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The Multi-Objective Multi-Armed Bandit (MOMAB) problem is a sequen-
tial stochastic learning problem. At each time step t, an agent pulls one arm i
from an available set of arms A and receives a reward vector rrri of the arm i
with D objectives. The reward vector is drawn from a corresponding station-
ary probability distribution vector, e.g. Bernoulli distribution B(pppi), where pppi
is the true probability of success vector parameter of the arm i. The reward
vector that the agent receives from the arm i is independent from all other arms
and independent from the past reward vectors of the selected arm i. Moreover,
the probability of success vector of the arm i has independent D distributions.
We assume that the true probability of success vector parameter of each arm
i is unknown parameter to the agent. Thus, by drawing each arm i, the agent
maintains estimation of the true probability of success vector, p̂ppi.

The MOMAB problem has a set of Pareto optimal arms (Pareto front) A∗,
that are incomparable, i.e. can not be classified using a designed partial order
relations. The agent has not to only find the optimal arms (exploring), to mini-
mize the total Pareto loss of not pulling the optimal arms, but also has to play
them fairly (exploiting), to minimize the total unfairness loss. This problem is
known as the trade-off between exploration and exploitation in the multi-objective
optimization, or the trade-off problem [1].

At each time step t, the Pareto loss (or Pareto regret) is the distance between
the set mean (or the true probability of success set) of Pareto optimal arms and
the mean of the selected arm (or the true probability of success vector). While,
the unfairness loss (or unfairness regret) is the variance in selecting the optimal
arms [2]. Thus, the total Pareto regret and the total unfairness regrets are the
cumulative summation of the Pareto and unfairness regret over t time steps,
respectively. Since, the total unfairness regret grows exponentially on the number
of time steps and does not take into account the total number of selecting optimal
arms, we propose to use the entropy measure to compute the unfairness regret.
The entropy unfairness regret is the measurement of disarray (or disorder) on
selecting the optimal arms in the Pareto front A∗.

The Pareto front A∗ can be found for example, by using Pareto dominance re-
lation which finds the Pareto front A∗ by optimizing directly the Multi-Objective
(MO) space. To solve the trade-off problem directly in the MO space, [2] pro-
posed Pareto Upper Confidence Bound (Pareto-UCB1) and [3] proposed Pareto
Knowledge Gradient (Pareto-KG). Both Pareto-UCB1 and Pareto-KG trade-
off between exploration and exploitation by adding an exploration bound vec-
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tor ExpBExpBExpBi to the corresponding estimated mean vector (estimated probability
of success vector p̂ppi) of each arm i, p̂ppi + ExpBExpBExpBi and select the optimal arms
j∗ that are not dominated by all other arms k, k ∈ |A| using Pareto domi-
nance relations, p̂ppk + ExpBExpBExpBk � p̂ppj∗ + ExpBExpBExpBj∗ However, Pareto-UCB1 adds the
same exploration bound to the estimated probability of success vector pppi for
each objective d, d ∈ D of an arm i, ExpBExpBExpBi = [ExpB1

i = · · · = ExpBDi ]T and
this exploration bound requires only knowledge about the arm i, where T is
the transpose. While, Pareto-KG adds different exploration bound to the esti-
mated probability of success vector pppi for each objective d, d ∈ D of an arm
i, ExpBExpBExpBi = [ExpB1

i , · · · ,ExpBDi ]T and the exploration bound ExpBdi in each
objective d depends on the estimated probability of success on all arms.

In this paper, we are interesting in the trade-off between exploration and
exploitation by using random instead of adding an exploration bound to the es-
timated mean vectors. In the one-objective, Multi Armed Bandit (MAB) prob-
lem, Thompson Sampling [4] trades-off between exploration and exploitation by
assigning to each arm i a random probability of selection Pi which is gener-
ated from Beta distribution. The random probability of selection Pi of an arm
i depends on the performance of the arm i. It will be high value if the arm i
has high estimated probability of success p̂i value. Since, Thompson sampling is
very easy to implement, empirically performs better than UCB1 policy [5] and
it has been shown to be close to optimal, we will extend it to MOMABs to find
the optimal arms in the MO space. Pareto Thompson sampling trades-off be-
tween exploration and exploitation by assigning to each arm i in each objective
d a random probability of selection P di which is generated from Beta distribu-
tion. Pareto Thompson sampling uses Pareto dominance relation on the random
probability of selection vectors PPP , PPP = [P 1

i , · · · , PDi ]T to find the Pareto front
A∗. We propose annealing-Pareto algorithm. The annealing-Pareto trades-off be-
tween exploration and exploitation by using a decaying parameter εt, εt ∈ (0, 1)
in combination with the Pareto dominance relation. The εt parameter has a high
value at the beginning of time step t to explore all the available arms and in-
crease the confidence in the estimated means, but as the time step t increases,
the εt parameter decreases to exploit the arms that have maximum estimated
mean. To keep track on all the optimal arms in the Pareto front A∗, at each time
step t, the annealing-Pareto uses Pareto dominance relation.

Annealing-Pareto algorithm has a specific mechanism to control the
trade-off between exploration and exploitation. It uses an exponential decay
εt, εt = εtdecay/(|A|D), where εdecay is the decay parameter and Pareto dominance
relation. At the beginning of time step t, εt has a high value to explore all the
available arms. As the time step t is increased, εt has a low value to exploit only
the optimal arms. To keep track on all the optimal arms in the Pareto front
A∗, the annealing-Pareto uses Pareto dominance relation. The decay parameter
εdecay, εdecay ∈ (0, 1), when εdecay = 0 means the annealing-Pareto is a fully
Pareto dominance relation and when εdecay = 1 means the annealing-Pareto
uses a fixed exponential decay. The pseudocode of the annealing-Pareto is given
in Algorithm 1.
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Algorithm 1 (Annealing-Pareto for Bernoulli Distribution MOMAB)

1. Input: number of arms |A|; number of objectives |D|; selected arm set Sd(t) =
{ } ∀d; decay parameter εdecay ∈ (0, 1).
2. Intialize: p̂di = 0.5 ∀i∈A,d∈D; initial ε-Pareto front set A∗ε (0) = A.
3. For time step t = 1, · · · , L
4. Set the decay parameter εt = εtdecay/(|A||D|)
5. For objective d = 1, · · · , D
6. Sd(t) = {φ}
7. p̂∗,d = max

1≤i≤A
p̂di

8. For arm i = 1, · · · , A
9. If p̂di ∈ [p̂∗,d − εt, p̂∗,d]
10. Sd(t)← {Sd(t), i}
11. End If
12. End For
13. End For
14. S(t)← S1(t) ∪ S2(t) ∪ · · · ∪ SD(t)
15. Sdifference ← A∗ε (t− 1)− S(t)
16. For arm j ∈ Sdifference do
17. If p̂ppk � p̂ppj , ∀k ∈ A
18. S(t)← S(t) ∪ j
19. End If
20. End For
21. A∗ε (t)← S(t)
22. Select an optimal arm i∗ uniformly, at random from A∗ε (t)
23. Observe: reward vector ri∗ , ri∗ = [r1i∗ , · · · , rDi∗ ]T ; Update: p̂ppi∗
24. End For
25. Output: Unfairness regret; Pareto regret

As initialization step, the estimated probability p̂di of success for each arm
i in each objective d is 0.5 and the ε-Pareto optimal arm set A∗ε contains all
the arms in the arm set A. At each time step t, the annealing-Pareto trades-
off between exploration and exploitation by using the decay factor parameter
εdecay, εdecay ∈ (0, 1) in the exponential decay εt to (step: 4). In each objec-
tive d, d ∈ D, the annealing-Pareto detects the optimal arm in that objective
i∗,d, i∗,d = argmaxi∈A p̂

d
i , where p̂di is the estimated probability of success for

arm i in the objective d (step: 7). The annealing-Pareto selects all the arms in
the objective d that have estimated probability of success between [p∗,d−εt, p∗,d]
and includes them in the corresponding selected arm set Sd (steps: 8-12), where
p∗,d, p∗,d = maxi∈A p

d
i is the probability of success of the optimal arm i∗,d in the

objective d. The annealing-Pareto constructs the total selected arm set S(t) at
time step t by reunion of the selected arm set Sd in each objective d (step: 14).
To keep track on the Pareto front, the annealing-Pareto uses Pareto dominance
relation (step: 17) on the arms j that are elements in the previous ε-Pareto op-
timal arm set A∗ε (t − 1) and are not element in the total selected arm set S(t).
If the arm j is not dominated by all other arms, then this arm will be added
to the total selected arm set S(t) (step: 18). The annealing-Pareto updates its
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ε-Pareto optimal arm set A∗ε (t) to be the total selected arm set S(t) (step: 21). It
pulls uniformly at random one of the arms i∗ that is an element in the ε-Pareto
optimal arm set A∗ε (t) (step: 22), observes the corresponding reward vector rrri∗

and updates the estimated probability of success vector p̂ppi∗ , p̂ppi∗ = [p̂1i∗ , · · · , p̂Di∗ ]T

of the pulled arm i∗ (step: 23). Then, it calculates the Pareto and unfairness
regrets (step: 25). This procedure is repeated until the end of playing L time
steps which is the horizon of an experiment.

Experimental Result We experimentally compare Pareto-UCB1, Pareto-
KG, Pareto Thompson sampling and annealing-Pareto on multi-objective Bernoulli
distributions. Fig. 1 gives the average cumulative Pareto and unfairness regrets
performances which are the average of 1000 experiments and the horizon of
each experiment is 1000 time steps. The y-axis is either the average of the cu-
mulative Pareto or unfairness regret performance. The x-axis is the horizon of
each experiment. Fig. 1 shows the annealing-Pareto is the best algorithm and
Pareto-UCB1 is the worst one. Pareto-KG performs better than Pareto Thomp-
son sampling and worse than the annealing-Pareto. Pareto Thompson sampling
performs better than Pareto-UCB1 and worse than Pareto-KG. The intuition is
that the annealing-Pareto explores widely the optimal arms and the near to the
optimal arms not all the arms, i.e. the optimal and the non-optimal arms, while
Pareto Thompson sampling explores equally all the available arms. Pareto-KG
and Pareto-UCB1 add an exploration bound and this exploration bound de-
creases to 0 after t time step. The exploration bound by Pareto-KG depends on
all the arms, therefore it explores better than Pareto-UCB1.

Conclusion The annealing-Pareto is the best performing algorithm accord-
ing to both the Pareto and unfairness regret performance measures.
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Fig. 1. Performance comparison on 5-objective, 20-armed with non-convex probability
of success vector set. Left sub-figure shows the Pareto cumulative regret performance.
Right sub-figure shows the unfairness regret performance.
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