-objective reinforcement learning. There are several MORL frame-
works proposed in literature. For instance, [3] suggests a multi-objective algo-
rithm that uses a lexicographic ordering of the objectives. More precisely, by
placing minimal thresholds on certain objectives, policies are discovered that
take into account these constraints. [4] proposes a batch Convex Hull Value It-
eration algorithm that learns all policies in parallel, defining the convex hull of
the optimal Pareto set. [2] also proposes a batch MORL approach, based on
the linear scalarization function, to identify which actions are favoured in which
parts of the objective space. Notwithstanding their results, they all consists of
off-line algorithms, which involve sweeping over a set of collected data. There-
fore, the aspects of these algorithms on using and adapting their policy during
the learning process (i.e. on-line learning) were not studied.

Scalarization-based MORL. To the best of our knowledge, all MORL al-
gorithms are currently focusing on the linear scalarization function. Therefore,
the most general MORL algorithm that allows a fair comparison in this paper
is an on-line multi-objective Q-learning algorithm (MO Q-learning) employed
with the linear and the Chebyshev scalarization functions, presented in Sec-
tion 2. These novel multi-objective reinforcement learning algorithms [11] are
an extenstion to the single-objective Q-learning algorithm [9] that can accom-
modate for any scalarization function. The main change compared to standard
Q-learning and the work in [2] is the fact that scalarization functions are ap-
plied on Q-values in contrast to reward signals. Thus, the standard Q-table,
used to store the expected reward for the combination of state s and action a, is
extended to incorporate objectives, i.e. Q(s, a, o). This has the advantage that
non-linear functions, such as the Chebyshev function, can be utilized in the same
framework.
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Algorithm 1 Scalarized ε-greedy action selection, scal-ε-greedy()

1: SQList← {}
2: for each action ai ∈ A do
3: ~o← {Q(s, ai, o1), . . . , Q(s, ai, om)}
4: SQ(s, a)← scalarize(~o) . Scalarize Q-values
5: Append SQ(s, a) to SQList
6: end for
7: return ε-greedy(SQList)

In Algorithm 1, we present the scalarized action selection strategy for MO
Q-learning. At line 4, the scalarize function can be instantiated by any scalar-
ization function to obtain a single indication for the quality of the combination of
state s and action a, SQ(s, a) over the Q-values for each objective. Furthermore,
the standard ε-greedy strategy from RL can be applied after we transform the
multi-objective problem to a single-objective problem and decide the appropriate
action, based on these individual indications in SQList. The new multi-objective
Q-learning algorithm is presented in Algorithm 2. At line 1, the Q-values for each
triple of states, actions and objectives are initialized. Each episode, the agent
starts in state s (line 3) and chooses an action based on the multi-objective
action selection strategy of Algorithm 1 at line 5. Upon taking action a, the
agent is being transitioned into the new state s′ and the environment provides
it with the vector of rewards ~r ∈ ~R. At line 10, the Q(s, a, o) are updated with
a multi-objective version of Eq. 1. This process is repeated until the Q-values
converge.

Algorithm 2 MO Q-learning algorithm

1: Initialize Q(s, a, o) arbitrarily
2: for each episode T do
3: Initialize state s
4: repeat
5: Choose action a from s using policy derived from Q (e.g. scal-ε-greedy)

6: Take action a and observe state s′ ∈ S, reward vector ~r ∈ ~R
7: maxa′ ← Call Scal. greedy action selection . Get best scal. action in s′

8:
9: for each objective o do . Update Q-values for each objective

10: Q(s, a, o)← Q(s, a, o) + α[~r(s, a, o) + γQ(s′,maxa′ , o)−Q(s, a, o)]
11: end for
12:
13: s← s′ . Proceed to next state
14: until s is terminal
15: end for
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Algorithm 3 Greedy Hypervolume-based Action Selection, HBAS(s, l)

1: volumes← {} . The list collects hv contributions for each action
2: for each action ai ∈ A of state s do
3: ~o← {Q(s, ai, o1), . . . , Q(s, ai, om)}
4: hv ← calculate hv(l + ~o) . Compute hv contribution of ai to l
5: Append hv to volumes
6: end for
7: return argmaxa volumes . Retrieve the action with the maximal contribution

4 Hypervolume-based Multi-Objective RL

In this section, we present our novel hypervolume-based MORL algorithm (HB-
MORL) that combines the hypervolume unary indicator as a novel action se-
lection mechanism. This action selection mechanism is similar to the selection
strategy utilized for the MO Q-learning algorithm (Algorithm 1).

The proposed strategy is presented in Algorithm 3, while the entire HB-
MORL algorithm is presented in Algorithm 4. The outline of the HB-MORL
algorithm is similar to the MO Q-learning algorithm in Algorithm 2, but has an
additional parameter, l. Each episode, the agent maintains a list l of Q-values of
already visited states and actions. Initially, this list is empty (Algorithm 4, line
3).

In the action selection strategy, the agent consults this list (Algorithm 3)
by employing the hypervolume metric. For each action ai of state s, the vector
of Q-values is retrieved from the table at line 3, whereafter the contribution
of each action to the list of visited state-action pairs is calculated (line 4) and
stored in the volumes list. In the greedy selection case, the action with the
largest contribution is retrieved from volumes and selected (line 7), while in the
ε-greedy case a random action is selected with a probability of ε (not shown in
Algorithm 3). Subsequently, the Q-values of the selected action are appended to
the list l (line 8, Algorithm 4) and the learning proceeds.

Differences between MORL algorithms. The HB-MORL algorithm,
presented in this paper, resembles in quite a few places to the scalarization frame-
work, presented in Algorithm 2. They are both based on Watkins’ Q-learning
algorithm and its update rule. This offers the advantage that we can rely on
the same convergence proof and no exotic or problem-specific algorithm is pro-
posed. On the contrary, their correspondence allows the same generality that
Q-learning has been offering for decades. As presented, the main difference to
the scalarization framework lies in the action selection strategy. The scalariza-
tion framework transforms the vector of Q-values into a single indicator, whereas
the hypervolume-based algorithm performs searches directly into the objective
space. Furthermore, HB-MORL does not rely on weights, defined a priori to
guide the search process, as opposed to the scalarized algorithms. When the
policies obtained by different runs of the algorithm are collected, the user can
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Algorithm 4 Hypervolume-based Q-learning algorithm

1: Initialize Q(s, a, o) arbitrarily
2: for each episode T do
3: Initialize s, l = {}
4: repeat
5: Choose a from s using policy derived from Q (e.g. ε-greedy HBAS(s, l))

6: Take action a and observe state s′ ∈ S, reward vector ~r ∈ ~R
7: ~o← {Q(s, a, o1), . . . , Q(s, a, om)}
8: Add ~o to l . Add Q-values of selected action a to l
9: maxa′ ←greedy HBAS(s′, l) . Get greedy action in s′ based on new l

10:
11: for each objective o do . Update Q-values for each objective
12: Q(s, a, o)← Q(s, a, o) + α[~r(s, a, o) + γQ(s′,maxa′ , o)−Q(s, a, o)]
13: end for
14:
15: s← s′ . Proceed to next state
16: until s is terminal
17: end for

still make her/his decision on which policies or trade-offs are preferred, but the
advantage is that emphasis on particular objectives is not required beforehand.

5 Results

In this section, we experimentally evaluate the performance of the HB-MORL al-
gorithm on two benchmark environments for different quality measures. These re-
sults are then compared to two instances of MORL algorithms that use scalarization-
based action selection strategies, i.e. the linear and the Chebyshev Q-learning
algorithm.

5.1 Testing environments

Recently, [12] proposed empirical evaluation techniques for multi-objective re-
inforcement learning, together with a few benchmark environments. We build
further on this work and perform our experiments on the same worlds, such as
the Deep Sea Treasure and the Multi-Objective Mountain Car environments to
compare the two scalarization functions and the HB-MORL algorithm in detail.
The optimal Pareto sets of each world were provided by the same researchers.

5.2 Parameter setting

In the experiments, presented below, we relied on identical configurations for
each of the testing environments. We applied an ε-greedy exploration strategy
with ε set to 0.1 and the Q-values were initialized randomly for each objective.
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Table 1: The reference points (RP) used to calculate the hypervolume indicator in the
learning algorithm and in the quality assessment for each environment.

Deep Sea Treasure MO-Mountain Car

Learning RP (−25.0,−5.0) (−10.0,−10.0,−10.0)

Quality Assessment RP (−25.0, 0.0) (−350.0,−250.0,−500.0)

The learning rate α was set to 0.1 and the discount factor γ to 0.9. Results are
collected and averaged over 50 trials of each 500 runs.

Each scalarization-based MORL algorithm was tested using different sets of
the weights sets ranging from 0 to 1, with a steps of 0.1 for each objective, i.e.
there are 11 and 64 tuples of weights (and experiments) for the worlds with
two and three objectives, respectively. Each scalarized MORL algorithm using a
particular weight tuple could be regarded as an individual learning agent. As the
hypervolume metric does not require any prior knowledge and to ensure a fair
comparison in the results, we ran the HB-MORL algorithm for exactly the same
number of experiments as the scalarized algorithms. Per iteration, each agent
individually tests its learned policy by greedily selecting actions, whereafter each
agents’ policy is stored in a set. This set is called the Pareto approximation set
for a particular iteration number of the learning phase.

We employed the hypervolume metric also as a quality assessment tool in the
comparisons of the different algorithms. Table 1 presents the reference points
(RP) used for calculating the hypervolume in both the learning phase and the
testing phase for each of the environments. These values were determined em-
pirically by examining the bounds on the reward structure of each testing envi-
ronment in a straightforward way.

5.3 Performance experiment

In this experiment, we compare the performance of the linear and Chebyshev-
based algorithms to our novel hypervolume-based MORL algorithm. In Table 2
and 3, we relied on the Wilcoxon rank test [13] to indicate a significant difference
on the mean performance between the indicator-based MORL algorithm and
both scalarized methods on each environment. We present the learning curves
for each of the environments in Fig. 1(a) and 1(b) by applying the hypervol-
ume indicator for quality assessment purposes. For the Deep Sea Treasure world
(Fig. 1(a)), the linear scalarization-based MORL is not capable of improving
the hypervolume after 100 runs whereas the Chebyshev-based algorithm slightly
improves its performance until 250 runs. The HB-MORL is gradually improving
its policy and improves the Chebyshev algorithm after 400 runs. It is interesting
to note that the HB-MORL algorithm is increasingly its performance gradually
until the end of the learning phase. In other preliminary tests, not included in
this paper, we ran the experiments for a longer period of time, but no algorithm
was able to further improve its policy after 500 runs.
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Table 2: The Wilcoxon rank test denoted a significant difference on the mean perfor-
mance of the linear scalarized algorithm and HB-MORL on both testing worlds for a
threshold p value of 0.05.

Linear scalarization HB-MORL p-value Significant?

Deep Sea Treasure 762 1040.24 7.0338−4 √

MO-Mountain Car 15727946.18 23984880.12 5.9282e−5 √

Table 3: Also for the Chebyshev-based algorithm and HB-MORL, a significant differ-
ence is noted by the Wilcoxon rank test on the two benchmark instances (threshold p
= 5%).

Chebyshev HB-MORL p-value Significant?

Deep Sea Treasure 938.29 1040.24 1.5256e−17 √

MO-Mountain Car 23028392.94 23984880.12 5.0379e−16 √

Finally, we observed the largest difference between the two scalarized algo-
rithms in the complex 3D MO-Mounting Car world (Fig. 1(b)). In this bench-
mark environment, the Chebyshev-based algorithm is stabilized after 100 runs,
whereas the linear scalarization-based MORL algorithm slowly increases until
the last learning steps. Nevertheless, a considerable difference in quality is kept
between the two scalarized MORL methods. The hypervolume-based Q-learning
algorithm is stabilising approximately as fast as the Chebyshev algorithm, but
the gradual improvement phase is also observed in this complex world and a
significant improved performance is achieved.

In Fig. 2(a) and 2(b), we elaborate into more detail the gradual learning
phase achieved by each of the learning methods. We restricted the information
in the learning curves to capture the performance every 100 runs. For each of
the environments, the linear scalarized algorithm is performing the worst and
its performance stagnates after only a few iterations. The Chebyshev method is
able to escape the local maxima in a much better way and is improving until the
end of the learning phase. Finally, the HB-MORL algorithm is able to improve
even further and achieves an enhanced performance in its finals runs.

In Fig. 2(c), we show the frequency probability of the 10 Pareto dominating
goals (i.e. treasures) reached in the Deep Sea world. This plot provides us with
an idea on the spread that each learning method can obtain amonst Pareto
dominating solutions. We note that the linear scalarization-based algorithm only
finds extreme solution, i.e. solutions that maximize only one of the objectives.
More precisely, the two results found are the treasures with value 1 and 124,
i.e. the treasures that minimize the time objective and maximize the treasure
objective, respectively, but no real compromising solutions were obtained. The
Chebyshev algorithm however, obtains a larger spread in the results compared
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(b) MO Mountain Car world

Fig. 1: Learning curves on the Deep Sea Treasure and the MO Mountain Car worlds,
respectively

to the linear case. Out of the 10 possible goals, it found 8 on a regular basis,
with increasing probability near the extreme solutions. Without being initialized
with any prior preferences, the hypervolume-based MORL performed acceptable
and focused on 5 solutions.

5.4 Quality indicator comparison

In multi-objective research, quality indicator studies are a popular approach
for conducting algorithm comparisons. The performance indicators applied in
this experimental study are the (inverted) generational distance , the general-
ized spread indicator, the cardinality and the hypervolume distance. The former
three are minimization metrics, while the latter two are to be maximized. In
detail, the generational distance and the inverted generational distance were
both proposed by [14]. The former measures how far the elements in the set
of non-dominated vectors, generated by a learning algorithm, are from those in
the Pareto optimal set. The latter calculates how far each element of the Pareto
optimal set is from the non-dominated vectors in the approximation set. The
spread indicator [1] on the other hand is a diversity metric that measures the
extent of spread achieved among the obtained solutions. The cardinality measure
simply counts the number of elements found in the Pareto set.

The results are presented in Table 4. On the Mountain Car (MC) world, the
HB-MORL obtained overall the best results out of the three algorithms, except
for the fact that the Chebyshev method found one extra solution. The linear
scalarized algorithm obtained the best value for the generalized spread, but as
this metric only uses the members on the boundaries of the Pareto optimal set
(i.e. the extreme solutions) in its calculations, this metric is biased towards the
linear method that exclusively finds these solutions (see Fig. 2(c)).

On the Deep Sea (DS) world, the Chebyshev method found 8 out of 10
distinct results and obtained the best value for the inverted generational dis-
tance. Closely followed by HB-MORL that without any prior information (i.e.
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(c) Frequency of goals in the Deep Sea world

Fig. 2: Fig. 2(a) and 2(b) depict the performance of each learning algorithm each 100
runs. In Fig. 2(c), the frequency probabilities of each of the 10 Pareto dominating
goals in the Deep Sea Treasure world are presented. The Chebyshev-based algorithm
obtained the best spread, closely being followed by HB-MORL. The linear scalarized
algorithm only found two (extreme) solutions.

no weights) obtained 5 distinct results, but a larger hypervolume was obtained.
This means that HB-MORL was much more consistent in finding good solutions
frequently (i.e. the increased hypervolume), but its results were not as spread
around in the search space as the Chebyshev-based algorithm (i.e. the cardi-
nality). The linear scalarized algorithm only obtained 2 (extreme) results that
are located at the largest possible distance from each other, resulting in the best
generalized spread value. Each of the results found by any of the algorithms were
an element of the optimal Pareto set, meaning that the generational distance is
0.

To conclude, on each environments, HB-MORL outperformed the linear scalar-
ization algorithm and obtained the best results on the most important quality
indicator, i.e. the hypervolume metric. On the other indicators in the Deep Sea
Treasure world, the HB-MORL algorithm obtained good results but was not
always the best performing algorithm. We can conclude that the HB-MORL al-
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Table 4: Five quality indicator for each of the three algorithms on the two benchmark
instances. The first three are to be minimized, while the latter two are maximization
indicators. The best values are depicted in bold face.

Linear Chebyshev HB-MORL

Inverted Generational distance
DS 0.128 0.0342 0.0371
MC 0.012 0.010 0.005

Generalized spread
DS 3.14e−16 0.743 0.226
MC 0.683 0.808 0.701

Generational distance
DS 0 0 0
MC 0.0427 0.013824 0.013817

Hypervolume
DS 762 959.26 1040.2
MC 15727946 23028392 23984880

Cardinality
DS 2 8 5
MC 15 38 37

gorithm was very consisting in finding solutions that maximize the hypervolume
metric, but could be improved by more spread results.

Weights vs. quality indicator. In the following test, we investigate into
more detail the results of HB-MORL to the results obtained for each weighted
tuple for the scalarization-based algorithms (Table 5). It is important to note
that the HB-MORL algorithm is not set up with any information on how the ob-
jectives should be balanced or weighed. Therefore, in the table, its values remain
identical. Note that the generational distance was omitted because every result
obtained was an element of the Pareto set. We focus on the differences between
the Chebyshev method and the HB-MORL algorithm and notice that there is
still a significant portion of the weighted tuples for which the Chebyshev algo-
rithm achieved better performance in term of the inverted generational distance
than was presumed in Table 4. Although, there are four cases (weights W6, W8,
W9 and W10) where the HB-MORL algorithm obtained improved performance
and 2 tuples (weights W3 and W4) that perform similarly.

The hypervolume measure indicated that for some weights, the Chebyshev
algorithm obtained a large portion of the Pareto set, but on the larger portion
of the experiments the results are less efficient. Especially when assigning a very
low weight to the treasure objective (e.g. weight W10), a limited hypervolume
is achieved. In those cases, the time objective is being minimized with the re-
sult that treasures with a limited value, located near the starting position to
minimize the time and distance, are favored. The generalized spread indicator
showed that when focusing on the performance of particular tuples of weights,
the values become more clear and the HB-MORL algorithm is performing intrin-
sically better. Note that the Chebyshev algorithm found the two extreme points
in the objective space for weight W9, thus resulting in the best possible value
of 0. The same can be concluded for the cardinality indicator as for particular
weights, very few solution points are obtained.

To conclude, based on the empirical results, for a large portion of weights,
the Chebyshev MORL algorithm is considered a well-performing algorithm by
many quality indicator measures, such as spread and cardinality (see Table 4).
We have seen that for some weights (Table 5), the Chebyshev algorithm obtained



Hypervolume-based Multi-Objective Reinforcement Learning 13

Table 5: Five quality indicator for each of the 11 weights in the Deep Sea world. The
inverted generational distance (IGD) and spread indicator are to be minimized, while
the other two are maximization indicators. The best values are depicted in bold face.

Weight Linear Chebyshev HB-MORL

IGD

W0 0.3234 0.0227 0.0371
W1 0.3234 0.0253 0.0371
W2 0.3234 0.0296 0.0371
W3 0.3234 0.0365 0.0371
W4 0.3234 0.0360 0.0371
W5 0.32344 0.0260 0.0371
W6 0.32344 0.0451 0.0371
W7 0.2201 0.0260 0.0371
W8 0.2201 0.0616 0.0371
W9 0.2201 0.1279 0.0371
W10 0.2201 0.2201 0.0371

Spread

W0 1 0.5481 0.2257
W1 1 0.4003 0.2257
W2 1 0.3714 0.2257
W3 1 0.6234 0.2257
W4 1 0.6830 0.2257
W5 1 0.4159 0.2257
W6 1 0.1949 0.2257
W7 1 0.4159 0.2257
W8 1 0.7121 0.2257
W9 1 0 0.2257
W10 1 1 0.2257

Weight Linear Chebyshev HB-MORL

HV

W0 744 1145 1130
W1 744 1143 1130
W2 744 1136 1130
W3 744 1094 1130
W4 744 1140 1130
W5 744 1024 1130
W6 744 1082 1130
W7 24 1140 1130
W8 24 1018 1130
W9 24 762 1130
W10 24 24 1130

Cardinality

W0 1 8 5
W1 1 7 5
W2 1 6 5
W3 1 6 5
W4 1 6 5
W5 1 7 5
W6 1 4 5
W7 1 7 5
W8 1 4 5
W9 1 2 5
W10 1 1 5

very good results for many quality indicators, while for other weights the method
operates ineffectively. Thus, the principal drawback of these scalarization-based
algorithm remains the fact that the user has to predefine its preferences by
placing greater or lesser emphasis on each objective. This is a task that should
not be underestimated. The main benefit of scalarization techniques remains
their simplicity, but this does not compensate for the inconvenience of manually
guiding the nature of the policy and the fact that these methods are very biased
to the actual weights used.

5.5 Discussion

By randomly initializing the Q-values, the HB-MORL method obtains an accept-
able notion of spread and found a large portion of Pareto dominating solutions.
Thus, approaching the Chebyshev method for the spread indicator. But more
importantly, HB-MORL improved the hypervolume indicator on every bench-
mark, indicating the method’s robustness as good results are found frequently.
Furthermore, HB-MORL does not require any direct input from the user on its
actual preferences and solves this burden by employing the hypervolume qual-
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ity indicator directly in its search process. This makes the main advantage of
the HB-MORL algorithm its simplicity. Also, unlike the Chebyshev method,
no specific reference point z∗ is to be specified and updated in every run of
the algorithm, making it easier for the developer to conduct experiments with
HB-MORL instead of scalarization-based methods.

On both benchmark instances, the linear scalarization algorithm failed to
achieve decent performance and got stuck in local optima while obtaining only
two extreme solution points. These outcomes are in accordance with previous
findings [12] on the linear scalarization algorithm, stating that the method is
unable of finding solutions near non-convex regions of the optimal Pareto set.
Independent of the running time, the algorithm gets stuck in local optima from
which it can not escape. The Chebyshev-based algorithm and HB-MORL are able
to gradually improve their hypothesis. Especially the latter is able to improve in
final stages of its training phase.

Note that the HB-MORL algorithm is more of a slow starter compared to
the Chebyshev-based algorithm. We believe that this is caused by the lack of
diversity in the Pareto set explored with the hypervolume based indicator. This
is also noticed in other approaches that conduct searches using the hypervol-
ume metric and therefore [15] proposes to include a mechanism to increase the
diversity of the Pareto sets and to encourage exploration. The reason why the
Chebyshev-based method does not have this problem, is because the algorithm
is restarted with different weights forcing the exploration of different regions of
the multi-objective environment.

6 Conclusions

In this paper, we have successfully built a bridge between two machine learning
techniques that rely on different solution approaches given an certain environ-
ment. More precisely, we have included a technique from multi-objective opti-
mization, i.e. the hypervolume unary based indicator, into reinforcement learn-
ing. We have conceptually and experimentally compared our novel hypervolume-
based MORL (HB-MORL) algorithm to two other scalarization-based learning
algorithms, which require weights to be defined beforehand. In contrast, the
HB-MORL algorithm does not contain preference-based parameters to be spec-
ified. For our experiments, we performed performance assessment tests on two
benchmark instances with two and three objectives. We have noted that the
suggested algorithm significantly improved the linear scalarization-based algo-
rithm and performed similarly to the Chebyshev-based algorithm. Especially on
indicators that asses the robustness of an algorithm on finding high-quality so-
lutions frequently, the hypervolume-based algorithm turned out to be the best
performing. We believe that HB-MORL is especially useful in cases where it is
difficult to define user-preferences beforehand or in cases where it is complex to
tune an algorithm specifically for a particular problem instance. In those situ-
ations, HB-MORL would allow to obtain a significant amount of high-quality
solutions without requiring any weights parameters to be defined.
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