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BASIC TEXT PROCESSING
ELIZA

Speech and Language Processing. Daniel Jurafsky & James H. Martin. Copyright c� 2018. All

rights reserved. Draft of September 23, 2018.

CHAPTER

2 Regular Expressions, Text
Normalization, Edit Distance
User: You are like my father in some ways.

ELIZA: WHAT RESEMBLANCE DO YOU SEE

User: You are not very aggressive but I think you don’t want me to

notice that.

ELIZA: WHAT MAKES YOU THINK I AM NOT VERY AGGRESSIVE

User: You don’t argue with me.

ELIZA: WHY DO YOU THINK I DON’T ARGUE WITH YOU

User: You are afraid of me.

ELIZA: DOES IT PLEASE YOU TO BELIEVE I AM AFRAID OF YOU
Weizenbaum (1966)

The dialogue above is from ELIZA, an early natural language processing sys-ELIZA

tem that could carry on a limited conversation with a user by imitating the responses
of a Rogerian psychotherapist (Weizenbaum, 1966). ELIZA is a surprisingly simple
program that uses pattern matching to recognize phrases like “You are X” and trans-
late them into suitable outputs like “What makes you think I am X?”. This simple
technique succeeds in this domain because ELIZA doesn’t actually need to know
anything to mimic a Rogerian psychotherapist. As Weizenbaum notes, this is one
of the few dialogue genres where listeners can act as if they know nothing of the
world. Eliza’s mimicry of human conversation was remarkably successful: many
people who interacted with ELIZA came to believe that it really understood them
and their problems, many continued to believe in ELIZA’s abilities even after the
program’s operation was explained to them (Weizenbaum, 1976), and even today
such chatbots are a fun diversion.chatbots

Of course modern conversational agents are much more than a diversion; they
can answer questions, book flights, or find restaurants, functions for which they rely
on a much more sophisticated understanding of the user’s intent, as we will see in
Chapter 24. Nonetheless, the simple pattern-based methods that powered ELIZA
and other chatbots play a crucial role in natural language processing.

We’ll begin with the most important tool for describing text patterns: the regular
expression. Regular expressions can be used to specify strings we might want to
extract from a document, from transforming “You are X” in Eliza above, to defining
strings like $199 or $24.99 for extracting tables of prices from a document.

We’ll then turn to a set of tasks collectively called text normalization, in whichtext
normalization

regular expressions play an important part. Normalizing text means converting it
to a more convenient, standard form. For example, most of what we are going to
do with language relies on first separating out or tokenizing words from running
text, the task of tokenization. English words are often separated from each othertokenization

by whitespace, but whitespace is not always sufficient. New York and rock ’n’ roll
are sometimes treated as large words despite the fact that they contain spaces, while
sometimes we’ll need to separate I’m into the two words I and am. For processing
tweets or texts we’ll need to tokenize emoticons like :) or hashtags like #nlproc.
Some languages, like Chinese, don’t have spaces between words, so word tokeniza-
tion becomes more difficult.
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BASIC TEXT PROCESSING
REGULAR EXPRESSIONS

I A formal language for specifying text strings

I How can we search for any of
these?

I woodchuck
I woodchucks
I Woodchuck
I Woodchucks
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REGULAR EXPRESSIONS
DISJUNCTIONS

I Letters inside square brackets: []

Pattern Matches
[wW]oodchuck Woodchuck, woodchuck
[1234567890] Any digit

I Ranges: [A-Z]

Pattern Matches
[A-Z] An upper case letter Drenched Blossoms
[a-z] A lower case letter my beans were impatient
[0-9] A single digit Chapter 1: Down ...
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REGULAR EXPRESSIONS
NEGATION IN DISJUNCTION

I Negations: [ˆSs]

Pattern Matches
[ˆA-Z] Not an upper case letter Oyfn pripetchik
[ˆSs] Neither ‘S’ nor ‘s’ I have no reason
[ˆ\.] Not a period our resident Djinn
aˆb The pattern ‘aˆb’ look up aˆb now
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REGULAR EXPRESSIONS
MORE DISJUNCTION

I Woodchucks is another name for groundhog!
I The pipe | for disjunction

Pattern Matches
groundhog|woodchuck groundhog

woodchuck
gupp(y|ies) guppy

guppies
a|b|c = [abc]
[gG]roundhog|[Ww]oodchuck
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REGULAR EXPRESSIONS
? * + .

Pattern Matches
colou?r Optional previous char color colour
oo*h! 0 or more of previous char oh! ooh! oooh! ooooh!
o+h! 1 or more of previous char oh! ooh! oooh! ooooh!
baa+ baa baaa baaaa baaaaa
beg.n begin begun began beg3n
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REGULAR EXPRESSIONS
ANCHORS ˆ $

Pattern Matches
ˆ[A-Z] Palo Alto
ˆ[ˆA-Za-z] 1 “Hello”
\.$ The end.
.$ The end? The end!
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REGULAR EXPRESSIONS
EXERCISE

I Find all instances of the word “the” in a text.

I /the/
Misses capitalised examples

I /[tT]he/
Incorrectly returns other or theology

I /[ˆa-zA-Z][tT]he[ˆa-zA-Z]/
Does not return “the” when it begins a line

I /(ˆ|[ˆa-zA-Z])[tT]he([ˆa-zA-Z]|$)/
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REGULAR EXPRESSIONS
OPERATOR PRECEDENCE HIERARCHY

I From highest to lowest precedence:

Parenthesis ()
Counters * + ? {}
Sequences and anchors the ˆmy end$
Disjunction |

I Counters > Sequences: /the*/ matches theeeee but not
thethe

I Sequences > Disjunction: /the|any/ matches the or any
but not theny
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REGULAR EXPRESSIONS
SUBSTITUTIONS

I Substitution operator s/regexp1/pattern/ used in Unix
commands like vim or sed allows a string characterized by
a regular expression to be replaced by another string:

s/colour/color
I Referring to a subpart of the string matching the first

pattern: e.g. put angle brackets around all integers in a text:
s/[0-9]+/<\1>/
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REGULAR EXPRESSIONS
CAPTURE GROUPS

/the (.*)er they were, the \1er they will be/
I Parenthesis used for storing a pattern in memory

= a capture group
I Resulting match is stored in a numbered register
I If you match two different sets of parentheses, \2 means

whatever matched the second capture group
/the (.*)er they (.*), the \1er we \2 /

I Use a non-capturing group if you don’t want to capture the
resulting pattern in a register:

/((?:some|a few) (people|cats) like some \1/
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REGULAR EXPRESSIONS
ELIZA OR A SIMPLE CHATBOT

I Works by having a cascade of (ranked) regular expression
substitutions

I Input lines are first uppercased
I First substitutions change all instances of MY to YOUR and

I’M to YOU ARE
I The next set of substitutions matches and replaces other

patterns in the input

s/.* I’M (depressed|sad) .*/I AM SORRY TO HEAR YOU ARE \1/
s/.* I AM (depressed|sad) .*/WHY DO YOU THINK YOU ARE \1/
s/.* all .*/IN WHAT WAY/
s/.* always .*/CAN YOU THINK OF A SPECIFIC EXAMPLE/
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WORDS
WHAT COUNTS AS A WORD?

I How many words are in the following Brown sentence?
I He stepped out into the hall, was delighted to encounter a

water brother.
I 13 words (15 with punctuation marks)

I How many words are in the following utterance from the
Switchboard corpus?

I I do uh main- mainly business data processing
I Two disfluencies: a fragment (main-) and a filled pause (uh)
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WORDS
WHAT COUNTS AS A WORD?

I How about inflected forms like cats versus cat?
I They have the same lemma cat but different wordforms
I A lemma is a set of lexical forms having the same stem, the

same major part-of-speech, and the same word sense
I The wordform is the fully inflected or derived form of the

word



16

WORDS
HOW MANY WORDS ARE THERE IN ENGLISH?

I Types are the number of distinct words in a corpus
I If the set of words in the vocabulary is V, the number of

types is the vocabulary size |V|
I Tokens are the total number N of running words
I If we ignore punctuation, the following Brown sentence has

16 tokens and 14 types:
I They picknicked by the pool, then lay back on the grass and

looked at the stars.



17

WORDS
POPULAR ENGLISH LANGUAGE CORPORA

Corpus Tokens = N Types = |V|
Shakespeare 884 thousand 31 thousand
Brown corpus 1 million 38 thousand
Switchboard telephone conversations 2.4 million 20 thousand
COCA 440 million 2 million
Google N-grams 1 trillion 13 million

The relationship between the number of types and number of tokens
is called Herdan’s Law (Herdan, 1960) or Heap’s Law (Heaps, 1978),
where k and β are positive constants and 0 < β < 1:

|V| = kNβ
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WORDS
DICTIONARY ENTRIES

I Look at the number of lemmas instead of wordform types
I Dictionaries can help in giving lemma counts

I Dictionary entries or boldface forms are a very rough upper
bound on the number of lemmas

I The 1989 edition of the Oxford English Dictionary had
615,000 entries
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TEXT NORMALIZATION
FIRST NLP TASK

At least three tasks are commonly applied as part of any
normalization process:
1. Segmenting/tokenizing words from running text
2. Normalizing word formats
3. Segmenting sentences in running text
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TEXT NORMALIZATION
WORD TOKENIZATION

Main challenges:
I Break off punctuation as a separate token but preserve it

when it occurs word internally (Ph.D., AT&T, ...)
I Keep special characters and numbers in prices ($45.55)

and dates (15/02/2019)
I Expand clitic contractions that are marked by apostrophes

(we’re → we are)
I Tokenize multiword expressions like New York or rock ’n’

roll as a single token
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TEXT NORMALIZATION
PENN TREEBANK TOKENIZATION

Penn Treebank tokenization standard separates out clitics
(doesn’t becomes does plus n’t), keeps hyphenated words
together, and separates out all punctuation:

2.4 • TEXT NORMALIZATION 15

often want to break off punctuation as a separate token; commas are a useful piece of
information for parsers, periods help indicate sentence boundaries. But we’ll often
want to keep the punctuation that occurs word internally, in examples like m.p.h,,
Ph.D., AT&T, cap’n. Special characters and numbers will need to be kept in prices
($45.55) and dates (01/02/06); we don’t want to segment that price into separate to-
kens of “45” and “55”. And there are URLs (http://www.stanford.edu), Twitter
hashtags (#nlproc), or email addresses (someone@cs.colorado.edu).

Number expressions introduce other complications as well; while commas nor-
mally appear at word boundaries, commas are used inside numbers in English, every
three digits: 555,500.50. Languages, and hence tokenization requirements, differ
on this; many continental European languages like Spanish, French, and German, by
contrast, use a comma to mark the decimal point, and spaces (or sometimes periods)
where English puts commas, for example, 555 500,50.

A tokenizer can also be used to expand clitic contractions that are marked byclitic

apostrophes, for example, converting what’re to the two tokens what are, and
we’re to we are. A clitic is a part of a word that can’t stand on its own, and can only
occur when it is attached to another word. Some such contractions occur in other
alphabetic languages, including articles and pronouns in French (j’ai, l’homme).

Depending on the application, tokenization algorithms may also tokenize mul-
tiword expressions like New York or rock ’n’ roll as a single token, which re-
quires a multiword expression dictionary of some sort. Tokenization is thus inti-
mately tied up with named entity detection, the task of detecting names, dates, and
organizations (Chapter 17).

One commonly used tokenization standard is known as the Penn Treebank to-
kenization standard, used for the parsed corpora (treebanks) released by the Lin-Penn Treebank

tokenization
guistic Data Consortium (LDC), the source of many useful datasets. This standard
separates out clitics (doesn’t becomes does plus n’t), keeps hyphenated words to-
gether, and separates out all punctuation:

Input: “The San Francisco-based restaurant,” they said, “doesn’t charge $10”.

Output: “ The San Francisco-based restaurant , ” they

said , “ does n’t charge $ 10 ” .

Tokens can also be normalized, in which a single normalized form is chosen for
words with multiple forms like USA and US or uh-huh and uhhuh. This standard-
ization may be valuable, despite the spelling information that is lost in the normal-
ization process. For information retrieval, we might want a query for US to match a
document that has USA; for information extraction we might want to extract coherent
information that is consistent across differently-spelled instances.

Case folding is another kind of normalization. For tasks like speech recognitioncase folding

and information retrieval, everything is mapped to lower case. For sentiment anal-
ysis and other text classification tasks, information extraction, and machine transla-
tion, by contrast, case is quite helpful and case folding is generally not done (losing
the difference, for example, between US the country and us the pronoun can out-
weigh the advantage in generality that case folding provides).

In practice, since tokenization needs to be run before any other language process-
ing, it is important for it to be very fast. The standard method for tokenization/nor-
malization is therefore to use deterministic algorithms based on regular expressions
compiled into very efficient finite state automata. Carefully designed deterministic
algorithms can deal with the ambiguities that arise, such as the fact that the apos-
trophe needs to be tokenized differently when used as a genitive marker (as in the
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TEXT NORMALIZATION
NORMALIZING TOKENS

Choosing a single normalized form for words with multiple
forms such as USA and US.

I Valuable for information retrieval if you want to query for
US to match a document that has USA

I In information extraction we might want to extract
coherent information that is consistent across
differently-spelled instances
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TEXT NORMALIZATION
CASE FOLDING

Case folding is another kind of normalization
I For tasks like speech recognition and information retrieval,

everything is mapped to lower case
I For sentiment analysis and other text classification tasks,

information extraction and machine translation, case is
quite helpful and case folding is generally not done
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TEXT NORMALIZATION
EFFICIENCY

Because tokenization needs to be run before any other
language processing, it is important to be very fast.

I Deterministic algorithms based on regular expressions
compiled into very efficient finite state automata

I Carefully designed deterministic algorithms can deal with
the ambiguities that arise (e.g. the apostrophe)
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TEXT NORMALIZATION
COLLAPSING WORDS

I Lemmatization is the task of determining that two words
have the same root, despite their surface differences

I How is lemmatization done?
I Most sophisticated methods for lemmatization involve

complete morphological parsing of the word
I Two broad classes of morphemes can be distinguished:

1. Stems - the central morpheme of the word, supplying the
main meaning

2. Affixes - adding “additional” meanings of various kinds



26

TEXT NORMALIZATION
COLLAPSING WORDS

I Stemming is a simpler but cruder method, which mainly
consists of chopping off word-final affixes

I One of the most widely used stemming algorithms for
English is the Porter stemmer (1980)

2.4 • TEXT NORMALIZATION 17

y and use the very rare word ort.
The algorithm works better in Chinese than English, because Chinese has much

shorter words than English. We can quantify how well a segmenter works using a
metric called word error rate. We compare our output segmentation with a perfectword error rate

hand-segmented (‘gold’) sentence, seeing how many words differ. The word error
rate is then the normalized minimum edit distance in words between our output and
the gold: the number of word insertions, deletions, and substitutions divided by the
length of the gold sentence in words; we’ll see in Section 2.5 how to compute edit
distance. Even in Chinese, however, MaxMatch has problems, for example dealing
with unknown words (words not in the dictionary) or genres that differ a lot from
the assumptions made by the dictionary builder.

The most accurate Chinese segmentation algorithms generally use statistical se-
quence models trained via supervised machine learning on hand-segmented training
sets; we’ll introduce sequence models in Chapter 8.

2.4.4 Collapsing words: Lemmatization and Stemming
For many natural language processing situations we want two different forms of
a word to behave similarly. For example in web search, someone may type the
string woodchucks but a useful system might want to also return pages that mention
woodchuck with no s. This is especially common in morphologically complex lan-
guages like Russian, where for example the word Moscow has different endings in
the phrases Moscow, of Moscow, from Moscow, and so on.

Lemmatization is the task of determining that two words have the same root,
despite their surface differences. The words am, are, and is have the shared lemma
be; the words dinner and dinners both have the lemma dinner.

Lemmatizing each of these forms to the same lemma will let us find all mentions
of words like Moscow. The the lemmatized form of a sentence like He is reading
detective stories would thus be He be read detective story.

How is lemmatization done? The most sophisticated methods for lemmatization
involve complete morphological parsing of the word. Morphology is the study of
the way words are built up from smaller meaning-bearing units called morphemes.morpheme

Two broad classes of morphemes can be distinguished: stems—the central mor-stem

pheme of the word, supplying the main meaning— and affixes—adding “additional”affix

meanings of various kinds. So, for example, the word fox consists of one morpheme
(the morpheme fox) and the word cats consists of two: the morpheme cat and the
morpheme -s. A morphological parser takes a word like cats and parses it into the
two morphemes cat and s, or a Spanish word like amaren (‘if in the future they
would love’) into the morphemes amar ‘to love’, 3PL, and future subjunctive.

The Porter Stemmer

Lemmatization algorithms can be complex. For this reason we sometimes make use
of a simpler but cruder method, which mainly consists of chopping off word-final
affixes. This naive version of morphological analysis is called stemming. One ofstemming

the most widely used stemming algorithms is the Porter (1980). The Porter stemmerPorter stemmer

applied to the following paragraph:

This was not the map we found in Billy Bones’s chest, but

an accurate copy, complete in all things-names and heights

and soundings-with the single exception of the red crosses

and the written notes.
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produces the following stemmed output:

Thi wa not the map we found in Billi Bone s chest but an

accur copi complet in all thing name and height and sound

with the singl except of the red cross and the written note

The algorithm is based on series of rewrite rules run in series, as a cascade, incascade

which the output of each pass is fed as input to the next pass; here is a sampling of
the rules:

ATIONAL ! ATE (e.g., relational! relate)
ING ! e if stem contains vowel (e.g., motoring! motor)

SSES ! SS (e.g., grasses! grass)

Detailed rule lists for the Porter stemmer, as well as code (in Java, Python, etc.)
can be found on Martin Porter’s homepage; see also the original paper (Porter, 1980).

Simple stemmers can be useful in cases where we need to collapse across differ-
ent variants of the same lemma. Nonetheless, they do tend to commit errors of both
over- and under-generalizing, as shown in the table below (Krovetz, 1993):

Errors of Commission Errors of Omission
organization organ European Europe
doing doe analysis analyzes
numerical numerous noise noisy
policy police sparse sparsity

2.4.5 Byte-Pair Encoding
Stemming or lemmatizing has another side-benefit. By treating two similar words
identically, these normalization methods help deal with the problem of unknown
words, words that a system has not seen before.unknown

words
Unknown words are particularly relevant for machine learning systems. As we

will see in the next chapter, machine learning systems often learn some facts about
words in one corpus (a training corpus) and then use these facts to make decisions
about a separate test corpus and its words. Thus if our training corpus contains, say
the words low, and lowest, but not lower, but then the word lower appears in our
test corpus, our system will not know what to do with it. Stemming or lemmatizing
everything to low can solve the problem, but has the disadvantage that sometimes
we don’t want words to be completely collapsed. For some purposes (for example
part-of-speech tagging) the words low and lower need to remain distinct.

A solution to this problem is to use a different kind of tokenization in which
most tokens are words, but some tokens are frequent word parts like -er, so that an
unseen word can be represented by combining the parts.

The simplest such algorithm is byte-pair encoding, or BPE (Sennrich et al.,byte-pair
encoding

BPE 2016). Byte-pair encoding is based on a method for text compression (Gage, 1994),
but here we use it for tokenization instead. The intuition of the algorithm is to
iteratively merge frequent pairs of characters,

The algorithm begins with the set of symbols equal to the set of characters. Each
word is represented as a sequence of characters plus a special end-of-word symbol
·. At each step of the algorithm, we count the number of symbol pairs, find the
most frequent pair (‘A’, ‘B’), and replace it with the new merged symbol (‘AB’). We
continue to count and merge, creating new longer and longer character strings, until
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TEXT NORMALIZATION
COLLAPSING WORDS

I The Porter stemmer algorithm is based on a series of
rewrite rules in series, as a cascade

ATIONAL → ATE (e.g. relational → relate)
ING → ε if stem contains vowel (e.g., motoring → motor)

SSES → SS (e.g., grasses → grass)

I Detailed rule lists for the Porter stemmer can be found on
Martin Porter’s homepage
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TEXT NORMALIZATION
SENTENCE SEGMENTATION

Sentence segmentation is another important step in text
processing

I The most useful cues are punctuation (periods, question
marks, exclamation points)

I Periods can be ambiguous: Mr. or Inc.
In general, sentence tokenization methods work by building a
binary classifier that decides if a period is a part of the word or
is a sentence-boundary marker
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MINIMUM EDIT DISTANCE
STRING SIMILARITY

I Calculating the similarity between two strings is useful in
many NLP tasks, such as spelling correction or
coreference resolution

I The minimum edit distance between two strings is defined
as the minimum number of editing operations (operations
like insertion, deletion, substitution) needed to transform
one string into another
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MINIMUM EDIT DISTANCE
EXAMPLE ALIGNMENT

2.5 • MINIMUM EDIT DISTANCE 21

2.5 Minimum Edit Distance

Much of natural language processing is concerned with measuring how similar two
strings are. For example in spelling correction, the user typed some erroneous
string—let’s say graffe–and we want to know what the user meant. The user prob-
ably intended a word that is similar to graffe. Among candidate similar words,
the word giraffe, which differs by only one letter from graffe, seems intuitively
to be more similar than, say grail or graf, which differ in more letters. Another
example comes from coreference, the task of deciding whether two strings such as
the following refer to the same entity:

Stanford President John Hennessy

Stanford University President John Hennessy

Again, the fact that these two strings are very similar (differing by only one word)
seems like useful evidence for deciding that they might be coreferent.

Edit distance gives us a way to quantify both of these intuitions about string sim-
ilarity. More formally, the minimum edit distance between two strings is definedminimum edit

distance
as the minimum number of editing operations (operations like insertion, deletion,
substitution) needed to transform one string into another.

The gap between intention and execution, for example, is 5 (delete an i, substi-
tute e for n, substitute x for t, insert c, substitute u for n). It’s much easier to see
this by looking at the most important visualization for string distances, an alignmentalignment

between the two strings, shown in Fig. 2.13. Given two sequences, an alignment is
a correspondence between substrings of the two sequences. Thus, we say I aligns
with the empty string, N with E, and so on. Beneath the aligned strings is another
representation; a series of symbols expressing an operation list for converting the
top string into the bottom string: d for deletion, s for substitution, i for insertion.

I N T E * N T I O N

| | | | | | | | | |
* E X E C U T I O N

d s s i s

Figure 2.13 Representing the minimum edit distance between two strings as an alignment.
The final row gives the operation list for converting the top string into the bottom string: d for
deletion, s for substitution, i for insertion.

We can also assign a particular cost or weight to each of these operations. The
Levenshtein distance between two sequences is the simplest weighting factor in
which each of the three operations has a cost of 1 (Levenshtein, 1966)—we assume
that the substitution of a letter for itself, for example, t for t, has zero cost. The Lev-
enshtein distance between intention and execution is 5. Levenshtein also proposed
an alternative version of his metric in which each insertion or deletion has a cost of
1 and substitutions are not allowed. (This is equivalent to allowing substitution, but
giving each substitution a cost of 2 since any substitution can be represented by one
insertion and one deletion). Using this version, the Levenshtein distance between
intention and execution is 8.

I The gap between intention and execution is 5



31

MINIMUM EDIT DISTANCE
LEVENSHTEIN DISTANCE

I We can also assign a particular cost or weight to each of
these operations

I Levenshtein distance: Each insertion or deletion has a
cost of 1 and substitutions are not allowed

I (This is equivalent to allowing substitution, but giving each
substitution a cost of 2 since any substitution can be represented
by one insertion and one deletion)

I Using this metric, the Levenshtein distance between
intention and execution is 8
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MINIMUM EDIT DISTANCE
ALGORITHM

I How do we find the minimum edit distance?
I We can think of this as a search task, in which we are

searching for the shortest path - a sequence of edits - from
one string to another

I The space of all possible edits is enormous, so we can’t
search naively

I However, lots of distinct edit paths will end up in the same
state (string), so rather than recomputing all those paths,
we could just remember the shortest path to a state each
time we saw it
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MINIMUM EDIT DISTANCE
DYNAMIC PROGRAMMING

I Dynamic programming is the name for a class of
algorithms, first introduced by Bellman (1957), that apply a
table-driven method to solve problems by combining
solutions to sub-problems

I Some of the most commonly used algorithms in NLP make
use of dynamic programming, such as the Viterbi
algorithm and the CKY algorithm for parsing
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MINIMUM EDIT DISTANCE
SHORTEST PATH
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2.5.1 The Minimum Edit Distance Algorithm
How do we find the minimum edit distance? We can think of this as a search task, in
which we are searching for the shortest path—a sequence of edits—from one string
to another.

n t e n t i o n i n t e c n t i o n i n x e n t i o n

del ins subst

i n t e n t i o n

Figure 2.14 Finding the edit distance viewed as a search problem

The space of all possible edits is enormous, so we can’t search naively. However,
lots of distinct edit paths will end up in the same state (string), so rather than recom-
puting all those paths, we could just remember the shortest path to a state each time
we saw it. We can do this by using dynamic programming. Dynamic programmingdynamic

programming
is the name for a class of algorithms, first introduced by Bellman (1957), that apply
a table-driven method to solve problems by combining solutions to sub-problems.
Some of the most commonly used algorithms in natural language processing make
use of dynamic programming, such as the Viterbi algorithm (Chapter 8) and the
CKY algorithm for parsing (Chapter 11).

The intuition of a dynamic programming problem is that a large problem can
be solved by properly combining the solutions to various sub-problems. Consider
the shortest path of transformed words that represents the minimum edit distance
between the strings intention and execution shown in Fig. 2.15.

n t e n t i o n

i n t e n t i o n

e t e n t i o n

e x e n t i o n

e x e n u t i o n

e x e c u t i o n

delete i

substitute n by e

substitute t by x

insert u

substitute n by c

Figure 2.15 Path from intention to execution.

Imagine some string (perhaps it is exention) that is in this optimal path (whatever
it is). The intuition of dynamic programming is that if exention is in the optimal
operation list, then the optimal sequence must also include the optimal path from
intention to exention. Why? If there were a shorter path from intention to exention,
then we could use it instead, resulting in a shorter overall path, and the optimal
sequence wouldn’t be optimal, thus leading to a contradiction.

The minimum edit distance algorithm was named by Wagner and Fischer (1974)minimum edit
distance

but independently discovered by many people (see the Historical Notes section of
Chapter 8).

Let’s first define the minimum edit distance between two strings. Given two
strings, the source string X of length n, and target string Y of length m, we’ll define
D(i, j) as the edit distance between X [1..i] and Y [1.. j], i.e., the first i characters of X
and the first j characters of Y . The edit distance between X and Y is thus D(n,m).
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MINIMUM EDIT DISTANCE
ALGORITHM
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function MIN-EDIT-DISTANCE(source, target) returns min-distance

n LENGTH(source)
m LENGTH(target)
Create a distance matrix distance[n+1,m+1]

# Initialization: the zeroth row and column is the distance from the empty string
D[0,0] = 0
for each row i from 1 to n do

D[i,0] D[i-1,0] + del-cost(source[i])
for each column j from 1 to m do

D[0,j] D[0, j-1] + ins-cost(target[j])

# Recurrence relation:
for each row i from 1 to n do

for each column j from 1 to m do
D[i, j] MIN( D[i�1, j] + del-cost(source[i]),

D[i�1, j�1] + sub-cost(source[i], target[j]),
D[i, j�1] + ins-cost(target[j]))

# Termination
return D[n,m]

Figure 2.16 The minimum edit distance algorithm, an example of the class of dynamic
programming algorithms. The various costs can either be fixed (e.g., 8x, ins-cost(x) = 1)
or can be specific to the letter (to model the fact that some letters are more likely to be in-
serted than others). We assume that there is no cost for substituting a letter for itself (i.e.,
sub-cost(x,x) = 0).

Src\Tar # e x e c u t i o n
# 0 1 2 3 4 5 6 7 8 9
i 1 2 3 4 5 6 7 6 7 8

n 2 3 4 5 6 7 8 7 8 7
t 3 4 5 6 7 8 7 8 9 8
e 4 3 4 5 6 7 8 9 10 9
n 5 4 5 6 7 8 9 10 11 10
t 6 5 6 7 8 9 8 9 10 11
i 7 6 7 8 9 10 9 8 9 10
o 8 7 8 9 10 11 10 9 8 9
n 9 8 9 10 11 12 11 10 9 8

Figure 2.17 Computation of minimum edit distance between intention and execution with
the algorithm of Fig. 2.16, using Levenshtein distance with cost of 1 for insertions or dele-
tions, 2 for substitutions.

minimum edit distance algorithm to store the pointers and compute the backtrace to
output an alignment.

While we worked our example with simple Levenshtein distance, the algorithm
in Fig. 2.16 allows arbitrary weights on the operations. For spelling correction, for
example, substitutions are more likely to happen between letters that are next to
each other on the keyboard. The Viterbi algorithm is a probabilistic extension of
minimum edit distance. Instead of computing the “minimum edit distance” between
two strings, Viterbi computes the “maximum probability alignment” of one string
with another. We’ll discuss this more in Chapter 8.
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# e x e c u t i o n
# 0  1  2  3  4  5  6  7  8  9
i " 1 - " 2 - " 3 - " 4 - " 5 - " 6 - " 7 - 6  7  8
n " 2 - " 3 - " 4 - " 5 - " 6 - " 7 - " 8 " 7 - " 8 - 7
t " 3 - " 4 - " 5 - " 6 - " 7 - " 8 - 7  " 8 - " 9 " 8
e " 4 - 3  4 - 5  6  7  " 8 - " 9 - " 10 " 9
n " 5 " 4 - " 5 - " 6 - " 7 - " 8 - " 9 - " 10 - " 11 -" 10
t " 6 " 5 - " 6 - " 7 - " 8 - " 9 - 8  9  10  " 11
i " 7 " 6 - " 7 - " 8 - " 9 - " 10 " 9 - 8  9  10
o " 8 " 7 - " 8 - " 9 - " 10 - " 11 " 10 " 9 - 8  9
n " 9 " 8 - " 9 - " 10 - " 11 - " 12 " 11 " 10 " 9 - 8

Figure 2.18 When entering a value in each cell, we mark which of the three neighboring
cells we came from with up to three arrows. After the table is full we compute an alignment
(minimum edit path) by using a backtrace, starting at the 8 in the lower-right corner and
following the arrows back. The sequence of bold cells represents one possible minimum cost
alignment between the two strings. Diagram design after Gusfield (1997).

2.6 Summary

This chapter introduced a fundamental tool in language processing, the regular ex-
pression, and showed how to perform basic text normalization tasks including
word segmentation and normalization, sentence segmentation, and stemming.
We also introduce the important minimum edit distance algorithm for comparing
strings. Here’s a summary of the main points we covered about these ideas:

• The regular expression language is a powerful tool for pattern-matching.
• Basic operations in regular expressions include concatenation of symbols,

disjunction of symbols ([], |, and .), counters (*, +, and {n,m}), anchors
(ˆ, $) and precedence operators ((,)).

• Word tokenization and normalization are generally done by cascades of
simple regular expressions substitutions or finite automata.

• The Porter algorithm is a simple and efficient way to do stemming, stripping
off affixes. It does not have high accuracy but may be useful for some tasks.

• The minimum edit distance between two strings is the minimum number of
operations it takes to edit one into the other. Minimum edit distance can be
computed by dynamic programming, which also results in an alignment of
the two strings.

Bibliographical and Historical Notes
Kleene (1951) and (1956) first defined regular expressions and the finite automaton,
based on the McCulloch-Pitts neuron. Ken Thompson was one of the first to build
regular expressions compilers into editors for text searching (Thompson, 1968). His
editor ed included a command “g/regular expression/p”, or Global Regular Expres-
sion Print, which later became the Unix grep utility.

Text normalization algorithms has been applied since the beginning of the field.
One of the earliest widely-used stemmers was Lovins (1968). Stemming was also
applied early to the digital humanities, by Packard (1973), who built an affix-stripping
morphological parser for Ancient Greek. Currently a wide variety of code for tok-
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I The algorithm allows arbitrary weights on the operations
I For spelling correction, substitutions are more likely to

happen between letters that are next to each other on the
keyboard

I The Viterbi algorithm is a probabilistic extension of
minimum edit distance

I Viterbi computes the “maximum probability alignment” of
one string with another (cf. Ch. 8 on POS tagging)
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SUMMARY

I The regular expression language is a powerful tool for
pattern-matching.

I Basic operations in regular expressions include concatenation
of symbols, disjunction of symbols ([], |, and )̇, counters (*, +, and
{n,m}), anchors (ˆ, $) and precedence operators ((,)).

I Word tokenization and normalization are generally done by
cascades of simple regular expressions substitutions or finite
automata.

I The Porter algorithm is a simple and efficient way to do
stemming, stripping off affixes. It does not have high accuracy
but may be useful for some tasks.

I The minimum edit distance between two strings is the minimum
number of operations it takes to edit one into the other. Minimum
edit distance can be computed by dynamic programming, which
also results in an alignment of the two strings.


