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Abstract—In the stochastic multi-objective multi-armed ban-
dit (or MOMAB), arms generate a vector of stochastic rewards,
one per objective, instead of a single scalar reward. As a result,
there is not only one optimal arm, but there is a set of optimal
arms (Pareto front) of reward vectors using the Pareto dominance
relation and there is a trade-off between finding the optimal arm
set (exploration) and selecting fairly or evenly the optimal arms
(exploitation). To trade-off between exploration and exploitation,
either Pareto knowledge gradient (or Pareto-KG for short),
or Pareto upper confidence bound (or Pareto-UCB1 for short)
can be used. They combine the KG-policy and UCB1-policy,
respectively with the Pareto dominance relation. In this paper, we
propose Pareto Thompson sampling that uses Pareto dominance
relation to find the Pareto front. We also propose annealing-
Pareto algorithm that trades-off between the exploration and
exploitation by using a decaying parameter ¢; in combination
with Pareto dominance relation. The annealing-Pareto algorithm
uses the decaying parameter to explore the Pareto optimal arms
and uses Pareto dominance relation to exploit the Pareto front.
We experimentally compare Pareto-KG, Pareto-UCB1, Pareto
Thompson sampling and the annealing-Pareto algorithms on
multi-objective Bernoulli distribution problems and we conclude
that the annealing-Pareto is the best performing algorithm.

I. INTRODUCTION

The Multi-Objective Multi-Armed Bandit (MOMAB) prob-
lem is a sequential stochastic learning problem. At each time
step ¢, an agent pulls one arm ¢ from an available set of
arms A and receives a reward vector r; of the arm ¢ with
D dimensions (objectives) as feedback signal. The reward
vector is drawn from a corresponding stationary probability
distribution vector, e.g. Bernoulli distribution B(p;), where p;
is the true probability of success vector parameter of the arm
i. The reward vector that the agent receives from the arm ¢ is
independent from all other arms and independent from the past
reward vectors of the selected arm ¢. Moreover, the probability
of success vector of the arm ¢ has independent D distributions.
We assume that the true probability of success vector parameter
of each arm ¢ is unknown parameter to the agent. Thus, by
drawing each arm ¢, the agent maintains estimation of the true
probability of success vector which is known as p,.

The MOMAB problem has a set of Pareto optimal arms
(Pareto front) A*, that are incomparable, i.e. can not be
classified using a designed partial order relations. The agent
has not to only find the optimal arms (exploring), to minimize
the total Pareto loss of not pulling the optimal arms, but
also has to play them fairly (exploiting), to minimize the
total unfairness loss. This problem is known as the trade-
off between exploration and exploitation in the multi-objective

optimization, or the trade-off problem [1]. At each time step ¢,
the Pareto loss (or Pareto regret) is the distance between the set
mean (or the true probability of success set) of Pareto optimal
arms and the mean of the selected arm (or the true probability
of success vector). While, the unfairness loss (or unfairness
regret) is the variance in selecting the optimal arms [2]. Thus,
the total Pareto regret and the total unfairness regrets are the
cumulative summation of the Pareto and unfairness regret over
t time steps, respectively. Since, the total unfairness regret
grows exponentially on the number of time steps and does
not take into its account the total number of selecting optimal
arms, we propose to use the entropy measure [3] to compute
the unfairness regret. The entropy regret is the measurement
of disarray or disorder on selecting the optimal arms in the
Pareto front A*.

The Pareto front A* can be found for example, by using
Pareto partial order relation (or Pareto dominance relation)
which finds the Pareto front A* by optimizing directly the
Multi-Objective (MO) space [4]. To solve the trade-off prob-
lem directly in the MO space, [2] used Upper Confidence
Bound (UCB1) [5] policy and [6] used Knowledge Gradient
(KG) [7] policy in the MOMAB problem. Both UCB1 and
KG policies trade-off between exploration and exploitation by
adding an exploration bound to the estimated mean vector
(estimated probability of success vector p,) to each arm 4 in
each objective d,d € D and select the optimal arms by using
Pareto dominance relation. However, the exploration bound of
UCBI1 for arm 7 requires only knowledge about that arm, while
in case of KG it also requires knowledge about the other arms.

In this paper, we are interested in the trade-off between
exploration and exploitation by using randomness instead of
adding an exploration bound to the estimated mean vectors.
In the one-objective, multi-armed bandit problem, Thompson
Sampling [8] trades-off between exploration and exploitation
by assigning to each arm ¢ a random probability of selection P;
which is generated from Beta distribution. The random proba-
bility of selection P; of an arm ¢ depends on the performance of
the arm <. It will be high value if the arm 7 has high estimated
probability of success p; value. For that reason, firstly, we
extend Thompson sampling [8] to the MOMAB to find the
optimal arms in the MO space. Pareto Thompson sampling
trades-off between exploration and exploitation by assigning to
each arm ¢ in each objective d a random probability of selection
P2 which is generated from Beta distribution. Pareto Thomp-
son sampling uses Pareto dominance relation on the random
probability of selection vectors P;, P; = [P},--- , PP]T of
arms ¢ to find the Pareto front A*. Secondly, we propose



annealing-Pareto algorithm. The annealing-Pareto trades-off
between exploration and exploitation by using a decaying
parameter €;, ¢ € (0,1) in combination with the Pareto
dominance relation. The €; parameter has a high value at the
beginning of time step ¢ to explore all the available arms and
increase the confidence in the estimated means, but as the time
step t increases, the e; parameter decreases to exploit the arms
that have maximum estimated mean. To keep track on all the
optimal arms in the Pareto front A*, at each time step ¢, the
annealing-Pareto uses Pareto dominance relation.

The rest of the paper is organized as follows: In Section II,
we give background information on the algorithms and the
used notation. In Section III, we present Thompson sampling
and Pareto Thompson sampling. In Section IV, we introduce
the annealing Pareto algorithm. In Section V, we present the
performance measures in MOMAB including the proposed
entropy measure. In Section VI, we describe the experiments
set up followed by experimental results. Finally, we conclude
and discuss future work.

II. BACKGROUND

In this section, we introduce MOMAB framework, Pareto
dominance relation, and MOMAB algorithms.

A. Multi Objective Multi Armed Bandit Framework

Let us consider the MOMAB problems with |A| > 2
arms and with independent D objectives per arm. At each
time step ¢, the agent selects one arm ¢ and receives a reward
vector r;. The reward r¢, r¢ € {0,1} in each objective d is
drawn from a correspondlng Bernoulli probability distribution
with unknown probability of success p¢, i.e. the probability
of getting reward equals 1. Thus, by drawing each arm i, the
agent estimates the probability of success ﬁf(t) for the arm ¢
in the ob]ectwe d,d € D. Using Bayesmn view, the probability
of success p¢ can be estimated by usmg Beta distribution [9].
The probability densny of Beta(ad, 5%), ad > 0,8 > 0 is
flasad, 5) = f et (1 - )7 4
Bd are the number of successes and failures of the arm ¢ in
the objective d, respectively and T'(y) = y!. After receiving
the reward r¢, the updated estimated probability of success
pd(t+ 1) at time step ¢ + 1 is calculated as follows:

ad(t+1)

, where «f, and

pit+1) = al(t+1)+ At + 1) M
where af(t+1) = f(t) +1, ifrf=1
Blt+1)=pit)+1, if rf=0

where ad(t + 1), and B4(t + 1) are the updated number of
successes and failures of the arm ¢ in the objective d at time
step t + 1, respectively.

The probability of success vector of arm i, ¢ € A is
represented as p; = [p},--- ,pP]?, where T is the transpose.
When the objectives are conflicting with one another then the
probability of success p¢ of arm i corresponding with objective
d,d € D, can be better than the component p;»l of another arm j
but worse if we compare the components for another objective
d: pd > pl‘f but p¢ < p;l' for objectives d and d’, respectively.
The agent has a set of optimal arms (Pareto front) A* which
can be found by the Pareto dominance relation.

B. Pareto Dominance Relation

Pareto dominance relation finds the Pareto front A* directly
in the multi-objective space [4]. It uses the following relations
between the probability of success vectors of two arms. We
use ¢ and j to refer to the probability of success (estimated or
true) vector of arms ¢ and j, respectively.

1) Arm ¢ dominates or is better than j, ¢ > j, if there
exists at least one dimension d for which % >— 4% and
for all other dimensions d’ we have ¥ = j¢

2)  Arm ¢ weakly-dominates 7, ¢ >~ j, if and only if for
all dimensions d, i.e. d =1,--- , D we have i% > j%.

3) Arm ¢ is incomparable with j, ¢ || j, if and only
if there exists at least one dimension d for which
i% = j¢ and there exists another dimension d’ for
which %" < j¢

4)  Arm ¢ is not dominated by j, j # 4, if and only
if there exists at least one dimension d for which
4 < i%. This means that either i = j or i || j.

Using the above relations, Pareto front A*, A* C A be the
set of arms that are not dominated by all other arms. Moreover,
the optimal arms in A* are incomparable with each other.

C. Multi Objective Multi Armed Bandit Algorithms

Pareto-UCB1 [2] and Pareto-KG [6] trade-off between
exploration and exploitation by combination one-objective,
Multi-Armed Bandits (MAB) algorithms (or policies) with
Pareto dominance relation.

Pareto-UCBI is the extension of the UCBI policy [5] to
the multi-objective multi-armed bandits. Pareto-UCBI1 plays
initially each arm ¢ once. At each time step ¢, it estimates the
probablhty of success vector p of each of the MO arms 4, i.e.
p; = [Pt ,pP]T and adds to each objective d an upper
confidence bound which represents the exploration bound
EXpr in the objective d to trade-off between exploration and
exploitation. The exploration bound Expr in the objective d
of the arm 1 is calculated as follows:

21n(t {/D]A"))

ExpBY =
XP. i Nl

where D is the number of objectives, |A*| is the number of
optimal arms, ¢ is the current time step, and [V, is the number
of times arm 7 has been selected. Pareto-UCB1 uses the Pareto
dominance relation, Section II-B to find the Pareto UCBI1
optimal arm set Af; ;. Thus, for all the non-optimal arms
k ¢ A} g, there exists a Pareto optimal arm j* € A} .p,
that is not dominated by the arms k:

Py, + ExpBy. / p;. + ExpB;-

where ExpB;., ExpB;- = [ExpBl.,--- ,ExpB}] is the
exploration bound vector of the arm j*. Pareto-UCBI selects
uniformly at random one of the arms j* in the set A};, 5, and
receives the corresponding reward vector r;-. Pareto-UCBI,
updates the estimated probability of success p.. vector, the
number of times arm j* is chosen N;- and computes the Pareto
and the unfairness regrets.

Pareto-KG is the extension of the KG policy [7] to the
multi-objective multi-armed bandits. Pareto-KG, plays each



arm initial Steps. At each time step ¢, it calculates an
exploration bound ExpB;, ExpB; = [ExpB},--- , ExpBP|T
for each arm ¢. The exploration bound of arm ¢ depends on the
estimated probability of success of all arms. The exploration
bound of arm ¢ for objective d (Expr) is calculated as
follows:

ExpBY = (L —t) % |A|D x v¢, where
d d d d

oy o+l d if % d o o+l
| 7 (e ) ity <o <

v¢= B d_ o . o d %
N i (O ) i <O < i

otherwise
C% = max;z; of [(a? + 87). The parameters o, B¢, and v¢
P = i£j %5 /(af + By). p 10 Mi> i

are the number of successes, number of failures, and the index
of an arm ¢ for dimension d, respectively [9]. The total number
of arms is |A|, and L is the horizon of an experiment which
is the total number of time steps.

After computing the exploration bound ExpB; for each
arm 4, Pareto-KG sums the ExpB,; of the arm i with the
corresponding estimated probability of success p,. It uses
Pareto dominance relation, Section II-B to find the Pareto-KG
optimal arm set A% . Thus, the optimal arm j*, j* € A}
is not dominated by all other arms k, k € |A|,

Py + ExpBy / p;. + ExpBj.

Pareto-KG chooses uniformly at random one of the optimal
arms in A% . After pulling the optimal arm j*, it observes
the reward vector r;-, updates the estimated probability of
success i)j* vector, and computes the Pareto and the unfairness
regrets. Note that the authors in [6] used Pareto-KG in the
MOMAB problems with normal distributions. In this paper,
we use Pareto-KG in the MOMAB problems with Bernoulli
distributions.

Pareto-UCB1 adds to the estimated probability of success
p? of an arm i in the objective d an exploration bound
EXpr and each objective d has the same exploration bound
ExpB¢~! = ... = ExpB{~" = ExpB,. The exploration
bound ExpB,; of the arm 4 decreases if we are certain in its
estimated probability of success p¢. While, Pareto-KG adds
to the estimated probability of success p? of the arm i in the
objective d an exploration bound EXpB?, but this exploration
depends on the estimated probability of success of all available
arms in the objective d.

III. PARETO THOMPSON SAMPLING

In the Bernoulli one-objective, multi-armed bandit MAB,
the reward is a stochastic scalar value, therefore, there is
only one optimal arm. The reward r; for an arm ¢ is either
0, or 1 with unknown probability of success p;. Thompson
sampling [8] does not trade-off between exploration and
exploitation by adding an exploration bound ExpB, to the
estimated probability of success p; of the arm ¢, instead it
uses randomness of the Beta distribution.

With Bayesian priors on the Bernoulli probability of suc-
cess p; of each arm 4, Thompson sampling assumes initially
the number of successes, «; and the number of failures, (3; for
each arm 7 is 1. At each time ¢, Thompson sampling samples

the probability of selection P; for each arm ¢, i € A (the
probability that an arm ¢ is optimal) from Beta distribution,
i.e. P; = Beta(w;, 8;). Thompson sampling selects the optimal
arm ¢* that has the maximum probability of selection P;«, i.e.
i* = argmax;. 4 P; and observes the reward 7. If 7 = 1,
then Thompson sampling updates the number of successes
a;+ = a4+ + 1 for the arm ¢*. If r;» = 0, then Thompson
sampling updates the number of failures §;« = (;« + 1 for the
arm ¢*.

Since, Thompson sampling is very easy to implement,
empirically performs better than UCB1 policy [10] and it has
been shown to be close to optimal [11], we will extend it to
MOMAB:S.

Pareto Thompson sampling explores all the arms by using
randomness, it calculates a probability of selection P;, P; =
[PL,---, PP] for each arm i. Also, it uses Pareto dominance
relation to exploit the optimal arms. The pseudocode of the
Pareto Thompson sampling algorithm is given in Fig. (1).

1. Input: Horizon of an experiment L;time step t;
arm set A;number of dimensions |D|;number of

arms |A|;reward distribution r ~ B(p).

2. Initialize: of = 1,8 =1;p¢ = 0.5 Vie a4e D-

3. For time step t=1,---,L
4. For arm i=1,---, A
5. For objective d=1,---,D
6. Sample P¢ from Beta(af,s?)
7. End For
8. End For
9. Find the Pareto optimal arms set Ap,
such that V; € Ap,, and V; ¢ Ap,.,
pP; F P
10. Select i uniformly, randomly from Ap,

11. Observe:reward vector 7i,r; = [7,1_1’.”77,?}75
12. Update:a;;Bi;Ni+ N;+1

13. Compute:unfairness and Pareto regret
14. End For

15. Output:Unfairness regret;Pareto regret

Fig. 1. Algorithm: (Pareto Thompson sampling).

As initialization step (step: 2), Pareto Thompson sampling
assumes each arm is pulled two times and the number of
successes af, ad = 1 equals to number of failures 3¢, B¢ = 1
in each objective d. At each time step t, it samples the
probability of selection vector P; for each arm i, i € A
(the probability that an arm ¢ is optimal). The probability
of selection P; is sampled by using Beta distribution, P; =
Beta(ay;, B;) (steps: 4-8). Note that, Pareto Thompson does not
use Beta distribution to estimated the probability of success
p; of an arm 4, instead it uses Beta distribution to sample
the probability of selection P, P € (0,1) of each arm i in
each objective d. Pareto Thompson sampling selects its optimal
arms i*,4* € A} that are not dominated by all other arms
using Pareto dominance relation, Section II-B, where A};TS
is the Pareto Thompson sampling optimal arm set (step: 9).
Pareto Thompson sampling pulls uniformly at random one of
the arms ¢* and observes the corresponding reward vector
r;« (step: 11). It updates the number of successes vector
;= [k, aR]T, where ol = ol +1ifrd =1, the

i*



number of failures vector B+, B« = [Bh, -+, BE]T, where
B = B +1if r& = 0, and the number of times N;- arm
i* is selected (step: 12). Then, it calculates the Pareto and the
unfairness regrets (step: 15). This procedure is repeated until
the end of playing L steps.

Pareto Thompson sampling does not trade-off between
exploration and exploitation by adding an exploration bound,
instead it modifies the estimated probability of success p¢ of
the arm ¢ in each objective d to explore widely the arm ¢ in
the objective d.

IV. THE ANNEALING PARETO ALGORITHM

Annealing-Pareto algorithm has a specific mechanism to
control the trade-off between exploration and exploitation. It
uses an exponential decay €;, €; = €iecay/(|A|D), Where €decay
is the decay factor parameter and Pareto dominance relation.
At the beginning of time step ¢, €; has a high value to explore
all the available arms. As the time step ¢ is increased, €; has
a low value to exploit only the optimal arms. To keep track
on all the optimal arms in the Pareto front A*, the annealing-
Pareto algorithm uses Pareto dominance relation, Section II-B.
The decay factor parameter €gecay, €decay € (0,1), when the
decay factor parameter €gecqy = 0 means the annealing-Pareto
is a fully Pareto dominance relation and when the decay factor
parameter €gccqy = 1 means the annealing-Pareto uses a fixed
exponential decay. The pseudocode of the algorithm is given
in Fig. (2).

As initialization step, each arm ¢ is pulled two times
and the number of successes af, af = 1 in each objective
d, d € D equals to number of failures 3¢, p¢ = 1. !
The e-Pareto optimal arm set A} contains all the arms in the
arm set A. At each time step ¢, the annealing-Pareto trades-
off between exploration and exploitation by using the decay
factor parameter €gecay, €decay € (0,1) in the exponential
decay ¢; to (step: 4). High decay factor parameter €gecay
value means high exploration and small decay factor param-
eter €gecqay value means high exploitation. In each objective
d, d € D, the annealing-Pareto detects the optimal arm in that
objective ¢, i*% = argmax; . , p¢, where p¢ is the estimated
probability of success for arm ¢ in the objective d (step: 7).
The annealing-Pareto selects all the arms in the objective d that
have estimated probability of success between [p*¢ — ¢, p*’dj
and includes them in the corresponding selected arm set S
(steps: 8-12), where p*¢, p*¢ = max;c 4 pf is the probability
of success of the optimal arm i*? in the objective d. The
annealing-Pareto constructs the total selected arm set S(t) at
time step ¢ by reunion of the selected arm set S? in each
objective d (step: 14). To keep track on the Pareto front, the
annealing-Pareto uses Pareto dominance relation (step: 17) on
the arms j that are elements in the previous e-Pareto optimal
arm set A¥(t—1) and are not element in the total selected arm
set S(t). If the arm j is not dominated by all other arms, then
this arm will be added to the total selected arm set S(t) (step:
18). The annealing-Pareto updates its e-Pareto optimal arm set
A%(t) to be the total selected arm set S(¢) (step: 21). It pulls
uniformly at random one of the arms ¢* that is an element in
the e-Pareto optimal arm set Af(¢) (step: 22) and observes

'We use Bayesian view to update the estimated probability of success ﬁ‘ii
of an arm ¢ in the objective d, therefore, prior knowledge is required.

the corresponding reward vector ;- (step: 23). It updates

the number of successes vector @, a;« = [ak, - ,aR]T,

where af. = ad + 1 if r4 = 1, the number of failures
_ (a1 DIT d _ pd

vector B+, Bir = [Bix, - ,B7]", where 8% = B& + 1

if 7&. = 0, and estimated the probability of success vector
Dy Dy = [Pre, -+, pR]T, Equation II-A of the pulled arm
1" and the number of times N;~ arm ¢* is selected (step: 23).
Then, it calculates the Pareto and unfairness regrets (step: 25).
This procedure is repeated until the end of playing L time

steps which is the horizon of an experiment.

1. Input: Horizon of an experiment L;time step t;
arm set A;number of objectives |D|;number of
arms |A|;reward distribution r ~ B(p);selected
arm set 99 (t) = { }Va;decay factor €gecay € (0,1).

2. Initialize: a?=1;8¢=1;p¢ =05 Vic Ade Di
initial e-Pareto front set Al (0)=A.

3. For time step t=1,---,L

4. The decay factor parameter et:eéemy/(\AHD\)
5. For objective d=1,---,D

6. S ()= {¢}

7. D _1§m%x,4pi

8. For arm i=1,---,A

9. 1f pf € [p? — e, P9

10. Se(t) « {S%(t),i}

11. End If

12. End For

13. End For

14. S(t)« S'(t) U S%(t) U---U SP()
15. Sdiffe'rence — A: (t - 1) - S(t)

16. For arm je Sdz‘fference do

17. If P P VeE A
18. S« S U j
19. End If

20. End For

21. AX(t) « S(t)

22. Select 4" uniformly, randomly from AZ%)
23. Observe:reward vector 7,Trx = [rl-l*,u-,ri* T
24. Update:@;+;Bix;P; Nix < Ny +1

25. Compute:unfairness and Pareto regret
26. End For

27. Output:Unfairness regret;Pareto regret

Fig. 2. Algorithm: (annealing Pareto algorithm).

In Fig. (3), the dynamic of the algorithm is illustrated on
bi-objective 5-armed bandit. The optimal arms a7}, a3, and a3
have the probability of success p7, p5 and p3, respectively. The
non-optimal arms a4, and a5 have the probability of success py
and ps, respectively. At the beginning of time step, i.e. t = 1
the total selected arm set S(t) almost contains all the arms
(optimal arms and non-optimal arms), and the e-Pareto optimal
arm set A’ contains all the arms as shown in subfigure (a).
As the time step increases, S(t) contains some of the optimal
arms, i.e. a3 as shown in subfigure (b and c), therefore, to
maintain all the Pareto front, the annealing Pareto constructs
its updated e-Pareto optimal arm set A*(¢) to be the set that
contains the non dominated arms (a] and a3) in the previous
A¥(t — 1) and the arms in the set S(t).
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Fig. 3. The dynamic of the annealing-Pareto algorithm.

V. PERFORMANCE MEASURES

In the MOMAB, the agent has to find both the Pareto front
A* (or exploring the optimal arms) and play the optimal arms
fairly (or exploiting the optimal arms). As a result, there are
two regret measures.

Pareto regret measure (Rpgreto) [2] measures the distance
between a probability of success vector of an arm ¢ that is
pulled at time step ¢t and the Pareto front A*. Rpgreto 1S
calculated by finding firstly the virtual distance dis*. The
virtual distance dis* is defined as the minimum distance that is
added to the probability of success vector of the pulled arm p;
at time step ¢ in each objective to create a virtual probability
of success vector p; that is incomparable with all the arms in
Pareto set A*, where p}||p;- Vi=ca~ as follows:

p; =pi+€°

where €*, €* = [dis*!,--- ,dis*P]" is a vector. The Pareto

regret is:

Rpareto = dlS(PhP?) = dZS(E*,O) 2

where dis, dis(p:,p;) = \/X:dD:l(pf’d—pgl)2 is the Eu-
clidean distance between the probability of success vector of
the virtual arm p; and the probability of success vector of the
pulled arm p; at time step ¢. Thus, the regret of the Pareto
front is 0, i.e. the mean of the optimal arm coincides itself
(dis* = 0 for the arms in the Pareto front).

Pareto regret metric is two variants of the entropy measure,
Shannon’s entropy and relative entropy [3]. Shannon’s entropy
measure is a measure of disorder (or disarray) on the Pareto
front A*. The higher the entropy, the higher the disorder. The
Shannon entropy unfairness regret Rgg(t) at time step ¢ is as
follows:

RSE(t)

7 2 peld)

i*EA*

N‘A* D= (1) ()

where p;«(t), pi-(t) = N=(t)/N(1) is the probability of se-
lecting an optimal arm :* at time step ¢, where N;-(t) is the
number of times the optimal arm 7* has been selected and
N(t) is the number of times all arms i = 1,--- , A have been
selected at time step ¢, and N|4-|(t) is the number of times
the optimal arms, i* = 1,--- ,|A*| have been selected at time
step .

The relative entropy measure is the Kullback-Leibler di-
vergence which is a measure of the difference between two
probability distributions @Q* and @ as follows:

A

=Y e @

RRE(t)

where Q*(t) is the optimal distribution of selecting all the
available arms ¢ = 1,--- , A at time step ¢, while Q(t) is the
distribution of selecting the available arms by an algorithm.
The optimal probability of observing of an arm : in the optimal
distribution Q*(¢) at time step ¢ is Q7 (¢), Qf (t) = N/,
where N (t) is the optimal number of times arm 4 has been
selected at time step t. While, the probability of observing of
an arm ¢ in the distribution of an algorithm () at time step ¢
is Q;(t),Q;i(t) = Ni(t)/t, where N;(t) is the number of times
arm ¢ has been selected at time step .

The relative entropy takes in its account all the available
arms, while Shannon entropy takes in its account only the arms
in the Pareto front A*.

For instance, for 2-objective, 6-armed MOMABs with
Pareto front A*, A* = {a}, a},a}, a}}, where a is an optimal
arm. The number of selecting each arm vector N by an algo-
rithm is N = [32,22,22,17,12,7]7 and the optimal number
N* of selecting each arm is N* = [27,27,27,27,2,2]
time step ¢ = 100 with playing initially each arm 2 times.
The Shannon entropy is 0.0143, while the relative entropy is
0.1151. Since we are interesting in playing fairly only the
optimal arms, we use Shannon entropy measure to measure
the unfairness regret.
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Fig. 4. Average Pareto regret performance of the annealing-Pareto algorithm
on 2-objective, 6-armed with non-convex probability of success vector set
using different values of the decay factor €gecqy-

VI. EXPERIMENTS

In this section, we experimentally compare Pareto-UCBI,
Pareto-KG, Section II-C, Pareto Thompson sampling, Sec-
tion III, and annealing-Pareto, Section IV. The performance
measures are: 1) The average Pareto and the cumulative
average Pareto regret at each time step which are averaged of
M experiments. 2) The average unfairness and the cumulative
average unfairness regret at each time step which are averaged
of M experiments.

The number of experiments M and the horizon of each
experiment L are 1000. The rewards of each arm ¢ in each
objective d, d = 1,---, D are drawn from Bernoulli distri-
bution B(p;) where p; = [p},--- ,pP]T is the unknown true
probability of success of the arm ¢. As in the one-objective
MABs [11], each arm i is played initially two times and the
number of successes af, ad = 1 equals to the number of fail-
ures 3¢, B4 =1 in each objective d. To get best performance
for the annealing-Pareto, the decay factor €gecqy parameter in
the exponential decay €, €; = €iccay/(|A|D) has to be tuned. For
example, for 6-armed 2-objective with non-convex probability
of success set, Experiment 1, Fig. 4 gives the average Pareto
regret performance by using different values of the decay factor
€decay» 1-€. 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9. The x-
axis is the time steps. The y-axis is the average Pareto regret.
Fig. 4 shows, the performance of €gccqy = 0.4 outperforms
the performance of others €ge.qy, Where the average Pareto
regret is minimized. This means that the annealing-Pareto does
not need high exploration. To get rid of tuning the parameter
€decay 1N €ach experiment, we generate uniformly at random
the decay factor parameter €gecay € (0,1). However, the
annealing-Pareto performance will increase if we tune the
decay parameter €gecqy-

A. Non-Convex Mean Vector Set

Experiment 1. We use the same example in [2], since it
is simple to understand and the Pareto probability of success
set contains values close to each others. The number of arms
|A| equals 6, the number of objectives D equals 2. The true
probability of success set vector is (p; = [0.55,0.5]7,py =
[0.53,0.51)7,p3 = [0.52,0.54]",p, = [0.5,0.57]",ps
[0.51,0.51]7,ps = [0.5,0.5]T). Note that, the Pareto front is

* = (a},a3,a%,a}) where a} refers to the optimal arm 7*.
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Fig. 5. Non-convex and convex probability of success vector set. Sub-figure
a shows a non-convex set with Bi-objective, 6-armed. Sub-figure b shows a
convex set with Bi-objective, 20-armed.

The suboptimal a5 is not dominated by the two optimal arms
a7 and aj, but a3 and a3 dominates as while ag is dominated
by all the other arms. Fig. 5 shows a set of bi-objective true
probability of success with a non-convex set.

Fig. 6 gives the average cumulative Pareto and unfairness
regrets performances. The y-axis is either the average of the
cumulative Pareto or unfairness regret performance. The x-
axis is the horizon of each experiment. According to the
average cumulative Pareto regret performance, Fig. 6 shows
Pareto-KG is the best algorithm and Pareto-UCBI1 is the
worst one. Annealying-Pareto performs better than Pareto-
Thompson sampling and worse than Pareto-KG. According to
the average cumulative unfairness regret performance, Fig. 6
shows the annealing-Pareto algorithm performs as same as
Pareto-KG algorithm. Annealing-Pareto and Pareto-KG are the
best algorithms. Pareto Thompson sampling performs better
than Pareto-UCBI.

Experiment 2. We add extra 3 objectives and 14 arms to
Experiment 1, resulting in 5-objective, 20-armed, we add three
optimal arms and 11 dominated arms by all the arms in Pareto
front A*. Pareto front contains 7 optimal arms.

Fig. 7 gives the average cumulative Pareto and unfairness
regrets performances. Fig. 7 shows the annealing-Pareto is
the best algorithm according to the average cumulative Pareto
and unfairness regret performances. Pareto-KG performs better
than Pareto Thompson sampling and worse than annealing-
Pareto. And, Pareto Thompson sampling performs better than
Pareto-UCBI.
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Fig. 6. Performance comparison on 2-objective, 6-armed with non-convex
probability of success vector set. Sub-figure a shows the average Pareto
cumulative regret. Sub-figure b shows the average cumulative unfairness regret.

From Experiment 1 and 2, we see that as the number
of optimal equals 4, Fig. 6 shows the Pareto-KG algorithm
outperforms all the other algorithms according to the average
cumulative Pareto regret performance, while according to the
average unfairness regret Pareto-KG performs as same as the
annealing-Pareto and they outperform all the other algorithms.
As the number of optimal arms and objectives are increased,
Fig. 7 shows the annealing-Pareto performance outperforms
the performance of all other algorithms.

B. Convex Mean Vector Set

Experiment 3. With number of objectives D equals
2, number of arms |A| equals 20 and convex Pareto

probability of success set, (p1 = [56,.491]7,po =
55,51 ps = [54,.527)T,ps = [.535,.535|T,p5 =
525,.555] . ps = [.523,.557|,p; = [.515,.56]T,ps =
505,.567|T,pg = [5,.57)]T,pro = [497,.572]7 p1, =
498,.567]1,p1a = [.501,.56]7,p13 = [.505,.495]7 p1y =

508,.555|7,p15s = [.51,.52]1,p1s = [.515,.525]1 ,p1r =
52,557 p1is = [53,.53]T,pg = [54,.52]",pay =
.54, .51]T). The Pareto front A* contains 10 optimal arms,
A* = (a¥,a3,a},a}, a8, af,a%, a3, a,afy). Fig. 5 shows a
convex set of bi-objective true probability of success.

Experiment 4. We add extra 3 objectives and 10 arms
to Experiment 3, resulting in 5-objective, 20-armed, we add
dominated arms by all the arms in A*. Pareto front still
contains 10 optimal arms.

Fig. 8 and Fig. 9 give the average cumulative Pareto and
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Fig. 7. Performance comparison on 5-objective, 20-armed with non-convex
probability of success vector set. The average cumulative Pareto and unfairness
regret performances are shown in sub-figures a and b, respectively.

unfairness regrets performances. Fig. 8 and Fig. 9 show the
annealing-Pareto is the best algorithm, and the Pareto-UCBI1
is the worst algorithm. The Pareto-KG performs worse than the
annealing-Pareto and better than Pareto Thompson sampling.
Pareto Thompson sampling performs better than Pareto-UCB1
and worse than Pareto-KG.

From Experiment 3 and 4, we see that as the number of
objectives equals 2, the performance of the annealing-Pareto
is slightly better than Pareto-KG and dramatically better than
Pareto-UCB1 and Pareto Thompson sampling. However, as
the number of objectives is increased, the performance of
the annealing-Pareto is slightly better than Pareto-KG, Pareto-
UCBI1 and Pareto Thompson sampling.

From the above experiments, we see that Pareto-KG per-
forms better than Pareto-UCB1. The intuition is the added
exploration bound. Pareto-UCBI1 adds the same exploration
bound ExpB! = ... = ExpBiD to the estimated probability
of success ﬁ;f of an arm ¢ in each objective d, d € D, each
arm has the same exploration bound over all the objectives
D. The added exploration bound by Pareto-UCB1 decreases
faster to O after some confidence in the estimated probability
of success. While, Pareto-KG adds different exploration bound
(each objective d of an arm ¢ has its own exploration bound)
which depends on all arms and the added exploration bound
does not decrease faster to 0, since Pareto-KG explores better
than Pareto-UCB1. Pareto Thompson sampling performs better
than Pareto-UCB1 and worse than Pareto-KG because it uses
randomness of Beta distribution, as a result it explores widely
all the arms in the arm set A. The annealing-Pareto performs
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Fig. 8.  Performance comparison on 2-objective, 20-armed with convex
probability of success vector set. Sub-figure a shows the Pareto cumulative
regret performance. Sub-figure b shows the unfairness regret performance.

the best because it explores widely only the optimal arms and
the near to the optimal arms not all the arms, i.e. the optimal
and the non-optimal arms.

VII. CONCLUSION

We introduced Bernoulli multi-objective, multi-armed ban-
dit problem MOMAB and Pareto dominance relations. We also
introduced Pareto-KG and Pareto-UCB1. We extended Pareto
Thompson sampling to the MOMAB problem. We proposed
annealing-Pareto algorithm. We introduced the performance
measure in the MOMAB. We proposed using the entropy
measure as a performance measure in the MOMAB. We
studied empirically the trade-off between exploration and ex-
ploitation in the MOMAB. Pareto-KG and Pareto-UCBI trade-
off between exploration and exploitation by using knowledge
gradient policy KG and upper confidence bound policy UCBI,
respectively. Pareto Thompson sampling trades-off between
exploration and exploitation by using randomness of Beta
distribution. While, the annealing-Pareto trades-off between
exploration and exploitation by using a decay factor param-
eter. Finally, we compared Pareto-KG, Pareto-UCBI1, Pareto
Thompson sampling and the annealing-Pareto and concluded
that: the annealing-Pareto is the outperformed one according to
both the Pareto regret performance measure and the unfairness
regret performance measure.
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