
27/03/13	

1	

Sequence modelling

Marco Saerens (UCL)

2

Slides references
  Many slides and figures have been adapted from the slides

associated to the following books:
–  Alpaydin (2004), Introduction to machine learning. The MIT Press.
–  Duda, Hart & Stork (2000), Pattern classification, John Wiley &

Sons.
–  Han & Kamber (2006), Data mining: concepts and techniques, 2nd

ed. Morgan Kaufmann.
–  Tan, Steinbach & Kumar (2006), Introduction to data mining.

Addison Wesley.
–  Grinstead and Snell’s Introduction to Probability (2006; GNU Free

Documentation License)
  As well as from Wikipedia, the free online encyclopedia
  I really thank these authors for their contribution to machine

learning and data mining teaching

27/03/13	

2	

Dynamic programming and
edit-distance

Marco Saerens (UCL)

4

Dynamic programming

 Suppose we have a lattice with N levels:

3 3

5

4 3

1

2 2

1

0

0

03

3

2

2

2

2

2

2

1

3

1

3
2

2
2

2
2

3

2
1

2

2
3

2

3
2

1

27/03/13	

3	

Dynamic programming

 The problem is to reach level N	

 From level 1
 With minimum cost
 = shortest-path problem

5

6

Dynamic programming

  Some definitions

  The local cost associated to the decision to
jump to the state sk = j at level k	

  Given that we were in state sk–1 = i at level k–1	

27/03/13	

4	

7

Dynamic programming

 The total cost of a path
is

 The optimal cost when starting from
state s0 is

8

Dynamic programming

 The optimal cost, whatever the initial
state, is

 The optimal cost when starting from
some intermediate state

27/03/13	

5	

9

Dynamic programming

 Here are the recurrence relations
allowing to obtain the optimal cost:

10

Dynamic programming

 Graphically:

S = ik

S = i+1k+1

S = ik+1

S = i–1k+1

27/03/13	

6	

11

Dynamic programming

 Example:

0

4

2

3

1

5

3

5

12

5

4

2

2

4

1

4

4

12

Dynamic programming
 Proof:

27/03/13	

7	

13

Dynamic programming

  In a symmetric way:

14

Dynamic programming

 Now, if there are jumps bypassing some
levels,

 where is the set of states
to which there is a direct jump from sk = i

27/03/13	

8	

15

Dynamic programming

 To find the optimal path, we need to
keep track of
‒  the previous state in each node (a

pointer from the previous state to the
current state)

 And use backtracking from the last node
‒  in order to retrieve the optimal path

16

Application to edit-distance

 Computation of a distance between two
strings
–  It computes the minimal number of

insertions, deletions and substitutions
– That is, the minimum number of editions

 For transforming one character string x
into another character string y	

27/03/13	

9	

17

Application to edit-distance

 Also called the “Levenstein distance”
 We thus have two character strings

  xi being the character i of string x	

18

Application to edit-distance

 The length of the string x is denoted by
|x|	

  In general, we have

 The substring of x , beginning at
character i and ending at j is defined by

27/03/13	

10	

19

Application to edit-distance

  We will now read the characters of x one by
one

  In order to construct the string y
  To this aim, we define the three editing

operations:
–  Insertion of a character in y (without taking any

character from x)
–  Deletion of a character from x (without

concatenating it to y)
–  Substitution of a character from y by one of x

20

Application to edit-distance

 First convention:

– Means that we have read (extracted) the i–
1 first characters of x	

– Thus, x has been cutted from its i–1 first
characters

– They have been taken in order to construct
y	

27/03/13	

11	

21

Application to edit-distance

 Second convention:

– Means that the j first characters of y have
been transcribed

 We progressively read the first
characters of x in order to build y	

22

Application to edit-distance

  It corresponds to a process with levels (steps)
and states
–  We will now apply dynamic programming

–  One state is characterized by a couple (i, j)

27/03/13	

12	

23

Application to edit-distance

 Here is the formal definition of the three
operations

– For the two first operations, we are jumping
from level k to level k+1

– For the last one, we directly jump to level k
+2 (one level is passed)

24

Application to edit-distance
 This situation can be represented in a

two-dimensional table
– One level is represented by
	
(i + j) = constant	

– One state is represented by (i, j) 	

– One operation corresponds to a valid

transition in this table	

27/03/13	

13	

25

Application to edit-distance

 Exemple of a table computing the
distance between “livre” and “lire”

26

Application to edit-distance

 Each level corresponds to a diagonal of
the table:
–  (i + j) = constant	

27/03/13	

14	

27

Application to edit-distance
 A cost (or penalty) is associated to each

operation (insertion, deletion,
substitution); for instance

 with

28

Application to edit-distance
 The dynamic programming formula can

be applied to this problem:
–  Initialization:

– Then:

27/03/13	

15	

29

Application to edit-distance

 And finally:

 This value is the edit-distance or
Levenstein distance

30

Application to edit-distance

  One example:

  dist(lire, livre) = 1

27/03/13	

16	

31

Application to edit-distance

  In order to find the optimal path (optimal
sequence of operations)
– A pointer to the previous state has to be

maintained for each cell of the table
– The full path can be found by backtracking

from the final state
 Numerous extensions and

generalizations of this basic algorithm
have been developed

Application to edit-distance

 Notice that the related quantity, the
longest common subsequence, lcs(x,y),
can be obtained by (no proof provided)

 and thus

32

dist(x,y) = lcs(x,x) + lcs(y,y)− 2 lcs(x,y)
= |x| + |y|− 2 lcs(x,y)

lcs(x,y) =
1
2
(|x| + |y|− dist(x,y))

27/03/13	

17	

Application to edit-distance

 Thus, since	

–  dist(lire, livre) = 1	

 We have	

–  lcs(lire, livre) = 0.5 (4 + 5 – 1) = 4

33

34

Application to edit-distance

27/03/13	

18	

A brief introduction to Markov chains

36

Introduction to Markov chains
 We have a set of states, S = {1, 2, …, n}

–  st = k means that the process, or system, is
in state k at time t	

 Example:
– We take as states the kind of weather R

(rain), N (nice), and S (snow)

27/03/13	

19	

Introduction to Markov chains

 Markov chains are models of sequential
discrete-time and discrete-state
stochastic processes

37

38

Introduction to Markov chains

 The entries of this matrix P are pij with

 We assume that the probability of
jumping to a state only depends on the
current state
– And not on the past, before this state
– This is the Markov property

27/03/13	

20	

39

Introduction to Markov chains
 The matrix P is called the one-step

transition probabilities matrix
–  It is a stochastic matrix
– The row sums are equal to 1

 We also assume that these transition
probabilities are stationary
– That is, independent of time

 Let us now compute P(st+2 = j | st = i) :

40

Introduction to Markov chains

27/03/13	

21	

41

Introduction to Markov chains

 The matrix P2 is the two-steps transition
probabilities matrix

 By induction, Pτ is the τ-steps transition
probabilities matrix containing elements

42

Introduction to Markov chains
  If x(t) is the column vector containing

the probability distribution of finding the
process in each state of the Markov
chain at time step t, we have

27/03/13	

22	

43

Introduction to Markov chains
  In matrix form, x(t) = PT x(t–1)	

 Or, in function of the initial distribution,

 x(t) = (PT)t x(0)	

 Now, xj(t) = x(t)T ej = x(0)T Pt ej 	

44

Introduction to Markov chains

 Thus, when starting from state i,
 x(0) = ei, and
	

xj(t | s0 = i) = xj|i(t) = (ei)T Pt ej

  It is the probability of observing the
process in state j at time t when starting
from state i at time t = 0	

27/03/13	

23	

45

Introduction to Markov chains

46

Introduction to Markov chains

 Let us now introduce absorbing Markov
chains

 A state i of a Markov chain is called
absorbing if it is impossible to leave it,
pii = 1	

 An absorbing Markov chain chain is a
Markov chain containing absorbing
states
– The other states being called transient (TR)

27/03/13	

24	

47

Introduction to Markov chains

 Let us take an example: the drunkard’
walk (from Grinstead and Snell)

48

Introduction to Markov chains

 The transition matrix can be put in
canonical form:

 Q is the transition matrix between
transient states

27/03/13	

25	

Introduction to Markov chains

 R is the transition matrix between
transient and absorbing states

 Both Q and R are sub-stochastic
– Their row sums are ≤ 1 and at least one

row sum is < 1

49

50

Introduction to Markov chains

 Now, Pt can be computed as

 Since Q is sub-stochastic, it can be
shown that:

27/03/13	

26	

51

Introduction to Markov chains
 The matrix

–  is called the fundamental matrix of the
absorbing Markov chain

 Let us interpret the elements nij = [N]ij of
the fundamental matrix, where i, j are
transient states

52

Introduction to Markov chains
  Recall that since i, j are transient states,

–  we have xj(t | s0 = i) = xj|i(t) = (ei)T Pt ej = (ei)T Qt ej	

  Thus, entry i, j of the matrix N for transient
states, nij, is

nij = eT
i Nej

= eT
i

� ∞�

t=0

Q

�
ej

=
∞�

t=0

�
eT

i Qej

�

=
∞�

t=0

xj|i(t)

27/03/13	

27	

53

Introduction to Markov chains
 Thus, element nij contains the expected

number of passages through transient
state j when starting from transient state
i	

 The expected number of visits (and
therefore steps) before being absorbed
when starting from each state is

54

Introduction to Markov chains

 For the drunkard’s walk,

27/03/13	

28	

55

Introduction to Markov chains

56

Introduction to Markov chains

27/03/13	

29	

57

Introduction to Markov chains
 We can also compute absorption

probabilities from each starting state
 We can compute the probability of being

absorbed by absorbing state j given that
we started in transient state i by

 where ntr is the number of transient states
and the sum over k is taken on the set of
transient states (TR) only

bij =
∞�

t=0

ntr�

k=1
k∈TR

xk|i(t) rkj

Introduction to Markov chains

 The formula states that the probability of
reaching absorbing node j at time (t+1)
is given by
–  the probability of passing through any state

k at t and then jumping to state j from k at (t
+1)

 The absorption probability is then given
by taking the sum over all possible time
steps

58

27/03/13	

30	

59

Introduction to Markov chains

 Let us compute this quantity

bij =
∞�

t=0

ntr�

k=1
k∈TR

xk|i(t) rkj

=
ntr�

k=1
k∈TR

� ∞�

t=0

eT
i Qtek

�
rkj

=
ntr�

k=1
k∈TR

nik rkj

= [NR]ij

60

Introduction to Markov chains

 The absorption probabilities are put in
the B matrix

 Let us reconsider the drunkard’s
example

27/03/13	

31	

61

Introduction to Markov chains

62

Introduction to Markov chains

 Some additional definitions
–  If, in a Markov chain, it is possible to go to

every state from each state, the Markov
chain is called irreducible

– Moreover, the Markov chain is called
regular if some power of the transition
matrix has only positive (non-0) elements

27/03/13	

32	

63

Introduction to Markov chains

  It can further be shown that the powers
Pt of a regular transition matrix tend to a
matrix with all rows the same

64

Introduction to Markov chains

 Moreover, the limiting probability
distribution of states is independent of
the initial state:

27/03/13	

33	

65

Introduction to Markov chains

 The stationary vector π is the left
eigenvector of P, corresponding to
eigenvalue 1 and normalized to a
probability vector:

66

Introduction to Markov chains

  It provides the probability of finding the
process in each state on the long run

 One can prove that this vector is unique
for a regular Markov chain

27/03/13	

34	

67

Introduction to Markov chains

 Notice that the fundamental matrix for
absorbing chains can be generalized

 To regular chains
–  It, for instance, allows to compute the

average first-passage times in matrix form
– See, for instance, Grinstead and Snell

Application to marketing

27/03/13	

35	

69

Application to marketing
 Suppose we have the following model

–  We have a number n of customer clusters or
segments

–  Based, for instance, on RFM (Recency,
Frequency, Monetary value)

  Each cluster is a state of a Markov chain
  The last (nth) cluster corresponds to lost

customers
–  It is absorbing and generates no benefit

70

Application to marketing

 Each month, we observe the
movements from cluster to cluster

 Transition probabilities are estimated
– by counting the observed frequencies of

jumping from one state to another in the
past

– This provides the entries of the transition
probabilities matrix

27/03/13	

36	

71

Application to marketing

 Suppose also there is an average profit,
mi per month, associated to each
customer in state i	

– which could be negative	

 There is also a discounting factor:
0 < γ < 1

 The expected profit on an infinite time
horizon can be computed

72

Application to marketing

  It is given by

–  It provides the expected profit on a infinite
horizon

m =
∞�

t=0

γt
n�

i=1

xi(t) mi

27/03/13	

37	

73

Application to marketing
 Which finally provides

m =
∞�

t=0

γt
n�

i=1

xi(t) mi

=
∞�

t=0

γtmT(PT)tx(0)

=
∞�

t=0

γtxT(0)Ptm

= xT(0)(
∞�

t=0

γtPt)m

= xT(0)(I− γP)−1m

74

Application to marketing

 This is an example of the computation
of the lifetime value of a customer

 Which is the expected profit provided by
the customer until it leaves the company

27/03/13	

38	

A brief introduction to dynamic
time warping

Marco Saerens, UCL
Alain Soquet, ULB

76

Dynamic time warping

 Context: word recognition
 Suppose we have a database of word

templates or references
– Someone pronounces a word which is

recorded and analysed
– We want to recover the nearest template

word in the database = nearest neighbor
– Which will be the recognized word

27/03/13	

39	

77

Dynamic time warping

 However, the timing in which the word
has been pronounced can differ greatly

 Hence, we have to account for
distortions or warping of the signal
=> Dynamic time warping

78

Dynamic time warping

 Here is an example: a spectrogram is
produced

Time window	

27/03/13	

40	

79

Dynamic time warping

 We have to compare word1 and word2
– Thus, align the two signals

Reference word1	

Word2	

80

Dynamic time warping
 The two signals are aligned by

– Defining a distance d(i,j) between two
frames, for instance the Euclidean distance

– Defining a time alignment that allows for
warpings

27/03/13	

41	

81

Dynamic time warping

 We have to add monotonicity
constraints in order to obtain meaningful
alignments

Monotonicity	

Continuity	

Boundary	

conditions	

82

Dynamic time warping

 The problem can be solved by dynamic
programming

 By considering only the valid transitions

27/03/13	

42	

83

Dynamic time warping

 Here are the dynamic programming
recurence relations

for	

A brief introduction to hidden
Markov models

Marco Saerens, UCL

27/03/13	

43	

85

Hidden Markov models

 Most slides are adapted from David
Meir Blei’s slides, SRI International

 Thanks to David Meir Blei

86

What is an HMM ?

  Graphical model
  Green circles indicate states
  Purple circles indicate observations
  Arrows indicate probabilistic

dependencies between states

27/03/13	

44	

87

What is an HMM?

  Green circles are hidden, unobserved,
states (n in total)

  Dependent only on the previous state
(arrow)

  “The past is independent of the future
given the present”: Markov property

88

What is an HMM ?

  Purple nodes are discrete observations
(p in total)

  They dependent only on their
corresponding hidden state in which
they were generated

27/03/13	

45	

89

What is an HMM ?

 Example of a word model

P	
 A	
 R	
 I	
 S	

90

HMM formalism

  {s, x, Π, P, B}
  s : {1,…, n} is the random variable for the

hidden states taking its values from 1 to n
  x : {o1,…, op } is the random variable for the

observations whose values are denoted oi	

s s s

x x x

s

x

s

x

27/03/13	

46	

91

HMM formalism

  {s, o, Π, P, B}
  Π = {πi} are the initial state probabilities, P(s1=i)
  P = {pij} are the state transition probabilities, P(st+1=j| st=i)

  B = {bi(ok)} are the observation or emission
probabilities, P(xt=ok | st=i)	

P

B

P P P

B B

s s s

x x x

s

x

s

x

A HMM example

92

Taken from wikipedia	

27/03/13	

47	

93

Inference in an HMM

  Three basic problems:

1.  Compute the probability/likelihood of a given observation
sequence (classification) ?

2.  Given an observation sequence, compute the most likely
hidden state sequence (decoding) ?

3.  Given an observation sequence, which model parameters
most closely fit the data (parameters estimation) ?

P

B

P P P

B B

s s s

x x x

s

x

s

x

Likelihood computation

94

27/03/13	

48	

95

x = [x1,..., xT]T, ! = {!,P,B}
Compute P(x |!)

xT x1 xt xt–1 xt+1

Given an observation sequence and a model,
compute the likelihood of the observation sequence

Likelihood computation

96

Likelihood computation

P(x |!) = P(x | s,!)P(s |!)
S
!

xT x1 xt xt–1 xt+1

s1 st+1 sT st st–1

P(x | s,!) = bs1 (x1)bs2 (x2)...bsT (xT)
P(s |!) = " s1

ps1s2 ps2s3... psT!1sT
P(x, s |!) = P(x | s,!)P(s |!)

27/03/13	

49	

97

P(x |!) = " s1
bs1 (x1)

(s1...sT)
!

t=1

T"1

#pstst+1bst+1 (xt+1)

Likelihood computation

xT x1 xt xt–1 xt+1

s1 st+1 sT st st–1

It involves a sum over all possible sequences of states !	

•  The special structure gives us an efficient solution
using some recurrence formulas

•  Define:

•  We will omit the dependency on θ
98

!i (t) = P(x1...xt, st = i |")

Forward procedure

xT x1 xt xt–1 xt+1

s1 st+1 sT st st–1

27/03/13	

50	

99

Forward procedure

!

" j (1) = P(x1,s1 = j)
= P(x1 | s1 = j)P(s1 = j)
= b j (x1)# j

xT x1 xt xt–1 xt+1

s1 st+1 sT st st–1

100

Forward procedure
= P(x1...xt+1, st+1 = j)

= P(x1...xt, st = i, xt+1, st+1 = j)
i=1

n

!

= P(xt+1, st+1 = j | x1...xt, st = i)P(x1...xt, st = i)
i=1

n

!

= P(xt+1, st+1 = j | st = i)!i (t)
i=1

n

!

= P(xt+1 | st+1 = j)P(st+1 = j | st = i)!i (t)
i=1

n

!

= pij!i (t)
i=1

n

!
"

#
$

%

&
'bj (xt+1)

! j (t +1)

27/03/13	

51	

101

Forward procedure

! j (1) = bj (x1)" j

xT x1 xt xt–1 xt+1

s1 st+1 sT st st–1

! j (t +1) = pij!i (t)
i=1

n

!
"

#
$

%

&
'bj (xt+1)

102

Forward procedure
From Rabiner et al.:	

27/03/13	

52	

103

Likelihood computation: solutions

xT x1 xt xt–1 xt+1

s1 st+1 sT st st–1

P(x |!) = P(x1...xT , sT = j |!)
j=1

n

! = " j (T)
j=1

n

!

The likelihood is:	

•  We now introduce the backward variable
•  Define:

•  We will omit the dependency on θ

104

Backward procedure

xT x1 xt xt–1 xt+1

s1 st+1 sT st st–1

!i (t) = P(xt+1...xT | st = i,")

27/03/13	

53	

105

Backward procedure
!i (t) = P(xt+1...xT | st = i)

= P(xt+1xt+2...xT , st+1 = j | st = i)
j=1

n

!

= P(xt+1xt+2...xT | st = i, st+1 = j)
j=1

n

! P(st+1 = j | st = i)

= pij P(xt+1xt+2...xT | st+1 = j)
j=1

n

!

= pij P(xt+1 | xt+2...xT , st+1 = j)P(xt+2...xT | st+1 = j)
j=1

n

!

= pijbj (xt+1)! j (t +1)
j=1

n

!

106

Backward procedure

  When t = T – 1, we have	

xT x1 xt xt–1 xt+1

s1 st+1 sT st st–1

!i (T –1) = P(xT | sT –1 = i)

= pijbj (xT)
j=1

n

!

!i (T –1) = pijbj (xT)! j (T)
j=1

n

!

=> βj(T) =1	

27/03/13	

54	

107

Backward procedure

!

"i(T) =1

!i (t) = pijbj (xt+1)! j (t +1)
j=1

n

!

xT x1 xt xt–1 xt+1

s1 st+1 sT st st–1

108

Backward procedure
From Rabiner et al.:	

27/03/13	

55	

109

Likelihood computation: solutions

P(x, st = i |!) = P(x1…xt, st = i, xt+1…xT |!)
= P(xt+1…xT | x1…xt, st = i,!)P(x1…xt, st = i |!)
= P(xt+1…xT | st = i,!)P(x1…xt, st = i |!)
="i (t)#i (t)

xT x1 xt xt–1 xt+1

s1 st+1 sT st st–1

110

Likelihood computation: solutions

P(x |!) = "i (T)
i=1

n

!

P(x |!) = " i#i (1)
i=1

n

!

P(x |!) = "i (t)
i=1

n

! #i (t)

Forward procedure

Backward procedure

Combination

xT x1 xt xt–1 xt+1

s1 st+1 sT st st–1

27/03/13	

56	

Optimal state sequence
(decoding)

111

 Find the most probable state at time t
given the observations

112

Best state

xT x1 xt xt–1 xt+1

s1 st+1 sT st st–1

! i (t) = P(st = i | x,") =
P(x, st = i |")
P(x |")

=
#i (t)$i (t)

j (t)$ j (t)
j=1

n

!

27/03/13	

57	

113

Best state sequence

 Find the state sequence that best
explains the observations

 Viterbi algorithm = dynamic
programming algorithm
argmax

s
P(s | x,!) = argmax

s
P(s,x |!)

xT x1 xt xt–1 xt+1

s1 st+1 sT st st–1

114

xT x1 xt xt–1 xt+1

Viterbi algorithm

! j (t) =max
s1...st!1

P(s1...st!1, x1...xt!1, st = j, xt |")

The state sequence which maximizes the
probability of generating the observations up
to time t–1, landing in state j, and emitting the
observation at time t

s1 st–1 j

27/03/13	

58	

115

Viterbi algorithm

! j (t +1) =maxi !i (t)pijbj (xt+1){ }

! j (t +1) = argmax
i

!i (t)pijbj (xt+1){ }

Recursive
computation

xT x1 xt xt–1 xt+1

s1 st–1 st st+1

! j (t) =maxs1...st!1
P(s1...st!1, x1...xt!1, st = j, xt |")

!

" j (1) = # jb j (x1)

!

" j (1) = 0

116

Viterbi algorithm
  Indeed, δj(t+1) is equal to

max
s1...st

P(s1...st+1 = j, x1...xt+1 |!) =max
s1...st

P(st+1 = j, xt+1 | s1...st, x1...xt!)P(s1...st, x1...xt |!)

=max
s1...st

P(xt+1 | st+1 = j,!)P(st+1 = j | st,!)P(s1...st, x1...xt |!){ }

=max
st

max
s1...st!1

bst+1 (xt+1)pstst+1 P(s1...st, x1...xt |!){ }

=max
st

bj (xt+1)pst jmax
s1...st!1

P(s1...st, x1...xt |!)
"
#
$

%
&
'

=max
st

bj (xt+1)pst j!st (t){ }

27/03/13	

59	

117

Viterbi algorithm
 And we can apply dynamic

programming to the log-likelihood
– The cost is then additive

118

Viterbi algorithm

!

s"(T) = argmax
i

i(T)

!

s"(t #1) =$s" (t)(t)

!

P(x") =max
i
i(T)

Compute the most
likely state sequence by
working backwards

xT x1 xt xt–1 xt+1

s1 st+1 sT st st–1

27/03/13	

60	

Parameter estimation

119

120

Parameter estimation

•  Given an observation sequence, find the
model parameters Π, P, B, that most
likely produce that sequence (maximum
likelihood)

•  No closed-form solution
•  Instance of the iterative EM algorithm

xT x1 xt xt–1 xt+1

P

B

P P P

B B B B

Π

27/03/13	

61	

121

Parameter estimation

! ij (t) = P(st = i, st+1 = j | x,") Probability of
traversing an arc

! i (t) = P(st = i | x,") Probability of
being in state i

xT x1 xt xt–1 xt+1

P

B

P P P

B B B B

Π

122

Parameter estimation

! i (t) = P(st = i | x,") =
P(x, st = i |")
P(x |")

=
#i (t)$i (t)

j (t)$ j (t)
j=1

n

!

Recall that we already computed	

27/03/13	

62	

123

Parameter estimation
! ij (t) = P(st = i, st+1 = j | x,") =

P(x1…xt, st = i, st+1 = j, xt+1…xT |")
P(x |")

=
P(st+1 = j, xt+1…xT | x1…xt, st = i,")P(x1…xt, st = i |")

P(x |")

=
P(st+1 = j, xt+1…xT | st = i,")#i (t)

P(x |")

=
P(xt+1…xT | st = i, st+1 = j,")P(st+1 = j | st = i,")#i (t)

P(x |")

=
P(xt+1…xT | st+1 = j,")pij#i (t)

P(x |")

=
P(xt+1 | xt+2…xT , st+1 = j,")P(xt+2…xT | st+1 = j,")pij#i (t)

P(x |")

=
#i (t)bj (xt+1)pij$ j (t +1)

#k (t)$k (t)
k=1

N

!

124

Parameter estimation

!̂ i = P(s1 = i | x,"̂) = # i (1)

Now we can
compute the new
estimates of the
model parameters.

xT x1 xt xt–1 xt+1

P

B

P P P

B B B B

Π

!

ˆ " i = probability of starting from i

27/03/13	

63	

125

Parameter estimation

!

ˆ p ij =
expected number of transitions from i to j

expected number of transitions out of state i

xT x1 xt xt–1 xt+1

P

B

P P P

B B B B

Π

126

Parameter estimation

p̂ij =
P(st = i, st+1 = j | x,!̂)

t=1

T!1

"

P(st = i | x,!̂)
t=1

T!1

"
=

" ij (t)
t=1

T!1

"

" i (t)
t=1

T!1

"

xT x1 xt xt–1 xt+1

P

B

P P P

B B B B

Π

27/03/13	

64	

127

Parameter estimation

xT x1 xt xt–1 xt+1

P

B

P P P

B B B B

Π

b̂i (ok) =
expected number of emissions of ok in state i

total number of emissions in state i

128

Parameter estimation

b̂i (ok) =
P(st = i, xt = ok | x,!̂)

t=1

T

!

P(st = i | x,!̂)
t=1

T

!
=

P(st = i | x,!̂)"(xt = ok)
t=1

T

!

P(st = i | x,!̂)
t=1

T

!

=

P(st = i | x,!̂)
{t:xt=ok }
!

P(st = i | x,!̂)
t=1

T

!
=

" t (i)
{t:xt=ok }
!

" i (t)
t=1

T

!

xT x1 xt xt–1 xt+1

P

B

P P P

B B B B

Π

27/03/13	

65	

129

Parameter estimation

 The two following two steps are iterated
until convergence:
– Recompute the forward and backward

variables α and β
– Recompute the parameter estimates for

the Π, P, B

xT x1 xt xt–1 xt+1

P

B

P P P

B B B B

Π

130

Parameter estimation

  It can be shown that this iterative
algorithm increases the likelihood

xT x1 xt xt–1 xt+1

P

B

P P P

B B B B

Π

27/03/13	

66	

131

HMM applications

 Generating parameters for n-gram
models

 Tagging speech
 Speech recognition
 Bioinformatics sequence modeling

132

HMM applications

  Part-of-speech tagging
–  The representative put chairs on the table
–  AT NN VBD NNS IN AT NN
–  AT JJ NN VBZ IN AT NN

  Some tags :
–  AT: article, NN: singular or mass noun, VBD: verb,

past tense, NNS: plural noun, IN: preposition, JJ:
adjective

27/03/13	

67	

133

HMM applications

  BioInformatics
–  Durbin et al. Biological Sequence Analysis,

Cambridge University Press.
  Several applications, e.g. proteins

–  From primary structure ATCPLELLLD
–  Infer secondary structure HHHBBBBBC..

