MULTI-AGENT
REINFORCEMENT LEARNING

Sparse Interactions



REINFORCEMENT LEARNING

» Agent acting In an unknown environment,
learning to maximise a numerical reward signal

r(t+1) HGE2Y



MARKOV DECISION PROCESS

. SINGLE AGENT!!
M =(S,A,T,R)

» States S = set of states of the agent
» Actions A = set of actions the agent can take
Rl Rsitien tunction 7. 9« A §

» Reward function R: Sx AxS =R



Q-LEARNING

* model-free, reinforcement learning algorithm
» Stores Q-values for every state-action pair

» Update rule:

B 0G0 +o ( +yargmaxQ(s', ) - Q. a>)
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SIMPLE EXAMPLE
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MULTI-AGENT REINFORCEMENT LEARNING

o —
joint state s(t+1)
reward_F>(t+1)

: @
;?wv . joint action a(t)
r2(t—|-1\)A ;

» Agents influence each other « Observations

* Possibly conflicting interests  « Expensive communication
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MARKOV GAMES
@ @ S @ Tl

ai(t) ST ri(t+2)
() HE+ 1) an(t+1) 2(t+2) an(t+2)

OISt ()

G the number of agents
W — S|....,SN a finrte set of states
a4, . AN with A the action set of agent k

e T=8Xx A1 Xx...x Ay x5 = [0,1] the transition function

s By =5x A x...x Ay x5 =R the reward function of agent k



SPARSE INTERACTIONS

| agent

Transitions & rewards are only dependent on |
agent

2 agents

Far away and not interacting with each other
ransitions & rewards are iIndependent of state/
action of other agents

2 agents
Close to each other and interactingl!!!
.e. transitions & rewards are dependent
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SPARSE INTERACTIONS

Assumptions:

Agents can do something useful alone
Interactions are sparse

f.I. Air traffic control, automated warehouses, ...



IEYS@IN MY BASE

Joint action]
(view or selectfon)

D ON 5 TRATEGIC INTFERZ GRS

Nash-Q, CE=Ox:.
SuperAgent
JAL

State and actions must be communicated among agents
Statetaction space Is exponential in the number of agents

Independent

. Single agent RL
actions S 95

MMDP-ILA (Vrancx et al. 2008)
MG-ILA (Vrancx et al. 2008)

L ocal state

>

Joint state



Y S@INOMY BASED ON STRATEGIC INTFERAGHRIGHINS

| | Nash-Q, CE=Ox:.
Joint ac’uonT SuperAgent
(view or select|on) JAL

Utile Coordination (Kok et al. 2005)

Learning of Coordination (Melo et al. 2009)
20bserve (De Hauwere et al. 2009)

Independent . CQ-Learning (De Hauwere et al. 2010)
actions Sl oS FCQ-Learning (De Hauwere et al. 201 |)

MMDP-ILA (Vrancx et al. 2008)
MG-ILA (Vrancx et al. 2008)

>

Local state Joint state



INTUITION O
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_ e Use a multi-agent technique to
Act independently, as if single-agent. _
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fate Information
lon problems!



MODELING INTERACTIONS

* Model sparse interactions as a DEC-5IM
et al,, 2010)

s (Mk, (MI,Z75J,Z))

W-J \r—l

/ N\

MDP for each agent k in the
absence of other agents
(containing local states)

* Dynamics of the system are a Markov game

DP (Melo

Team Markov game for the local
interaction between K agents in L
interaction states (containing system

states)

e

e &




OUTLINE

Learning of Coordination
2Observe
CQ-Learning
FCQ-Learning
Transfer learning



Learning of Coordination

C




LEARNING OF COORDINATION

« Add Pseudo COORDINATE action

» External Active Perception

e @ o<t [or coordination 2 ?7




[HE ALGORITHM

Algorithm 1 Learning algorithm for agent k
I: Initialize Q} and Qf ;
2: Sett =0;
3: while (FOREVER) do
4:  Choose Ag(t) using 7.;
5: if Ax(t) = COORDINATE then
6: if ActivePercept = TRUE then
7: Ai(t) = mo(QF, X (t)):
8: else
9: Ar(t) = 7o (QF X (t));
10: end if
I1: Sample R (t) and X (t + 1);
12: if Active Percept = TRUE then
13: QLUpdate Q) ; X (t), Ax(t), Ri(t). Xi(t + 1), Qr):
14: end if
15:  else
16: Sample R (t) and X5 (¢ + 1);
17:  endif
18: QLUpdate(Qj: Xk(t), Ax(t), Ri(t), Xk(t + 1), QL);
19: t=t+1; |
20: end while




RESULITS
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Robot 1

Robot 2

Doorway

Robot 1
Goal 3

Robot 2
Goal 4
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...........

Goal 2 Goal 1 Goal 2 Goal 1 Robot 4 Robot 3
Goal 2 Goal 1
Learning Time to goal Miscoord.
Indiv. 10.02 £ 1.57 0.40 £ 0.52
Env. | (2R) Non-coop. 10.02 £+ 1.58 041 £ 0.54
Coop. 9.94 + 1.57 0.00 £ 0.00
Indiv. 12.45 + 1.68 0.12 4+ 0.33
Env. 2 (2R) Non-coop. 12.45 + 1.77 0.12 + 0.33
Coop. 12.51 + 1.72 0.00 4+ 0.00
[ndiv. 12.46 £+ 1.75 0.47 + 0.59
Env. 2 (4R) Non-coop. 12.49 + 1.74 0.49 + 0.59
Coop. 1249 + 1.77 0.00 £ 0.00
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2Observe




PROBLEM SET TING

» Learn when to act upon sensory Input
» Adaptive obstacle avoidance

* Save energy

20




INTERACTIONS AS A FUNCTION

» State space contains sensor data

* Sensor Information i1s only partly relevant

* Interaction area Is relative to the agent ———

» Special kind of sparse interactions,
modeled as a DEC-LIMDP (Section 4.2)

el > S| x...xSM

* Approximating this function using a generalized
learning automaton: 20bserve

2|



SOLUTION METHOD: 20BSERVE

GLA approximating the
Interaction function

Single agent Q-learning selecting actions based Communication protocol between the agents
on local state information to avoid a collision in the next timestep

i



EXPERIMENTAL SET TING

X X T r—

» Reach goal

s Avoild collisions




EXPERIMENTAL RESULTS  (TUNNELTOGOAL)
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EXPERIMENTAL RESULTS  (TUNNELTOGOAL)

T b :
BRI R

0 2000 4000 6000 8000 10000

episodes

eeeeeeee

A

eeeeeeee



EXPERIMENTAL RESULTS

coordinations
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EXPERIMENTAL RESULTS (2)  (TUNNELTOGOAL)

* Interactions are relative to the agent

» GLA can approximate this interaction area

S



CQ-Learning

26



PROBLEM SET TING

» Agents only Interact where their policies interfere

* Locally adapt policy

D



REPRESENTATION [IDEA




SOLUTION METHOD: CQ-LEARNING

Statistical test on the rewards

Single agent Q-learning Q-learning, based on the combination of local state
selecting actions based on local state information nformation and the sgagteen|tr1format|on of another

b



CQ-LEARNING : STATISTICAL TESTS

Expected reward:

Expand

| 2 3 4
Sk | |Sk||Sk]||l Sk
o 200 150 | 100
100 200 150 | 190

90 200 148 9.0
100 190 150 | 200
10 200 149 | 200
100 200 150  20.0

A

Sk
v v 3
1 2 3
S| S| S|
20.0 20.0 10.0
19.0 20.0 10.0

20.0

20.0

9.0

30

e Agents have been learning alone In the
environment

e Agent k acts independently using only local state
information (sk) in a multi-agent environment

e Perform statistical test against baseline

e Samples its rewards, based on the state
information of other agents & performs the
same test

3
Sﬁ = <SQ,S|>



meEREARNING  BASELINE FOR STATISEICAISRIRESE
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meEREARNING  BASELINE FOR STATISEICAISRIRESE

episodes

Initial rewards (sliding window)

for a particular state action pair:

\/\/||< | \/\/%

Compare \/\/J|< against We

Gl



EXPERIMENTAL RESULTS (1)

Env Alg #states | #actions | #coll #steps
° Grid_game_2 | Indep 9 4 T 22 2= EliTss
JS 81 4 0.1 4 0s==s 0N
(min steps: 3) JSA 81 16 0.0 A== 0Nl
LOC 9.94+0.5 5 0.1 A (s=R 0N
X X CQ OO0 4 0.0

GOSN SIS0 4 01! alfa= Ul o

Env Alg #states | #actions | #coll | #steps
ISR Indep 43 4 0.4 9.3 £44.8

JS 1849 4 0.1 55577 =i L

(min steps: 4) | JSA 1849 16 0.0 76+1.4

[P @@ BSINSEE S8 5 (52 G2 =EN

x” QA0S 4 0.1 W
CQNI | 499+78 4 0.1 : :

B




EXPERIMENTAL RESULTS (2)

* Sample run

X X




FCQ-Learning

B4



PROBLEM SET TING

X X
& K K, o Kk —K
X X

Reward: +10 |

» Reflected in iImmediate reward signal

» [oo late to solve the problem

Es



DETECTING RELEVANT STATES

e

Episodes

» Changes In reward signal are reflected in the Q-
values

36



—ARNING

Learned Q-value:

Expand

1 2 3 4
Sk | | Sk| | Sk |l Sk
11.1 20.0 15.0 20.0
10.9 19.9 15.0 18.8
11.0 19.9 14.8 174
11.1 20.0 15.0 16.1
11.0 20.0 14.9 15.9
11.0 20.0 15.0 20.0

4
Sk
v v ¥
1 2 3
S| | S|
20.0 20.0 10.0
19.0 20.0 10.0

20.0

20.0

9.0

By

STATISTICAL TESTS

® Agent k has been learning alone, and
its Q-values have converged

® Agent k acts iIndependently using
only local state information (sk) In a
multi-agent environment

® Performs statistical test against the
single agent Q-values

® Samples rewards monte carlo and
perform a comparison test to
determine what information should
be included

S
Sﬁ' = (Sﬁ,8|>



EXPERIMENTAL RESULTS

Environment | Algorithm | #states | #actions | #collisions #steps reward
® Grid_game 2 Indep 9 4 24+-00 | 227+304| —243+35.6
JS 81 4 Ul == 010
LOC 9.0+ 0.0 5 L s 0.0 OS2 —6.8 £ 8.0
% FCQ 19.4 + 4.4 4 0.1+0.0 |[NSHESSONNNRESTN
FCQ_NI 210 a8l 4 U == 00 RS GRE e ==

Environment | Algorithm F#states #actions | #collisions F#steps reward
Bottleneck Indep 43 4 n.a. n.a. n.a.
Py JS 1849 0.0£0.0 23 = lite L3N IRSERi R

LOC 54.0 £0.8 IS =00 167.2+£19,345.1 | —157.5 = 10, 3

4
5

FOQ 1245328 | 4 | 0100 |EEEGEEE0
4

FCQ-NI 135.0 £ 88.7 0.2+£0.0 192 =85 154 £2.3
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EXPERIMENTAL RESULTS

 Order to reach the goal:

B sl oent +20
- Blue Agent A,
B Gikeen Agent +20




Transfer Learning

40

Source agent _ -~

e
e

Generalized learning
automaton

Coordination is Coordination is

not needed

= Target agent
L N

Generalized learning

automaton

Coordination is Coordination is
not needed needed

. X Coordination through
Single agent Q-learning .
communication

Coordination through
Single agent Q-learning rainat roue

communication

20bserve algorithm

20bserve algorithm




TRANSFER LEARNING

“Transfer of learning occurs when learning in one context
enhances (positive transfer) or undermines (negative transfer) a
related performance in another context.”

(D. Perkins, G. Salomon, Transfer of Learning, 1992, International Encyclopedia of Education)

45



MOTIVATIONS FOR TRANSFE

mE

-ARNING

» Learning tabula rasa can be extremely slow

» Lots of data / time may be needed

» bvery algorithm has biases: why use an

uninformed bias?

* Humans always use past knowledge

» What knowledge is relevant?

* How can It be effectively leveraged?

20



TRANSFER LEARNING WITH 20BS

GLA approximating the

Interaction function

Single agent Q-learning Communication protocol

selecting actions based on between the agents to avoid

local state information

a collision in the next timestep

Source agent _ -~ 7 =~ Target agent
~
- A
) Generalized learning \ Generalized learning
N automaton | automaton

Coordination is Coordination is Coordination is Coordination is

not needed needed not needed needed

-RV

_ _ Coordination through _ _ Coordination through
Single agent Q-learning o Single agent Q-learning o
communication communication

20bserve algorithm 20bserve algorithm

253
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# Collisions/Coordinations
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GENERALISATION WITH COQ-LEARNING
Neural network
AL
Q/ 5
/ \ Generalise
R 6 :_2 Generalisation learned

e, Expand
L/i\é Aﬁ‘>

/

2 3

Local state space

with 20bserve



GENERALISATION WITH COQ-LEARNING
Neural network
AL
-\ / i
/ \ Generalise
i : :_2 Generalisation learned
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Local state space

with CQ-learning



Dy

GENERALISATION WITH CQ-LEARNING (2)

. Qutput for actions (2,4) . Outputfor actions (2,4)
4 4
2 3
2 2
1 1
0 Z 0
-1 -1
-2 -2
-3 -3
-4 -4
-5- -5-

Safe Initialisation Danger intialisation
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RALISATION WITH CQOQ-L

“ARNING (2)

Dy

NORTH

WEST EAST
- —»?

SOUTH

Dy
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TRANSE

B L

“ARNING WITH CQ-L

s = ey,

-ARNING

Source task - S Target task
— = Transfer trained classifier \
- Q
- + QB table

”
Rule learning
. system (Ripper) |

Generalise

Coordination is
not needed

Trained classifier

Coordination is
needed

‘ Single agent Q-learning \

State space Agent k

CQ-learning

State space Agent |

455

Q-learning initialised

with aUg—tabIe



TRANSFER LEARNING WITH CQ-LEARNING (2)

11111

—
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collisions
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CONCLUSIONS

n multi-agent environments with sparse interactions,
earning these interaction states improves the learning
DrOCESS

nteraction states can be learned through increased
benalties for miscoordination

GLA can approximate interaction areas relative to the agent

nteraction states can be identified using statistical tests on
the reward signal (immediate + future)

nformation about interaction states can be generalized and
transferred between agents and environments

o8



