MULTI-AGENT REINFORCEMENT LEARNING

Sparse Interactions

REINFORCEMENT LEARNING

• Agent acting in an unknown environment, learning to maximise a numerical reward signal

MARKOV DECISION PROCESS

• SINGLE AGENT!!!

$$M = \langle S, A, T, R \rangle$$

- States S = set of states of the agent
- Actions A = set of actions the agent can take
- Transition function $T: S \times A \rightarrow S$
- Reward function $R: S \times A \times S \rightarrow \mathbb{R}$

Q-LEARNING

- model-free, reinforcement learning algorithm
- Stores Q-values for every state-action pair
- Update rule:

$$Q(s,a) = Q(s,a) + \alpha \left(r_t + \gamma \underset{a'}{\operatorname{argmax}} Q(s',a') - Q(s,a) \right)$$

SIMPLE EXAMPLE

RLWITH BOLTZMANN EXPLORATION

RLWITH E-GREEDY (E = 0.9)

MULTI-AGENT REINFORCEMENT LEARNING

- Agents influence each other
- Possibly conflicting interests
- Observations
- Expensive communication

MARKOV GAMES

- n
- $S = s_1, \ldots, s_N$
- $A = A_1, \ldots, A_N$

the number of agents a finite set of states with A_k the action set of agent k • $T = S \times A_1 \times \ldots \times A_N \times S \rightarrow [0,1]$ the transition function • $R_k = S \times A_1 \times \ldots \times A_N \times S \to \mathbb{R}$ the reward function of agent k

SPARSE INTERACTIONS

l agent

Transitions & rewards are only dependent on I agent

2 agents

Far away and not interacting with each other Transitions & rewards are independent of state/ action of other agents

2 agents Close to each other and interacting!!! i.e. transitions & rewards are dependent

SPARSE INTERACTIONS

2 agents Close to each other and interacting!!! i.e. transitions & rewards are dependent

Assumptions: Agents can do something useful alone Interactions are sparse f.i. Air traffic control, automated warehouses, ...

TAXONOMY BASED ON STRATEGIC INTERACTIONS

Joint action (view or select on) Nash-Q, CE-Q,... SuperAgent JAL

State and actions must be communicated among agents State action space is exponential in the number of agents

Independent actions

Single agent RL

MMDP-ILA (Vrancx et al. 2008) MG-ILA (Vrancx et al. 2008)

Local state

Joint state

TAXONOMY BASED ON STRATEGIC INTERACTIONS

Joint action (view or select	on)		Nash-Q, CE-Q, SuperAgent JAL
		Utile	e Coordination (Kok et al. 2005)
Independent actions	Single agent RL	Learning of Coordination (Melo et al. 2009) 20bserve (De Hauwere et al. 2009) CQ-Learning (De Hauwere et al. 2010) FCQ-Learning (De Hauwere et al. 2011)	MMDP-ILA (Vrancx et al. 2008) MG-ILA (Vrancx et al. 2008)
	Local state		Joint state

INTUITION OF SPARSE INTERACTIONS

When should agents observe the state information of other agents to avoid coordination problems?

MODELING INTERACTIONS

- Dynamics of the system are a Markov game
- Model sparse interactions as a DEC-SIMDP (Melo et al., 2010)

Team Markov game for the local interaction between K agents in L interaction states (containing system

OUTLINE

Learning of Coordination 20bserve CQ-Learning FCQ-Learning Transfer learning

Learning of Coordination

"Local" Q-function

LEARNING OF COORDINATION

- Add Pseudo COORDINATE action
- External Active Perception
- Cost for coordination

Global Q-function

"Local" Q-function

THE ALGORITHM

Algorithm 1 Learning algorithm for agent k1: Initialize Q_k^* and Q_k^C ; 2: Set t = 0; 3: while (FOREVER) do Choose $A_k(t)$ using π_e ; 4: if $A_k(t) = \text{COORDINATE}$ then 5: if ActivePercept = TRUE then 6: $\hat{A}_k(t) = \pi_g(Q_k^C, X(t));$ 7: 8: else $\hat{A}_k(t) = \pi_g(Q_k^*, X_k(t));$ 9: 10: end if Sample $R_k(t)$ and $X_k(t+1)$; 11: 12: **if** *ActivePercept* = **TRUE then** QLUpdate $(Q_k^C; X(t), \hat{A}_k(t), R_k(t), X_k(t+1), Q_k^*);$ 13: end if 14: 15: else 16: Sample $R_k(t)$ and $X_k(t+1)$; 17: end if QLUpdate $(Q_k^*; X_k(t), A_k(t), R_k(t), X_k(t+1), Q_k^*);$ 18: 19: t = t + 1;20: end while

RESULTS

	Learning	Time to goal	Miscoord.
Env. 1 (2R)	Indiv. Non-coop. Coop.	$\begin{array}{c} 10.02 \pm 1.57 \\ 10.02 \pm 1.58 \\ 9.94 \pm 1.57 \end{array}$	$\begin{array}{c} 0.40 \pm 0.52 \\ 0.41 \pm 0.54 \\ 0.00 \pm 0.00 \end{array}$
Env. 2 (2R)	Indiv. Non-coop. Coop.	$\begin{array}{c} 12.45 \pm 1.68 \\ 12.45 \pm 1.77 \\ 12.51 \pm 1.72 \end{array}$	$\begin{array}{c} 0.12 \pm 0.33 \\ 0.12 \pm 0.33 \\ 0.00 \pm 0.00 \end{array}$
Env. 2 (4R)	Indiv. Non-coop. Coop.	$\begin{array}{c} 12.46 \pm 1.75 \\ 12.49 \pm 1.74 \\ 12.49 \pm 1.77 \end{array}$	$\begin{array}{c} 0.47 \pm 0.59 \\ 0.49 \pm 0.59 \\ 0.00 \pm 0.00 \end{array}$

20bserve

PROBLEM SETTING

- Learn when to act upon sensory input
- Adaptive obstacle avoidance
- Save energy

INTERACTIONS AS A FUNCTION

- State space contains sensor data
- Sensor information is only partly relevant
- Interaction area is relative to the agent
- Special kind of sparse interactions, modeled as a DEC-LIMDP (Section 4.2)
- $lk: Sk \rightarrow Sl \times ... \times SM$
- Approximating this function using a generalized learning automaton: 20bserve

SOLUTION METHOD: 20BSERVE

EXPERIMENTAL SETTING

- Reach goal
- Avoid collisions

EXPERIMENTAL RESULTS (TUNNELTOGOAL)

X

X

EXPERIMENTAL RESULTS (TUNNELTOGOAL)

EXPERIMENTAL RESULTS (TUNNELTOGOAL)

EXPERIMENTAL RESULTS (2) (TUNNELTOGOAL)

- Interactions are relative to the agent
- GLA can approximate this interaction area

CQ-Learning

PROBLEM SETTING

- Agents only interact where their policies interfere
- Locally adapt policy

REPRESENTATION IDEA

SOLUTION METHOD: CQ-LEARNING

CQ-LEARNING : STATISTICAL TESTS

	s _k	$\mathbf{s}_{\mathbf{k}}^{2}$	\mathbf{s}_{k}^{3}	S _k ⁴
	11.0	20.0	15.0	10.0
	10.0	20.0	15.0	19.0
	9.0	20.0	14.8	9.0
	10.0	19.0	15.0	20.0
	11.0	20.0	14.9	20.0
	:	:	:	:
eward:	10.0	20.0	15.0	20.0

Expected r

- Agents have been learning alone in the environment
- Agent k acts independently using only local state information (sk) in a multi-agent environment

- Perform statistical test against baseline
- Samples its rewards, based on the state information of other agents & performs the same test

$$s_k^4 \Rightarrow \langle s_k^4, s_l^3 \rangle$$

CQ-LEARNING BASELINE FOR STATISTICAL TESTS

CQ-LEARNING BASELINE FOR STATISTICAL TESTS

Initial rewards (sliding window)

for a particular state action pair:

EXPERIMENTAL RESULTS (1)

X	X

Env	Alg	#states	#actions	#coll	#steps
$Grid_game_2$	Indep	9	4	2.7	22.2 ± 17.9
	JS	81	4	0.1	4.0 ± 0.2
$(\min \text{ steps: } 3)$	JSA	81	16	0.0	4.7 ± 0.1
	LOC	9.9 ± 0.5	5	0.1	4.0 ± 0.4
	CQ	10 ± 0.0	4	0.0	3.6 ± 0.3
	CQ_NI	10.9 ± 2.0	4	0.1	4.0 ± 0.3

Env	Alg	#states	#actions	#coll	#steps
ISR	Indep	43	4	0.4	9.3 ± 44.8
	JS	1849	4	0.1	5.7 ± 1.6
(min steps: 4)	JSA	1849	16	0.0	7.6 ± 1.4
	LOC	51.3 ± 82.3	5	0.2	6.7 ± 7.5
	CQ	49.0 ± 2.3	4	0.1	${f 5.1\pm0.7}$
	CQ_NI	49.9 ± 7.8	4	0.1	6.0 ± 1.9

EXPERIMENTAL RESULTS (2)

• Sample run

FCQ-Learning

PROBLEM SETTING

- Reflected in immediate reward signal
- Too late to solve the problem

DETECTING RELEVANT STATES

 Changes in reward signal are reflected in the Qvalues

FCQ-LEARNING STATISTICALTESTS

- Agent k has been learning alone, and its Q-values have converged
- Agent k acts independently using only local state information (s_k) in a multi-agent environment
- Performs statistical test against the single agent Q-values
- Samples rewards monte carlo and perform a comparison test to determine what information should be included

$$s_k^4 \implies \langle s_k^4, s_l^3 \rangle$$

EXPERIMENTAL RESULTS

×	X

Environment	Algorithm	#states	#actions	#collisions	#steps	reward
$Grid_game_2$	Indep	9	4	2.4 ± 0.0	22.7 ± 30.4	-24.3 ± 35.6
	JS	81	4	0.1 ± 0.0	6.3 ± 0.3	18.2 ± 0.6
	LOC	9.0 ± 0.0	5	1.8 ± 0.0	10.3 ± 2.7	-6.8 ± 8.0
	FCQ	19.4 ± 4.4	4	0.1 ± 0.0	8.1 ± 13.9	17.6 ± 3.7
	FCQ_NI	21.7 ± 3.1	4	0.1 ± 0.0	7.1 ± 6.9	17.9 ± 0.7

	Environment	Algorithm	#states	#actions	#collisions	#steps	reward
	Bottleneck	Indep	43	4	n.a.	n.a.	n.a.
		JS	1849	4	0.0 ± 0.0	23.3 ± 30.8	13.1 ± 36.1
		LOC	54.0 ± 0.8	5	1.7 ± 0.6	$167.2 \pm 19,345.1$	$-157.5 \pm 10, 3$
		FCQ	124.5 ± 32.8	4	0.1 ± 0.0	17.3 ± 1.3	16.6 ± 0.4
		FCQ_NI	135.0 ± 88.7	4	0.2 ± 0.0	19.2 ± 5.6	15.4 ± 2.3
×							

EXPERIMENTAL RESULTS

- Order to reach the goal:
- Red Agent +20
- Blue Agent +20
- Green Agent

+20

Transfer Learning

TRANSFER LEARNING

"Transfer of learning occurs when learning in one context enhances (positive transfer) or undermines (negative transfer) a related performance in another context."

(D. Perkins, G. Salomon, Transfer of Learning, 1992, International Encyclopedia of Education)

MOTIVATIONS FOR TRANSFER LEARNING

- Learning tabula rasa can be extremely slow
 - Lots of data / time may be needed
 - Every algorithm has biases: why use an uninformed bias?
- Humans always use past knowledge
 - What knowledge is relevant?
 - How can it be effectively leveraged?

TRANSFER LEARNING WITH 20BSERVE

RESULTS

RESULTS (COORDINATION)

GENERALISATION WITH CQ-LEARNING

Neural network

Local state space

GENERALISATION WITH CQ-LEARNING

Neural network

Local state space

GENERALISATION WITH CQ-LEARNING (2)

Safe initialisation

Danger initialisation

GENERALISATION WITH CQ-LEARNING (2)

TRANSFER LEARNING WITH CQ-LEARNING

TRANSFER LEARNING WITH CQ-LEARNING (2)

RESULTS

RESULTS (2)

CONCLUSIONS

- In multi-agent environments with sparse interactions, learning these interaction states improves the learning process
- Interaction states can be learned through increased penalties for miscoordination
- GLA can approximate interaction areas relative to the agent
- Interaction states can be identified using statistical tests on the reward signal (immediate + future)
- Information about interaction states can be generalized and transferred between agents and environments