
Deep Learning 

Robin Devooght 

PhD Student @ IRIDIA 



Automatic description of images 

Andrej Karpathy and Li Fei-Fei, http://cs.stanford.edu/people/karpathy/deepimagesent/  

http://cs.stanford.edu/people/karpathy/deepimagesent/
http://cs.stanford.edu/people/karpathy/deepimagesent/


Image to image translation 

Philip Isola et al. Image-to-Image Translation with Conditional Adversarial Networks 

Demo: https://affinelayer.com/pixsrv/index.html  

https://affinelayer.com/pixsrv/index.html
https://affinelayer.com/pixsrv/index.html


Handwritting generation 

A recurrent network can generate handwritting from text 

Alex Graves, https://www.cs.toronto.edu/~graves/handwriting.cgi  

https://www.cs.toronto.edu/~graves/handwriting.cgi
https://www.cs.toronto.edu/~graves/handwriting.cgi
https://www.cs.toronto.edu/~graves/handwriting.cgi


Deep Learning = Neural Networks 

Inputs 

x1 

x2 

x3 

x4 

x5 

w1 

w2 

w3 

w4 

w5 

Output 

𝑜 = 𝜎(𝑥1𝑤1 + 𝑥2𝑤2 +⋯+ 𝑥5𝑤5) 

0

0,2

0,4

0,6

0,8

1

-5 -4 -3 -2 -1 0 1 2 3 4 5

Sigmoid



Deep Learning = Neural Networks 

Chaining neurons makes a neural network 

Goal: learning the weights 

w1 

w4 
w3 

w2 



Neural Networks can approximate 

 any function 

Original proofs: 

Cybenko., G. (1989) “Approximations by superpositions of sigmoidal functions” 

Kurt Hornik (1991) “Approximation Capabilities of Multilayer Feedforward Networks” 

 

Good explanation: 

Michael Nielsen, http://neuralnetworksanddeeplearning.com/chap4.html  

http://deeplearning.cs.cmu.edu/pdfs/Cybenko.pdf
http://deeplearning.cs.cmu.edu/pdfs/Cybenko.pdf
http://deeplearning.cs.cmu.edu/pdfs/Cybenko.pdf
http://deeplearning.cs.cmu.edu/pdfs/Cybenko.pdf
http://deeplearning.cs.cmu.edu/pdfs/Cybenko.pdf
http://deeplearning.cs.cmu.edu/pdfs/Cybenko.pdf
http://dx.doi.org/10.1016/0893-6080(91)90009-T
http://dx.doi.org/10.1016/0893-6080(91)90009-T
http://dx.doi.org/10.1016/0893-6080(91)90009-T
http://neuralnetworksanddeeplearning.com/chap4.html
http://neuralnetworksanddeeplearning.com/chap4.html
http://neuralnetworksanddeeplearning.com/chap4.html


What’s new in Deep Learning ? 

• Larger datasets 

 

• More complex networks 

 

• Faster Hardware 

 

• Accumulation of knowledge 

 



Good models need large datasets 

14M images 

30k categories 
http://www.image-net.org/  

https://labrosa.ee.columbia.edu/millionsong/  

1M songs 

Audio features, 

Labels, lyrics, etc. 

Find more datasets at https://en.wikipedia.org/wiki/List_of_datasets_for_machine_learning_research  

https://aws.amazon.com/fr/datasets/googl

e-books-ngrams/  2,2TB of text 
N-grams 

http://www.image-net.org/
http://www.image-net.org/
http://www.image-net.org/
http://www.image-net.org/
https://labrosa.ee.columbia.edu/millionsong/
https://labrosa.ee.columbia.edu/millionsong/
https://en.wikipedia.org/wiki/List_of_datasets_for_machine_learning_research
https://en.wikipedia.org/wiki/List_of_datasets_for_machine_learning_research
https://aws.amazon.com/fr/datasets/google-books-ngrams/
https://aws.amazon.com/fr/datasets/google-books-ngrams/
https://aws.amazon.com/fr/datasets/google-books-ngrams/
https://aws.amazon.com/fr/datasets/google-books-ngrams/
https://aws.amazon.com/fr/datasets/google-books-ngrams/
https://aws.amazon.com/fr/datasets/google-books-ngrams/
https://aws.amazon.com/fr/datasets/google-books-ngrams/


Beyond the Multi-Layer Perceptron 

You can learn any function with one hidden layer,  

but it’s not the best way to do it 

Convolution layer for images: 

Image by Aphex34 - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=45679374 



Beyond the Multi-Layer Perceptron 

The Neural Network Zoo: http://www.asimovinstitute.org/neural-network-zoo/  

Gated memory for sequences: 

Image by Chris Olah, http://colah.github.io/posts/2015-08-Understanding-LSTMs/  

(great explanation of modern recurrent neural nets) 

http://www.asimovinstitute.org/neural-network-zoo/
http://www.asimovinstitute.org/neural-network-zoo/
http://www.asimovinstitute.org/neural-network-zoo/
http://www.asimovinstitute.org/neural-network-zoo/
http://www.asimovinstitute.org/neural-network-zoo/
http://www.asimovinstitute.org/neural-network-zoo/
http://www.asimovinstitute.org/neural-network-zoo/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/


Training is faster on new hardware 

Large datasets + complex models 

Speed is important 

GPUs can compute the output of each neuron in parallel 



5 weird tricks to improve training 

• How to initialize the model 

• How to choose a nonlinearity 

• How to avoid over-fitting 

• How to pre-process the data 

• … 

Theano is a good 

alternative to 

TensorFlow 



Neural Networks are trained with 

Stochastic Gradient Descent 

1) Define an objective function: 

 𝑦𝑖 − 𝑜 𝑊,𝑋𝑖
2

𝑋𝑖,𝑦𝑖 ∈{𝑆𝑎𝑚𝑝𝑙𝑒𝑠}

 

2) Compute partial derivative  

w.r.t. one training sample: 

𝜕 𝑦𝑖 − 𝑜 𝑊,𝑋𝑖
2

𝜕𝑊
 

3) Slightly change the parameters in the 

direction of the gradient: 

𝑊 ← 𝑊 − 𝜆
𝜕 𝑦𝑖 − 𝑜 𝑊,𝑋𝑖

2

𝜕𝑊
 



Saturating nonlinearities: it’s a trap ! 

Goal: if x > 0, y=0 

         if < 1 y=1 

1 
w = 10 

0 1x10 

0,99995 

The error is large, but the gradient small 

→The network doesn’t learn 

w2 

w3 

w4 

output 

input*w 

Deep networks make it worse 



Trick 1: Better initialization 

n inputs m outputs 

𝑤 ~𝑁 0,
2

𝑛 +𝑚
 

Xavier Glorot and Yoshua Bengio  
Understanding the difficulty of training deep 

feedforward neural networks. (2010) 

(Avoid weights too large or too small) 



Trick 2: Batch Normalization 

Goal: 

Ensure that the output of each neuron has 

a reasonable variance  

Solution: 

Treat inputs by small batches (16 – 100). 

After each layer, compute variance over the batch, 

and normalize 

(Avoid inputs too large or too small) 

Ioffe, Sergey and Szegedy, Christian  
Batch Normalization: Accelerating Deep Network 

Training by Reducing Internal Covariate Shift. (2015) 



Trick 3: Momentum 
(Get out flat areas) 

Keep a memory of past updates, and  

tend to keep moving in the same direction 

→ Accelerate on mostly flat areas 

𝑊 ← 𝑊 − 𝜆(Gradient + 𝛼 Last update)  

With momentum 

Without momentum 

Momentum seem to take a longer path, 

But is in fact 10x faster 
Image from a video by Ryan Harris (https://www.youtube.com/watch?v=7HZk7kGk5bU) 

https://www.youtube.com/watch?v=7HZk7kGk5bU
https://www.youtube.com/watch?v=7HZk7kGk5bU


Trick 4: Adaptive Gradients 
(Solve one problem at a time) 

Reduce the learning rate of weights  

that have accumulated large gradients 

Don’t let parameters oscillate indefinitely 

Reduce the learning rate of each weight independently 

Adam combines momentum and adaptive gradients 

Kingma, Diederik, and Jimmy Ba 
Adam: A Method for Stochastic Optimization. (2014) 



Visualization of gradient descent 

Visualisations from http://imgur.com/a/Hqolp 

 

Good comparison of gradient descent methods: 

http://sebastianruder.com/optimizing-gradient-descent  

http://imgur.com/a/Hqolp
http://imgur.com/a/Hqolp
http://sebastianruder.com/optimizing-gradient-descent
http://sebastianruder.com/optimizing-gradient-descent
http://sebastianruder.com/optimizing-gradient-descent
http://sebastianruder.com/optimizing-gradient-descent
http://sebastianruder.com/optimizing-gradient-descent
http://sebastianruder.com/optimizing-gradient-descent


Trick 5: ReLu 
(Simpler, Faster, Better, Stronger) 

Replace the sigmoid by the « Rectified Linear Unit » (ReLu) 

0 0 

Larger domain with non-zero gradient 

Much faster to compute 



One more trick: Dropout 

For each training sample, 50% of the hidden neurons are randomly turned off 

• Avoids complex co-adaptation 

• Works with noisy data 

• Similar to training an ensemble model 



Simple in theory, hard in practice 

• Use knowledge accumulated over the years 

• Use a framework 

• Don’t fear local minima, fear saturated 

nonlinearities 



What’s next ? 

• Adversarial Learning 

• Deep Q-Learning 

• Memory Networks 


