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Abstract—This paper considers how existing Reinforcement
Learning (RL) techniques can be used to model and learn
solutions for large scale Multi-Agent Systems (MAS). The large
scale MAS of interest is the context of the movement of departure
flights in big airports, commonly known as the Departure MAN-
agement (DMAN) problem. A particular DMAN subproblem is
how to respect Central Flow Management Unit (CFMU) take-
off time windows, which are time windows planned by flow
management authorities to be respected for the take-off time
of departure flights. A RL model to handle this problem is
proposed including the Markov Decision Process (MDP) definition,
the behavior of the learning agents and how the problem can
be modeled using RL ranging from the simplest to the full
RL problem. Several experiments are also shown that illustrate
the performance of the machine learning algorithm, with a
comparison on how these problems are commonly handled by
airport controllers nowadays. The environment in which the
agents learn is provided by the Fast Time Simulator (FTS) AirTOp
and the airport case study is the John F. Kennedy International
Airport (KJFK) in New York City, USA, one of the busiest airports
in the world.

I. INTRODUCTION

The number of large intelligent distributed systems, or large
scale Multi-Agent Systems (MAS) [/], that we encounter
in daily life is increasing. These systems are characterized
by a highly dynamical nature with an increasing number of
agents which are constantly joining or leaving the environ-
ment, resources that are disappearing or becoming available,
increasing demands for a more efficient use of those resources,
hidden constraints or modes of operation unknown even by
the designers of the system, etc. A few examples are smart
energy grids, intelligent traffic signs and Air Traffic Control
(ATC) [2] operations. Because of these characteristics, it is
often easier to build a generative model of the environment,
that is, the representation of the system in the form of a
simulator, rather than an explicit mathematical description of
system dynamics.

A Machine Learning (ML) [3] paradigm called Rein-
forcement Learning (RL) [I] [4] appears as a very natural
way to model these large scale MAS. The agent based mod-
eling effort can be reduced significantly compared to other
approaches since a full view of the system is not needed
anymore. It can also allow the system to exceed human con-
troller performance when multiple decisions need to be made
in these highly dynamical environments. Furthermore, RL is by

its nature adaptive and can change its decisions dynamically
depending on the current environmental conditions. Finally,
another interesting characteristic of RL is that the information
needed to learn a solution can be obtained directly from
a simulator. Other common ML approaches like supervised
learning or unsupervised learning are unfeasible in such a
setting. Supervised learning because of the lack of examples
of the target function to be learned and unsupervised learning
because of the absence of an error function to minimize [5].

An important large scale MAS problem today and for the
future is the context of the movement of departure aircraft in
big airports, commonly known as Departure MANagement
(DMAN) [6] [7]. Several problems need to be handled in a
DMAN context, such as: how to make aircraft take-off in a
way that will increase runway usage, how to respect assigned
CFMU windows assigned by flow management authorities,
how to efficiently de-ice on winter climates, etc. All these tasks
need to be performed in a way that reduces noise emissions,
fuel consumption and general delays. These tasks are currently
performed by the different human airport controllers with an
increasing support of computer decision support systems.

The particular subproblem this work is interested in is
on how to make departure aircraft respect assigned Central
Flow Management Unit (CFMU) slots [#] by taking-off in
an assigned time window. An RL model was built to handle
such a problem. The environment used by the RL system to
derive its solutions is provided by the Fast Time Simulator
(FTS) AirTOp [9]. Finally, the airport being analyzed is the
John F. Kennedy International (ICAO ID: KJFK) Airport
in New York City, USA, one of the busiests airports in the
world.

This paper is organized as follows. In Section II, an
overview of the necessary theoretical background in RL needed
to understand this work is presented. Section III presents an
overall description of the ATC context. Next, in Section IV,
the proposed RL model is described in detail, followed by
Section V which presents experiments and collected results.
Finally, in Section VI, conclusions and suggestions for future
work are presented.

II. REINFORCEMENT LEARNING BACKGROUND

Reinforcement Learning (RL) [I] [5] is an approach to
solve a Markov Decision Process (MDP). A finite MDP is
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defined by the tuple (S,A,{Ts.},7v,R). S = {s1,...,sn}
is a finite set of states. A = {ai,...,ax} are the actions
available to the agent. Each combination of starting state s;,
action choice a; € A and next state s; has an associated
transition probability 7(s;,a;,s;) and immediate reward
R(s;,a;). v € [0,1) is the discount factor, which can be used
to express that a reward in the near future is more important
than a reward that is expected in the far future. The goal for
the agent is to learn a policy 7, which maps an action to each
state so that the expected (&) future discounted reward J7 is
maximized: J™ = E[Y_,° v"R(s(t), 7(s(t)))].

This goal can also be expressed using Q-values, one for every
action from each possible state, which explicitly store the
expected discounted reward for every (s,a) pair: Q(s,a)
R(s,a) + 7> . T(s,a,s")max, Q(s',a’) (s’ is the next
state).

In order to find the optimal policy, the agent can learn
these Q-values, and afterwards select in every state the
action with the highest Q-value (greedy action selection).
In RL, the agent typically does not have any knowledge
about the underlying model, e.g., the transition probabilities
and reward function are unknown. Watkins described an
algorithm to iteratively approximate the optimal values
Q*. In this Q-learning algorithm [I(], a table consisting
of state-action pairs is stored. Each entry contains the
estimated value for a specific state-action pair (s,a). The
(Q-values are updated according to the following update rule:
Q(s,a) < Q(s,a)+a|[R(s,a)+vymax, Q(s',a')—Q(s, a)],
where o is the learning rate at time step t.

There are theoretical guarantees that if all states and actions
are visited infinitely often and an appropriate learning rate is
chosen, the estimates () will converge to the optimal values

Q*
A. Action Selection Mechanisms

When choosing actions to maximize an expected long-term
numerical reward, an agent can maintain estimates over the
actions and update these estimates over time. The choice the
agent has to make is when to start to exploit its knowledge
(i.e., to decide when to use the best estimated action) instead
of continuing to explore the other options. Choosing this best
action is called greedy action selection. If this is done too
early, the value estimates of the agent might still be inaccurate
and a suboptimal action might be selected. If this is done
too late, the total collected reward can be low over the entire
time period. The necessity of this balance between exploration
and exploitation is commonly known as the exploration-
exploitation dilemma of RL [I].

A common action selection mechanism in RL that tries to
make this balance is the e-greedy action selection strategy
[1] [5]. This selection mechanism selects the best action
most of the time, but with a small probability (¢) selects an
action uniformly at random, independently of the action-value
estimates. An important characteristic of this approach is that
it keeps exploring, which is robust against problems in which
dynamics or reward structure change over time.

In some settings, it is possible and often desirable to start
with a value of € of 1.0 in the beginning, to induce exploration
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and evaluate more actions, and to decay it with time to induce
more exploitation towards the end. Considering €, to be the
initial value of € and 7 € (0, 1) the decay, the value of € at a
given episode can be given by ¢ (episode) = g * TP,

B. From N-Armed Bandit to the Full Reinforcement Learning
Problem

The simplest RL problem is known as the n-armed bandit
[1], named by analogy to a slot machine with n levers. In this
setting, after making a choice of a lever, a numerical reward
is received. The goal is to find the lever that will give the
maximum long term expected reward. Every action selection
is called a play. This is considered to be a Single-State or
stateless RL problem and each choice of a lever is an action.

The n-armed bandit problem is non-associative, in which
actions do not need to be associated with different situations. It
is very common, though, that in general RL problems, tasks are
associative, meaning that actions need to be chosen in more
than one situation, and the goal for the agent is to learn a
policy: know which action is best in each case (Multi-State),
as described previously. When tasks are associative and the
effect of an action affects the next situation and future rewards,
then the full RL problem is reached.

Pseudocode 1 shows how a RL agent chooses actions in
an episodic task (the agent-environment breaks-down into a
sequence of episodes), in a Multi-State setting with a finite
MDP, and how it updates the estimates over these actions
using Q-Learning. e-Greedy with parameter decay is used as
the action selection mechanism.

Algorithm 1 RL Update With Q-Learning and e-Greedy
with Decay

1: Initialize Q(s,a) (e.g., 0)

2: for each episode do

3 Agent returns to initial state.

4 Decay €: € < €g % TePisede

5 while Final/absorbing state not reached do

6: Generate random number n € [0, 1):

7: if n < e then

8: Explore: Choose a at random

9: else

10: Exploit: Choose among a with the highest @
11 Execute action a

12: Observe reward 7, next state s’

13: Update @ of a: Q(s,a) < Q(s,a) + at[R(s,a) +

ymaxy Q(s',a’) — Q(s, a)]

Most of the traditional RL theory is based on the case in
which there is only one learning agent, often called the Single-
Agent RL problem [5]. When multiple agents are learning
together in a shared environment, this becomes the Multi-
Agent RL (MARL) [4] problem, which is often more complex
then its Single-Agent counterpart and many of the assumptions
that guarantee convergence of the former are violated. The
DMAN problem we introduce below, is a MARL problem.

I11.

Departure MANagement (DMAN) [6] is the process of
controlling a departure aircraft from its allocated departure
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gate to a departure runway for take-off, respecting all the
constraints present in the system and trying to do it in the most
efficient way possible. Several problems must be handled in
this context, such as: determine the moment an aircraft must
leave the gate (off-block time) to respect a pre-defined take-
off time window, choice of the runway and runway entry,
the routing until the runway, the take-off order or sequence
such that the usage of the runway and consequently the
capacity of the airport is increased, etc. While performing these
activities, delays, fuel consumption and noise emissions must
be decreased as much as possible. The difficulty in finding
satisfactory solutions to all these problems simultaneously
increases when complex airport layouts are considered and in
situations of intense traffic.

The rest of this Section is described as follows. Section
ITI-A presents an introduction to take-off time windows and
their importance in ATC, followed by, in Section III-B, of
a description of how the different airport controllers try to
respect those windows. Section III-C presents FTS tools
for ATC studies. Finally, Section III-D shows a general
description of KJFK airport.

A. Target Take-Off Time Window

It is common in many operational contexts that a departure
flight has a pre-assigned time slot to fly in the airspace.
These slots have been pre-calculated, e.g., by flow management
authorities, such as the Central Flow Management Unit
(CFMU) [#] in Europe, in order to avoid congestion and to
allow for a better use of the whole ATC infrastructure.

In order for the aircraft to fly in its slot, its Actual Take-
Off Time (ATOT) (wheels-off instant) must be within a certain
time window. With every window, there is also a specific time,
often centered in the window, which is called the Target Take-
Off Time (TTOT). '

In airports worldwide, there is still room for improvement
in respecting these windows. For example, [8] shows that for
Charles de Gaulle Airport (LFPG) in Paris, France, roughly
80% of the flights succeed in taking off inside their slots.
This works uses a genetic algorithm approach combined with
a branch and bound graph exploration technique to find the
best path and priority for the aircraft and respect the windows.

A TTOT window TTOTW; for a departure aircraft ¢
(acfe” ) which has an assigned TTOT (acfe”’TTOT) can be
formally defined as follows: the width of the window is
TTOTW;” > 0 and its range is [TTOTW;™", TTOT;™**],
such that TTOTW™" < TTOT; < TTOTW
and TTOTW TTOTW™n + TTOTWY. Fi-
nally, ac,‘ikp’T OT  respects its window if ATOT, €
[TTOTW%, TTOTWP8%],

B. Human Ground Controllers Approaches to Respecting
TTOT Windows

A common approach that ground controllers nowadays use
to respect TTOT windows is the following. Initially, the gate
controllers make an estimation of the time duration between

'Depending on the ATC system generating these windows, TTOT can have
other names such as Calculated Take Off Time (CTOT) and be used in an
operational context different from the CFMU slots.
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the off-block and take-off times (7°%) for a”""°" some
time before TT'OT;. To make this estimation, the controller
evaluates the traffic situation in the airport, aircraft type, total
taxi length, etc. S/he will then clear the aircraft to off-block
at TTOT; — T¢*. In this work, 7% was calculated using the
following two approaches:

Average (T;’t’a) = > average push back duration (00:02:35),
average taxi time duration (total taxi length / 14kt), average
runway line up duration (00:00:28), runway acceleration du-
ration. 2

Exact (Tft'e): For every aircraft type (A320, B777 etc) and
departure gate pair used in the scenario, this is measured with
the aircraft taxiing alone in the airport.

. dep, TTOT
Later on, the runway controller, by receiving a;” @

in its area of responsibility can make it wait before lining up,
if it estimates that it will miss its window by taking-off too
early: ATOT, < TTOTW™"™.

C. Fast Time Simulation

While performing studies to improve air traffic, e.g., when
developing new ATC procedures or improving existing ca-
pacity, researchers often need a set of computational tools
to allow them to realistically model and simulate those new
procedures. They can provide an immediate feedback in terms
of the impact on controller workload, distance or fuel burned
by the aircraft, general delays, etc.

One type of these simulation tools is the Fast-Time Simu-
lator (FTS) of which several commercial off-the-shelf versions
currently exist on the market. Important characteristics of these
tools are that they offer a low cost solution and provide fast
and reliable feedback. Because of this, they are used in the
early stages of the development of ATC projects. The term
fast time is derived from the fact that the simulation clock
runs faster than a regular clock. ?

Different FTS have different capabilities, but as a whole
they are capable of modeling the following aspects of ATC
and Airport Ground Operations (AGO) domains: EnRoute
flight phase, Terminal Maneuvering Area (TMA), aircraft
and airport handlers, vehicles ground movements, etc.

D. John F. Kennedy International Airport

In 2011, John F. Kennedy International airport (KJFK)
in New York City, USA, was ranked the 6th busiest airport
in the US and 17th in the world, with a total of 48 million
passengers and 400.000 movements in that year [6]. It covers
a surface of 21 km?, with eight terminals and a total of 128
gates. The terminals are surrounded by a dual ring of taxiways
and the total taxiway length is 40km. There are two pairs of
parallel runways around the terminal area and outside the dual
ring of taxiways: 13R-31L, 4R-22L, 4L-22R, 13L-31R. See
Figure 1 for an overview of the KJFK model used.

2These values, including the taxi-speed used, are averages measured over
all departure flights of KJIFK. Runway acceleration time is estimated for each
aircraft individually.

3The simulation speed is only limited by the performance of the computer
on which it is running.



Fig. 1: John F. Kennedy International Airport, New York City,
USA (Yellow nodes are the gates, orange are the runway
entry/exit points. Terminal buildings in the center area of the
airport are highlighted in gray).

IV. DEPARTURE MANAGEMENT REINFORCEMENT
LEARNING MODEL

This Section describes the proposed RL model used to
make departure flights respect their TTOT windows. Initially,
in Section IV-A, a description of the environment at which
the agents learn is presented. Followed by, in Section IV-B, a
description of the MDP. Thirdly, in Section IV-C, it is shown
how this probleman be mapped from the N-armed bandit to
the full RL problem. Finally, in Section I'V-D, an example is
given for a Single-Agent in a Multi-State context to have a
better intuition on how the model works.

A. Environment

The whole ATC environment, either on ground or in
the air, is provided by the FTS AirTOp [9] (Air Traffic
Optimization) simulator. In this environment, a Flight Plan
(FP) is assigned to every flight in the simulation. The FP
defines, among other things, the origin and destination airports,
gates to use, the routing in the airspace to be used by the flight,
etc.

For departure flights (acfe”), the aircraft is expected

to off-block at the nominal time defined by the planning
authorities in its FP. Once it off-blocks, it is assigned the
shortest path to the runway entry and will taxi at the maximum
speed allowed for its aircraft type and the taxiway it is on.
After entering the runway by the most appropriate entry, it will
accelerate and take off. It will fly its pre-assigned Standard
Instrument Departure (SID) route followed by its EnRoute
one [6].

Arrival flights (ac{""), after their EnRoute phase, are
assigned a Standard Terminal Arrival Route (STAR), with
a clearly defined approach phase, prior to their landing in the
airport. After landing, they decelerate and leave the runway
at the most appropriate runway exit and taxi to their assigned
arrival gate.

While taxiing on ground, several safety distance require-
ments must be met. These distance requirements are often
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dependent on safety and operation constraints of the particular
airport and airspace in its vicinity. One common one is based
on wake vortex separations [6], which define the minimum
distance between the movement of two consecutive aircraft,
due to trailing air turbulence generated by the movement of
the leading aircraft.

Finally, the taxipath in the airport is represented as a
network of nodes and links as in a graph, similar to the grid
world environments [5] typically considered in RL. Each of the
elements that make up the ground routing of an aircraft, e.g.,
gates, runway entries etc, is represented by one of these nodes.
See Figure 1 for a schema of the layout of KJFK airport. This
scenario is modeled and solved with a RL approach detailed
at next.

B. Markov Decision Process

In this section an MDP process is introduced by defining
its agents, states, actions, and the reward function.

Agent: A FP controller agent a;. One for each ac;-lep (R,

dep, TTOT : . : :
aci”’ receives instructions from a; that it needs to

respect.

States (5): Three different types of state are defined depending
on the phase of ac?” """ from the moment it appears at the
gate until its ATOT;:

1) Parked (initial state) (s¥): a; enters this state when

JerTTOT parks at its departure gate and until its Actual
Off-Block Time (AOBT). It is defined by:

- Departure Gate (g;): Assigned departure gate.
dep, TTOT

- Entry Time (e,): Instant ac; appears at g,.

2) Taxiing (intermediate states) (Sf; = s ;,....s} y): @i

initially enters this state at AOBT;. * It switches to the next
taxiing state after it has crossed the exit node of the current
state. It is defined by:

- Entry Node (n.): Entry node for the current portion of the
ground path of the aircraft.

- Exit Node (n.): Exit node for the current portion of the
ground path of the aircraft.

dep, TTOT

- Entry Time (e;): Instant ac; CIOSSES 7.

3) Taken-Off (goal/absorbing states): a; enters this state at
ATOT;. Two possible absorbing states of this category are
possible:

- Taken-Off Inside Window (s, """ ATOT; €
TTOTW; .

- Taken-Off Outside Window (s’ 7 OTW-o"ty. ATOT, ¢
TTOW,;.

Actions (A): Different actions are available for the agent:

- Delay Off-Block (A° = af,...,a}): Choice of the time
duration to delay the nominal off-block time. Available at s?.

#Strictly speaking from an ATC point of view, the aircraft undergoes
different phases, such as pushing back, taxiing, queuing to enter runway etc.
To simplify the model, it was decided to group all these phases in one state
called taxiing state.



- Delay During Taxiing (A* = a!,...,a’,): Choice of the
amount of delay to apply to acf“p ATOT ot n,. The aircraft

comes to a full stop. Available at S!.

- Take-Off (a®) : Action taken when the controlled aircraft
reaches its lift-off speed at the runway. It is always executed.
Available at S!.

Reward Function (R): a; receives a reward at ATOT;. If its
final state is s; TOTWin "3 reward TTTOTW‘" is observed.
This reward consmts of a max value (r"%*) from which is
deducted a penalty (p'“**"™?) equal to the total time duration

ac?PTTOT was stopped during taxiing (di**""’) times a
penalty factor (fte*iing > 0): r An _ maz _ tawiing _
e TTLOTW ()uf

PR _ flesling , glsaiing 3 If the final state is s;
TTOTW, out
a reward 7 is granted. For the agents to have an
incentive to transition to sTTOTW'" the following relation
" 5 pTTOTW,out yjglaziing

must be respected: rTq or

C. From Single-Agent Single-State to Multi-Agent Multi-State

Different RL models can be used depending on the con-
figuration of the learning setting: the number of learning
agents, Single-Agent or Multi-Agent, and whether a Single-
State or Multi-State approach is being used. The goal is to
identify the simplest model that can be used to learn an
appropriate solution for each case. Transitions in complexity
follow roughly the order shown below. The motivation for the
increase in complexity, from the ATC point of view, is included
in the description.

- Single-Agent Single-State: There is only one learning agent
and the only state considered is the Parked State with the Delay
Off-Block actions. It tries to respect the window by absorbing
all the delay at the gate. These are often desired solutions in
an ATC context, since all the delay to respect the window is
absorbed at the gate and the aircraft engines are turned off,
thus minimizing fuel consumption.

- Multi-Agent Single-State: The scenario is similar to the
Single-Agent Single-State case described above, but in this
case multiple agents are learning in a shared environment.

- Single-Agent Multi-State: The transition from a Single-State
to a Multi-State case can occur since to respect the window, it
is not always possible to absorb all the delay at the gate. E.g.,
the aircraft needs to leave the gate because an arriving flight
is requesting it, or to avoid the traffic in the vicinity of its gate
close to its AOBT. Since the aircraft is leaving the gate earlier
than desired, it might be necessary to further delay the aircraft
during its path to the runway.

- Multi-Agent Multi-State: The scenario is similar to the
Single-Agent Multi-State case, but with multiple learning
agents in a shared environment.

D. Single-Agent Multi-State Example

In order to have a better understanding of the RL model,
namely the state transitions and the final reward received, this
Section presents as an example a Single-Agent in a Multi-State

SDelay on ground and fuel consumption are two correlated objectives. If
delay on ground increases, fuel consumption also increases. In this sense, fuel
consumption can also be penalized instead of taxiing delay.
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setting for the airport layout shown at Figure 2. In this airport,
a departure aircraft is parked at gate a and will taxi to runway
27, crossing nodes b and ¢ and taking-off at d.

n

Terminal

.

Fig. 2: Airport layout.

To keep the representation short and easier to visualize,
Taxiing state transitions and Delay actions are only defined
at nodes a, b and c¢. The nominal off-block time in the FP 1s
08:00:00, T-¢ = T2¢ = T°¢ = bmin, T = 15min. ©
TTOTW definition: TTOTW ™" = 08:16:00, TTOTW ™4
= 08:18:00. If the AOBT is 08:00:00 and the aircraft taxi to
runway 27 with no delay applied, its ATOT will be 08:15:00,
missing its window (ATOT; < TTOTW™™).

The following set of Delay Off-Block actions A°
{0s, 30sec, 60sec} can be applied at the gate a. The same set
can be used as A’ at nodes b and c. The reward function pa-
rameters are: 7% = 100, pTTOTW.out — (  ftaziing — () 5,

The state transition diagram is shown on Figure 3. 7 Inside
each Parked and Taxiing states, e, and e; are shown. Each
column groups the states associated with a given n./n, pair,
shown at the bottom. The arrows connecting the s¥ and S
indicate the delays available in each state (the uppermost arrow
is always Osec). The final ones leading to the Taken-Off states
represent the Take-Off actions.

Multiple solutions exist that will make the aircraft respect
its window. The one with a maximum of delay applied at
the gate and a minimum during taxiing is a=60sec, b=0sec,
c=0sec, ATOT=08:16:00 € TTOTW;, ] "OTWi" — 100.
This solution minimizes fuel consumption. If the solution
a=0sec, b= 30566 c=60sec, ATOT=08:16:30 € TTOTW; is
adopted, . 79T — 100 — 0.5 % 90 = 45.

V. EXPERIMENTS

Several learning scenarios were derived from a baseline
model of KJFK consisting of 1409 FPs, being 698 departures
and 711 arrival FPs to KJFK. The total simulation time spans
roughly two days of operation of this airport. All departure
flights of KJFK used in this study use runway 31L (which is
also used by arrivals). In Section V-A, it is described how the
different learning scenarios were derived from this baseline
model. At next, in Section V-B, a description of the RL set
up used is given. Finally, in Section V-C, simulation results
that compare the performance of the learning algorithm and
the human ground controllers are shown.

Deceleration and acceleration times on a full stop are considered to be
zero, and no speed variations are considered to simplify the example.
TTransition probabilities are all 1 in this representation and are omitted.
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Fig. 3: State transition diagram: Single-Agent Multi-State.

A. Setting Up Learning Scenarios

Initially, a TTOTW was created for every departure flight of
KJFK (there were 698). First, each TTOTW,; was generated
by measuring ATOT; for every ac?”"TOT when it taxis
alone in the airport. All measured AT'OT; were then sorted
in ascending order and whenever ATOT;., — ATOT; <
3min — ATOT;+; = ATOT; + 3min to achieve this min
separation. ® These sorted/shifted ATOTs were converted into
TTOTs. Finally, a window was created centered around each
TTOT; with TTOT}” = 2min. In Table I, a few examples of

TTOTW generated for some ac!”"" " of KJFK are shown.

: TTOTW

FP Callsign | oqnymm T TTOT | TTOTW™*
AALOO0SD | 07:19:12 | 07:20:12 | 0721.12
DALO0G7D | 07:22:12 | 07:23:12 | 07:24:12
JBUO065D 07:25:12 07:26:12 07:27:12
AALO007D | 07:28:12 | 07:29:12 | 07:30:12
DALO0009D 07:31:12 07:32:12 07:33:12

TABLE I: Some TTOT windows generated for learning sce-
nario 6 (AAL = American Airlines, JBU = Jet Blue, DAL =
Delta Airlines).

Afterwards, different learning scenarios were defined from
this baseline model. The learning scenario with index 0 is
generated by grouping all departures of KJFK that have their
TTOT within a 1h interval starting from the first TTOT. This
window is then shifted 1h and the subsequent departures are
grouped in another learning scenario and so on. The arrivals
considered for each case are the ones that are touching down
in KJFK during this time frame. This is a first approximation
for a rolling horizon window commonly used in these types
of planning systems [6]. In total, 42 learning scenarios were
generated comprising all departure flights from KJFK. Table II
shows the number of departure flights and the learning problem
type, in terms of the number of learning agents, per learning
scenario index.

8This value is enough to account for runway separation requirements of
KJFK.
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Scenario | 6-38 5 0 39 | 1,34 | 241 | 40
# of Dep | 20 13 8 6 3 1 0
# of AT MA | MA | MA | MA | MA | SA -

TABLE II: Number of departure flights per learning scenario
index (Dep: Departure Flights, AT: Agents Type, MA: Multi-
Agent, SA: Single-Agent).

B. RL Set Up

Agents are all independent learners (they do not take each
other into consideration) and use Q-learning with « = 0.2, v =
0.8. 7 Action selection mechanism is e-greedy with parameter
decay: ¢ = 1.0, 7 = 0.995. A learning trial ends when € =
0.001 for all agents (1378 episodes). Every agent is trying to
maximize its own expected reward (competitive setting [5])
with:r™8% — 10,000, fee#ting — 1,0, 10

Simulations are performed on both deterministic and
stochastic settings. In the stochastic case, the amount of time
the pilot spends in making her/his final check after receiving
the clearance of the control tower to off-block is modeled as a
Gaussian distribution (1 = 20sec, o = 5sec). Uniform ground
speed reductions up to 5kt, every 3min of taxiing time, also
happen for every flight (arrivals and departures). In a multi-
agent setting, the environment as experienced by the agents
becomes non-deterministic because of the interactions with the
other learning agents, so the terms deterministic and stochastic
are used to differentiate when those probability distributions
are used. !

Finally, at both Single-State and Multi-State settings, A°
were defined with a range of [—10min,10min] centered
around TTOT — T°%¢ and a step of 10sec for every agent
(121 actions per sf ). In the Multi-State case, A* were defined
with a range of [0, 1min| and a step of 10sec (7 actions per
St close to each apron exit. 12

C. Results

All 42 learning scenarios were executed initially with a
Single-State approach on both deterministic and stochastic
settings. The results are averages over 10 learning trials. For
the learning case, the values shown in Figures 10 - 11 are the
ones measured at the last episode, when all agents are behaving
greedy. Whenever the maximum possible number of take-offs
inside window was not reached, a Multi-State approach was
tried for it. The same scenarios were also evaluated with the
human ground controllers trying to respect all 7T’OTW; on
the same two settings. One final experiment was performed
only modeling the behavior of the human gate controllers.

Initially, a more detailed analysis of learning scenario 6 in
the deterministic setting is shown through Figures 4 - 9. This
scenario is chosen because the Single-State approach could not

In most practical applications, a constant low « (e.g., 0.1 or 0.2) is used.
v is chosen close to one.

10These were chosen such that the reward function constraint holds true for
KJFK.

'These are approximate values used in an operational context.

12In an operational context, it is common for a few airports in the U.S.A.,
for the aircraft to stop for some time in the apron exit in order to wait for a
radio frequency switch from the gate controllers to the taxiing controllers.



find a solution (AT OT; € TTOTW;) for all agents, but the
Multi-State approach did.

Figure 4 shows the number of take-offs inside window
as learning progresses, the Single-State case stabilizes on 19
on average while the Multi-State case in 20 (the maximum
possible). Fuel consumption, shown on Figure 5, for the Multi-
State case is higher because of the additional stop the departure
aircraft face at the apron exit. In a post-analysis evaluation of
this scenario, the Single-State case did not succeed in finding
a solution because arrival flights taxiing in the vicinity of the
gate prevent the departure flight from continuing. The Multi-
State approach succeeds in this task, because the agent learns
to make the aircraft off-block earlier and also stop for some
time. If the aircraft would only leave the gate earlier, with no
additional stop, it would be too early in the runway to take-off
(ATOT; < TTOTW ;™) and miss its window.

Average Number of Take-Offs Inside Window
(All Agents)

Average Fuel Consumption
(Al Agents)
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Figure 6 shows the average reward for all agents in the
learning scenario. In the Multi-State case, it converges to a
value close to the maximum possible (r™** * number of a;).
In Figure 7 the average reward for a few selected agents of
this scenario is shown (the middle ones shown on Table I). It
can be seen that JBUOO65D, in the Single-State case, has an
average reward of O during the whole learning process. This
is an indication that ATTOT;BvuooesD ¢ TTOTW jBuooesD
in this setting. In the Multi-State case, this problem is solved.
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Figures 8 - 9 show a profile of the general delays on
ground for the departure aircraft as learning progresses. Figure
8 presents the average gate delay. The Single-State case has
higher gate delay because the only solution available to meet
the window is to delay the off-block of the aircraft. In Figure
9 the average taxiing delay is higher in the Multi-State case
because of the additional stop at the apron exit, as described
previously.
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Average Gate Delay
(All Agents)

—&— Single - State

4 Multi - State

Average Ground Delay (min)

—8— Single - State
= Multi — State

0
0 200 400 600 800 0

Episode

1000 1200 1400 200 400 600 800

Episode

1000 1200 1400

Fig. 8: Average gate delay. Fig. 9: Average taxiing delay.

Finally, let’s consider the state-space size. In the last
learning trial for the Multi-State approach, there were 2111
taxiing states visited for the deterministic setting and 2168
visited taxiing states for the stochastic setting.

Figures 10 - 11 show a comparison of the performance of
machine learning and the human ground controllers in terms
of the percentage of windows respected and fuel consumption
for each scenario. The results shown are a combination of
the Single-State and Multi-State approaches. The Single-State
approach is the one shown by default because it had equal
or higher percentage of TTOT'W; respected in most cases. A
Multi-State is displayed (highlighted in the x axis index) if its
percentage was higher.
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(Scenarios are independent, D=Deterministic, S=Stochastic, A=Average, E=Exact, MS=Muli-State
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Fig. 10: Percentage of KJFK departure flights that take off
inside window. (MS besides the learning index indicate that a
Multi-State approach was used.)

For the percentage of windows respected, shown in Figure
10. Although the human controllers perform reasonably well
in the deterministic setting, machine learning still outperforms



they because it succeeds in finding solutions that overcome
situations where the departure aircraft faces traffic disturbance
on its path to the runway (departures or arrivals). In the
stochastic setting, the performance of the human controllers
decreases considerably, but machine learning still succeeds in
maintaining a rate of more than 90% of windows respected in
most of the scenarios evaluated. Table III shows a percentage
of windows respected for all scenarios together.

Percentage of Windows Respected
Case Is}nyil:onment -
Deterministic | Stochastic

Machine Learning 99 96
Tosa 85 7
Gate Controllers Tore 57 17
Gate + Runway | 7°%¢ 87 70
Controllers e 96 44

TABLE III: Percentage of windows respected for all scenarios.

For fuel consumption, shown in Figure 11, learning in
most of the scenarios, provides lower fuel consumption for the
departure aircraft. Fuel consumption is higher in the stochastic
setting compared to deterministic one because of the speed
reductions provided by the uniform taxi speed variation which
causes the aircraft to taxi for a longer time. Table IV shows
the fuel consumption comparison for all scenarios together.

Fuel Consumption: Learning / Controllers Comparison
(Scenarios are independent, D=Deterministic, S=Stochastic, A=Average, E=Exact, MS=Mult-State)
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Fig. 11: Average fuel consumption for departure flights.(An M
besides the learning index indicates that a Multi-State approach
was used.).

Fuel Consumption (kg)
Flac Enyironment
Deterministic | Stochastic

Machine Learning 34,806 37,989
TR 35,057 38,106

Gate Controllers ot 34.839 37.865
Gate + Runway | 7°%% 35,412 36,613
Controllers T 34,847 37,872

TABLE 1V: Fuel consumption for departure aircraft for all
scenarios.

VI. CONCLUSIONS AND FUTURE WORK

RL has showen to have good potential for modeling and
finding solutions for respecting assigned take-off windows for
departure aircraft. In a complex and busy airport such as
KJFK, in a deterministic setting, it managed to find solutions
for almost all cases. In a stochastic setting its performance
rate dropped slightly but remained above 90%, while the
performance of the human airport controller modeled on the
same task starts to decrease more drastically. The Single-State
setting shows the advantages of reduced fuel consumption and
a reduced learning problem since there are no visited taxiing
states. It has the disadvantage of increased gate delay and
not being able to find a solution for all cases, e.g., when
it needs to avoid traffic taxiing in the vicinity of the gate,
which were successfully solved by the Multi-State approach in
some situations. Future steps for this research, from a learning
point of view, is to evaluate cases in which the agents take
each other into consideration (joint action learning) and on
how to further generalize from previous experience. From an
operational point of view, interesting follow up steps are: try
the same approach on different airport layouts with different
operational constraints, different window configurations, such
as generated by a real flow management system.
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