Natural Language Processing (NLP)

Basic Text Processing
Based on Jurafsky & Martin (2018), Chapter 2

Katrien Beuls

Arfificial Intelligence Laboratory
Vrije Universiteit Brussel

VRIJE
UNIVERSITEIT
BRUSSEL

BASIC TEXT PROCESSING

User:
ELIZA:
User:

ELIZA:
User:
ELIZA:
User:
ELIZA:

You are like my father in some ways.
WHAT RESEMBLANCE DO YOU SEE
You are not very aggressive but I think you don’t want me to
notice that.
WHAT MAKES YOU THINK I AM NOT VERY AGGRESSIVE
You don’t argue with me.
WHY DO YOU THINK I DON’T ARGUE WITH YOU
You are afraid of me.
DOES IT PLEASE YOU TO BELIEVE I AM AFRAID OF YOU
Weizenbaum (1966)

BASIC TEXT PROCESSING

REGULAR EXPRESSIONS

» A formal language for specifying text strings

» How can we search for any of
these?

woodchuck

woodchucks

Woodchuck

Woodchucks

v

v vy

REGULAR EXPRESSIONS

DISJUNCTIONS

» Letters inside square brackets: []

Pattern | Matches
[wW] oodchuck | Woodchuck, woodchuck
[1234567890] | Any digit

» Ranges: [A-Z]

Pattern | Matches |

[A-7Z] An upper case letter | Drenched Blossoms
[a-z] A lower case letter | my beans were impatient
[0-9] | A single digit Chapter 1: Down ...

REGULAR EXPRESSIONS

» Negations: ["Ss]

Pattern | Matches |

["A-Z] | Notan upper case letter | Oyfn pripetchik
[~Ss] Neither ‘S’ nor ‘s’ I have no reason
[°\.] Not a period our resident Djinn
a’b The pattern ‘a”b’ look up a"b now

REGULAR EXPRESSIONS

MORE DISJUNCTION

» Woodchucks is another name for groundhog!

» The pipe | for disjunction

Pattern Matches
groundhog |woodchuck groundhog
woodchuck
gupp(ylies) guppy
guppies
alblc = [abc]

[gGlroundhog/| [Ww] oodchuck

REGULAR EXPRESSIONS

Pattern | Matches

colou?r | Optional previous char color colour

ooxh! 0 or more of previous char | oh! ooh! oooh! ooooh!
o+h! 1 or more of previous char | oh! ooh! oooh! ooooh!
baa+ baa baaa baaaa baaaaa
beg.n begin begun began beg3n

ANCHORS ~ $

REGULAR EXPRESSIONS

Pattern | Matches
~[A-Z] Palo Alto
“["A-Za-z] |1 “Hello”
\.$ The end.

.$ Theend? Theend!

REGULAR EXPRESSIONS

EXERCISE

» Find all instances of the word “the” in a text.

» /the/
Misses capitalised examples

> /[tTlhe/
Incorrectly returns other or theology

> /["a-zA-Z] [tTlhe["a-zA-Z]/
Does not return “the” when it begins a line

» /("1 ["a-zA-Z]) [tTlhe(["a-zA-Z]1$)/

REGULAR EXPRESSIONS

OPERATOR PRECEDENCE HIERARCHY

» From highest to lowest precedence:

Parenthesis O
Counters x o+ 7 {}
Sequences and anchors the “my end$
Disjunction I

» Counters > Sequences: /the*/ matches theeeee but not
thethe

» Sequences > Disjunction: /the|any/ matches the or any
but not theny

10

REGULAR EXPRESSIONS
SUBSTITUTIONS

» Substitution operator s/regexp1/pattern/ used in Unix
commands like vim or sed allows a string characterized by
a regular expression to be replaced by another string:

s/colour/color

» Referring to a subpart of the string matching the first
pattern: e.g. put angle brackets around all integers in a text:

s/ [0-9]1+/<\1>/

1

CAPTURE GROUPS

REGULAR EXPRESSIONS

/the (.*)er they were, the \ler they will be/

» Parenthesis used for storing a pattern in memory
= a capture group
» Resulting match is stored in a numbered register
» If you match two different sets of parentheses, \2 means
whatever matched the second capture group
/the (.x)er they (.*), the \ler we \2 /
» Use a non-capturing group if you don’t want to capture the
resulting pattern in a register:
/((?:some|a few) (peoplelcats) like some \1/

12

REGULAR EXPRESSIONS

ELIZA OR A SIMPLE CHATBOT

» Works by having a cascade of (ranked) regular expression
substitutions
» Input lines are first uppercased
» First substitutions change all instances of MY to YOUR and
I'M to YOU ARE
» The next set of substitutions matches and replaces other
patterns in the input

s/.* I'M (depressed|sad) .*/I AM SORRY TO HEAR YOU ARE \1/
s/.x I AM (depressed|sad) .*/WHY DO YOU THINK YOU ARE \1/
s/.x all .x/IN WHAT WAY/

s/.* always .*/CAN YOU THINK OF A SPECIFIC EXAMPLE/

13

WORDS

WHAT COUNTS AS A WORD?

» How many words are in the following Brown sentence?
» He stepped out into the hall, was delighted to encounter a
water brother.
» 13 words (15 with punctuation marks)
» How many words are in the following utterance from the
Switchboard corpus?
» | do uh main- mainly business data processing
» Two disfluencies: a fragment (main-) and a filled pause (uh)

14

WORDS

WHAT COUNTS AS A WORD?

» How about inflected forms like cats versus cat?

» They have the same lemma cat but different wordforms

» Alemma is a set of lexical forms having the same stem, the
same major part-of-speech, and the same word sense

» The wordform is the fully inflected or derived form of the
word

15

WORDS
HOW MANY WORDS ARE THERE IN ENGLISH?

» Types are the number of distinct words in a corpus
» If the set of words in the vocabulary is V, the number of
types is the vocabulary size |V]|
» Tokens are the total number N of running words

» If we ignore punctuation, the following Brown sentence has
16 tokens and 14 types:
» They picknicked by the pool, then lay back on the grass and
looked at the stars.

16

WORDS
POPULAR ENGLISH LANGUAGE CORPORA

Corpus | Tokens=N | Types=|V|
Shakespeare 884 thousand | 31thousand
Brown corpus Tmillion | 38 thousand
Switchboard telephone conversations 2.4 million | 20 thousand
COCA 440 million 2 million
Google N-grams 1 trillion 13 million

The relationship between the number of types and number of tokens
is called Herdan's Law (Herdan, 1960) or Heap's Law (Heaps, 1978),
where k and 3 are positive constantsand 0 < 5 < 1:

|V| = kNP

17

WORDS
DICTIONARY ENTRIES

» Look at the number of lemmas instead of wordform types
» Dictionaries can help in giving lemma counts
» Dictionary entries or boldface forms are a very rough upper
bound on the number of lemmas

» The 1989 edition of the Oxford English Dictionary had
615,000 entries

18

TEXT NORMALIZATION

FIRST NLP TASK

At least three tasks are commonly applied as part of any
normalization process:

1. Segmenting/tokenizing words from running text
2. Normalizing word formats
3. Segmenting sentences in running text

19

TEXT NORMALIZATION

WORD TOKENIZATION

Main challenges:

>

Break off punctuation as a separate token but preserve it
when it occurs word internally (Ph.D., AT&T, ...)

Keep special characters and numbers in prices ($45.55)
and dates (15/02/2019)

Expand clitic contractions that are marked by apostrophes
(we're — we are)

Tokenize multiword expressions like New York or rock 'n’
roll as a single token

20

TEXT NORMALIZATION

PENN TREEBANK TOKENIZATION

Penn Treebank tokenization standard separates out clitics
(doesn’t becomes does plus n't), keeps hyphenated words
together, and separates out all punctuation:

Input: “The San Francisco-based restaurant,” they said, “doesn’t charge $10”.
Output: j The || San ‘ Francisco-based ‘ restaurant DE they

s = dos T L ehrs [T 0 7]

21

TEXT NORMALIZATION
NORMALIZING TOKENS

Choosing a single normalized form for words with multiple
forms such as USA and US.

» Valuable for information retrieval if you want to query for
US to match a document that has USA

» In information extraction we might want to extract
coherent information that is consistent across
differently-spelled instances

22

TEXT NORMALIZATION

CASE FOLDING

Case folding is another kind of normalization
» For tasks like speech recognition and information retrieval,
everything is mapped to lower case
» For sentiment analysis and other text classification tasks,
information extraction and machine translation, case is
quite helpful and case folding is generally not done

23

TEXT NORMALIZATION

EFFICIENCY

Because tokenization needs to be run before any other
language processing, it is important to be very fast.

» Deterministic algorithms based on regular expressions
compiled into very efficient finite state automata

» Carefully designed deterministic algorithms can deal with
the ambiguities that arise (e.g. the apostrophe)

24

TEXT NORMALIZATION
COLLAPSING WORDS

» Lemmatization is the task of determining that two words
have the same root, despite their surface differences
» How is lemmatization done?
» Most sophisticated methods for lemmatization involve
complete morphological parsing of the word
» Two broad classes of morphemes can be distinguished:
1. Stems - the central morpheme of the word, supplying the

main meaning
2. Affixes - adding “additional” meanings of various kinds

25

TEXT NORMALIZATION
COLLAPSING WORDS

» Stemming is a simpler but cruder method, which mainly
consists of chopping off word-final affixes

» One of the most widely used stemming algorithms for
English is the Porter stemmer (1980)

This was not the map we found in Billy Bones’s chest, but

an accurate copy, complete in all things-names and heights
and soundings-with the single exception of the red crosses
and the written notes.

Thi wa not the map we found in Billi Bone s chest but an
accur copi complet in all thing name and height and sound
with the singl except of the red cross and the written note

26

TEXT NORMALIZATION
COLLAPSING WORDS

» The Porter stemmer algorithm is based on a series of
rewrite rules in series, as a cascade

ATIONAL — ATE (e.g. relational — relate)
ING — ¢ if stem contains vowel (e.g., motoring — motor)
SSES — SS (e.g., grasses — grass)

» Detailed rule lists for the Porter stemmer can be found on
Martin Porter’s homepage

27

TEXT NORMALIZATION

SENTENCE SEGMENTATION

Sentence segmentation is another important step in text
processing

» The most useful cues are punctuation (periods, question
marks, exclamation points)

» Periods can be ambiguous: Mr. or Inc.

In general, sentence tokenization methods work by building a
binary classifier that decides if a period is a part of the word or
is a sentence-boundary marker

28

MINIMUM EDIT DISTANCE
STRING SIMILARITY

» Calculating the similarity between two strings is useful in
many NLP tasks, such as spelling correction or
coreference resolution

» The minimum edit distance between two strings is defined
as the minimum number of editing operations (operations
like insertion, deletion, substitution) needed to transform
one string into another

29

EXAMPLE ALIGNMENT

MINIMUM EDIT DISTANCE

ol
l

h‘

TION
]
TION

 —

N
|
E

d s

|
C

T N
]
X U
S 1s

» The gap between intention and execution is 5

30

MINIMUM EDIT DISTANCE

LEVENSHTEIN DISTANCE

» We can also assign a particular cost or weight to each of
these operations
» Levenshtein distance: Each insertion or deletion has a
cost of 1 and substitutions are not allowed
» (This is equivalent to allowing substitution, but giving each
substitution a cost of 2 since any substitution can be represented
by one insertion and one deletion)
» Using this metric, the Levenshtein distance between
intention and execution is 8

31

MINIMUM EDIT DISTANCE

ALGORITHM

» How do we find the minimum edit distance?

» We can think of this as a search task, in which we are
searching for the shortest path - a sequence of edits - from
one string to another

» The space of all possible edits is enormous, so we can't
search naively

» However, lots of distinct edit paths will end up in the same
state (string), so rather than recomputing all those paths,
we could just remember the shortest path to a state each
time we saw it

32

DYNAMIC PROGRAMMING

MINIMUM EDIT DISTANCE

» Dynamic programming is the name for a class of
algorithms, first introduced by Bellman (1957), that apply a
table-driven method to solve problems by combining
solutions to sub-problems

» Some of the most commonly used algorithms in NLP make
use of dynamic programming, such as the Viterbi
algorithm and the CKY algorithm for parsing

33

MINIMUM EDIT DISTANCE

SHORTEST PATH

=]
X o o B

o ®o© o O

w
o ® ® ® O ct

[«

o+ o B

O O ©

<«— delete i
<— substitute n by e
<— substitute t by x

<— jnsertu

n
<— substitute n by ¢

n

34

ALGORITHM

MINIMUM EDIT DISTANCE

function MIN-EDIT-DISTANCE(source, target) returns min-distance

n<— LENGTH(source)
m+<— LENGTH(target)
Create a distance matrix distance[n+1,m+1]

Initialization: the zeroth row and column is the distance from the empty string
D[0,0]1=0
for each row i from 1 to n do
D[i,0] <+ Dli-1,0] + del-cost(sourcelil)
for each column j from 1 to m do
D[0,j] < D|0,j-1] + ins-cost(target[j])

Recurrence relation:
for each row i from 1 to n do
for each column j from 1 to m do
D[i, j] < MIN(D[i—1,j] + del-cost(sourceli]),

Dli—1,j—1] + sub-cost(sourcelil, target[j]),
Dli,j—1] + ins-cost(target|j]))

Termination

return D[n,m]

35

MINIMUM EDIT DISTANCE
THE EDIT DISTANCE MATRIX

10
11

10

10
11

10

10

10

10
11

11
12

10

11

10

#

Src\Tar

36

MINIMUM EDIT DISTANCE

PRODUCING AN ALIGNMENT

e X e c u t i 0 n
0| «1 2 «3 ~4 «5 «6 «17 ~8| «9
i 11|~ 2R3 Retd| e 5] R 6| R 7 6 7| «8
n| 12Kt 3| Rt 4| eS| 16| et 7|8 17| e8| N7
t| 13[4 Rt S| e 6] et 7| e8| KT 8| K&9| 18
el 14| <3 «4| &5 «~6 T 8| Re«t9 [~ 10| 19
nl+5 14 RS et 6| "7 | et 8| Kt 9| Kt 10 | Rt 11 K¢ 10
t| 16 15" 6] Rt 7| et 8| 19| <8 «9 ~ 10k 11
i|t7 16| 7| et 8| K9 |xt 10 19 8 «9|« 10
o| 18 17| R 8| "1 9 [t 10|xe 11| 110 19 8| «9
nl +9 18Rt 9 | R 10| Rt 11 [Rer 12] 111 +10 19 8

37

EXTENSIONS

MINIMUM EDIT DISTANCE

» The algorithm allows arbitrary weights on the operations
» For spelling correction, substitutions are more likely to
happen between letters that are next to each other on the
keyboard
» The Viterbi algorithm is a probabilistic extension of
minimum edit distance
» Viterbi computes the “maximum probability alignment” of
one string with another (cf. Ch. 8 on POS tagging)

38

The regular expression language is a powerful tool for
pattern-matching.

Basic operations in regular expressions include concatenation

of symbols, disjunction of symbols ([], |, and), counters (*, +, and
{n,m}), anchors (", §) and precedence operators ((,)).

Word tokenization and normalization are generally done by
cascades of simple regular expressions substitutions or finite
automata.

The Porter algorithm is a simple and efficient way to do
stemming, stripping off affixes. It does not have high accuracy
but may be useful for some tasks.

The minimum edit distance between two strings is the minimum
number of operations it takes to edit one into the other. Minimum
edit distance can be computed by dynamic programming, which
also results in an alignment of the two strings.

39

