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Sequence modelling 

Marco Saerens (UCL) 
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Slides references 
  Many slides and figures have been adapted from the slides 

associated to the following books: 
–  Alpaydin (2004), Introduction to machine learning. The MIT Press. 
–  Duda, Hart & Stork (2000), Pattern classification, John Wiley & 

Sons. 
–  Han & Kamber (2006), Data mining: concepts and techniques, 2nd 

ed. Morgan Kaufmann. 
–  Tan, Steinbach & Kumar (2006), Introduction to data mining. 

Addison Wesley. 
–  Grinstead and Snell’s Introduction to Probability (2006; GNU Free 

Documentation License) 
  As well as from Wikipedia, the free online encyclopedia 
  I really thank these authors for their contribution to machine 

learning and data mining teaching 
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Dynamic programming and 
edit-distance 

Marco Saerens (UCL) 
 

4 

Dynamic programming 

 Suppose we have a lattice with N levels: 
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Dynamic programming 

 The problem is to reach level N	


 From level 1 
 With minimum cost 
 = shortest-path problem 

5 

6 

Dynamic programming 

  Some definitions 

  The local cost associated to the decision to 
jump to the state sk = j at level k	



  Given that we were in state sk–1 = i at level k–1	
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Dynamic programming 

 The total cost of a path 
is 

 The optimal cost when starting from 
state s0 is  

8 

Dynamic programming 

 The optimal cost, whatever the initial 
state, is 

 The optimal cost when starting from 
some intermediate state 
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Dynamic programming 

 Here are the recurrence relations 
allowing to obtain the optimal cost: 

10 

Dynamic programming 

 Graphically: 

S  = ik

S     = i+1k+1

S     = ik+1

S     = i–1k+1
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Dynamic programming 

 Example: 
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Dynamic programming 
 Proof: 
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Dynamic programming 

  In a symmetric way: 

14 

Dynamic programming 

 Now, if there are jumps bypassing some 
levels, 

 where                       is the set of states 
to which there is a direct jump from sk = i 
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Dynamic programming 

 To find the optimal path, we need to 
keep track of 
‒  the previous state in each node (a 

pointer from the previous state to the 
current state) 

 And use backtracking from the last node 
‒  in order to retrieve the optimal path  

16 

Application to edit-distance 

 Computation of a distance between two 
strings 
–  It computes the minimal number of 

insertions, deletions and substitutions 
– That is, the minimum number of editions 

 For transforming one character string x 
into another character string y	
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Application to edit-distance 

 Also called the “Levenstein distance” 
 We thus have two character strings 

  xi being the character i of string x	



18 

Application to edit-distance 

 The length of the string x is denoted by  
|x|	



  In general, we have 

 The substring of x , beginning at 
character i and ending at j is defined by 
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Application to edit-distance 

  We will now read the characters of x one by 
one 

  In order to construct the string y 
  To this aim, we define the three editing 

operations: 
–  Insertion of a character in y (without taking any 

character from x) 
–  Deletion of a character from x (without 

concatenating it to y) 
–  Substitution of a character from y by one of x 

20 

Application to edit-distance 

 First convention: 

– Means that we have read (extracted) the i–
1 first characters of x	



– Thus, x has been cutted from its i–1 first 
characters  

– They have been taken in order to construct 
y	
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Application to edit-distance 

 Second convention: 

– Means that the j first characters of y have 
been transcribed 

 We progressively read the first 
characters of x in order to build y	



22 

Application to edit-distance 

  It corresponds to a process with levels (steps) 
and states 
–  We will now apply dynamic programming 

–  One state is characterized by a couple (i, j) 
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Application to edit-distance 

 Here is the formal definition of the three 
operations 

– For the two first operations, we are jumping 
from level k to level k+1 

– For the last one, we directly jump to level k
+2 (one level is passed)  

24 

Application to edit-distance 
 This situation can be represented in a 

two-dimensional table 
– One level is represented by 
	

(i + j) = constant	



– One state is represented by (i, j) 	


– One operation corresponds to a valid 

transition in this table	
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Application to edit-distance 

 Exemple of a table computing the 
distance between “livre” and “lire” 

26 

Application to edit-distance 

 Each level corresponds to a diagonal of 
the table: 
–  (i + j) = constant	
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Application to edit-distance 
 A cost (or penalty) is associated to each 

operation (insertion, deletion, 
substitution); for instance 

 with 

28 

Application to edit-distance 
 The dynamic programming formula can 

be applied to this problem: 
–  Initialization: 

– Then: 
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Application to edit-distance 

 And finally: 

 This value is the edit-distance or 
Levenstein distance  

30 

Application to edit-distance 

  One example: 

  dist(lire, livre) = 1 
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Application to edit-distance 

  In order to find the optimal path (optimal 
sequence of operations) 
– A pointer to the previous state has to be 

maintained for each cell of the table 
– The full path can be found by backtracking 

from the final state 
 Numerous extensions and 

generalizations of this basic algorithm 
have been developed 

Application to edit-distance 

 Notice that the related quantity, the 
longest common subsequence, lcs(x,y), 
can be obtained by (no proof provided) 

 and thus 

32 

dist(x,y) = lcs(x,x) + lcs(y,y)− 2 lcs(x,y)
= |x| + |y| − 2 lcs(x,y)

lcs(x,y) =
1
2
(|x| + |y|− dist(x,y))
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Application to edit-distance 

 Thus, since	


–  dist(lire, livre) = 1	



 We have	


–  lcs(lire, livre) = 0.5 (4 + 5 – 1) = 4 

33 

34 

Application to edit-distance 
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A brief introduction to Markov chains 

36 

Introduction to Markov chains 
 We have a set of states, S = {1, 2, …, n} 

–  st = k means that the process, or system, is 
in state k at time t	



 Example: 
– We take as states the kind of weather R 

(rain), N (nice), and S (snow) 
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Introduction to Markov chains 

 Markov chains are models of sequential 
discrete-time and discrete-state 
stochastic processes 

37 

38 

Introduction to Markov chains 

 The entries of this matrix P are pij with 

 We assume that the probability of 
jumping to a state only depends on the 
current state 
– And not on the past, before this state 
– This is the Markov property  
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Introduction to Markov chains 
 The matrix P is called the one-step 

transition probabilities matrix 
–  It is a stochastic matrix 
– The row sums are equal to 1 

 We also assume that these transition 
probabilities are stationary 
– That is, independent of time 

 Let us now compute P(st+2 = j | st = i) : 

40 

Introduction to Markov chains 
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Introduction to Markov chains 

 The matrix P2 is the two-steps transition 
probabilities matrix 

 By induction, Pτ is the τ-steps transition 
probabilities matrix containing elements 

42 

Introduction to Markov chains 
  If x(t) is the column vector containing 

the probability distribution of finding the 
process in each state of the Markov 
chain at time step t, we have 
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Introduction to Markov chains 
  In matrix form, x(t) = PT x(t–1)	



 
 Or, in function of the initial distribution, 

 x(t) = (PT)t x(0)	



 Now, xj(t) = x(t)T ej = x(0)T Pt ej 	



44 

Introduction to Markov chains 

 Thus, when starting from state i, 
  x(0) = ei, and 
	



xj(t | s0 = i) = xj|i(t) = (ei)T Pt ej  
  

  It is the probability of observing the 
process in state j at time t when starting 
from state i at time t = 0	
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Introduction to Markov chains 

46 

Introduction to Markov chains 

 Let us now introduce absorbing Markov 
chains 

 A state i of a Markov chain is called 
absorbing if it is impossible to leave it, 
pii = 1	



 An absorbing Markov chain chain is a 
Markov chain containing absorbing 
states 
– The other states being called transient (TR)  
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Introduction to Markov chains 

 Let us take an example: the drunkard’ 
walk (from Grinstead and Snell)  

48 

Introduction to Markov chains 

 The transition matrix can be put in 
canonical form: 

 Q is the transition matrix between 
transient states 
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Introduction to Markov chains 

 R is the transition matrix between 
transient and absorbing states 

 Both Q and R are sub-stochastic 
– Their row sums are ≤ 1 and at least one 

row sum is < 1 

49 

50 

Introduction to Markov chains 

 Now, Pt can be computed as 

 

 Since Q is sub-stochastic, it can be 
shown that:  
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Introduction to Markov chains 
 The matrix 

–  is called the fundamental matrix of the 
absorbing Markov chain 

 Let us interpret the elements nij = [N]ij of 
the fundamental matrix, where i, j are 
transient states  

52 

Introduction to Markov chains 
  Recall that since i, j are transient states, 

–  we have xj(t | s0 = i) = xj|i(t) = (ei)T Pt ej  = (ei)T Qt ej	



  Thus, entry i, j of the matrix N for transient 
states, nij, is 

nij = eT
i Nej

= eT
i

� ∞�

t=0

Q

�
ej

=
∞�

t=0

�
eT

i Qej

�

=
∞�

t=0

xj|i(t)
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Introduction to Markov chains 
 Thus, element nij contains the expected 

number of passages through transient 
state j when starting from transient state 
i	



 The expected number of visits (and 
therefore steps) before being absorbed 
when starting from each state is 

 

54 

Introduction to Markov chains 

 For the drunkard’s walk, 
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Introduction to Markov chains 

56 

Introduction to Markov chains 
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Introduction to Markov chains 
 We can also compute absorption 

probabilities from each starting state 
 We can compute the probability of being 

absorbed by absorbing state j given that 
we started in transient state i by 

 
 where ntr is the number of transient states 
and the sum over k is taken on the set of 
transient states (TR) only 

bij =
∞�

t=0

ntr�

k=1
k∈TR

xk|i(t) rkj

Introduction to Markov chains 

 The formula states that the probability of 
reaching absorbing node j at time (t+1) 
is given by  
–  the probability of passing through any state 

k at t and then jumping to state j from k at (t
+1) 

 The absorption probability is then given 
by taking the sum over all possible time 
steps 

58 
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Introduction to Markov chains 

 Let us compute this quantity 

bij =
∞�

t=0

ntr�

k=1
k∈TR

xk|i(t) rkj

=
ntr�

k=1
k∈TR

� ∞�

t=0

eT
i Qtek

�
rkj

=
ntr�

k=1
k∈TR

nik rkj

= [NR]ij

60 

Introduction to Markov chains 

 The absorption probabilities are put in 
the B matrix 

 Let us reconsider the drunkard’s 
example 
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Introduction to Markov chains 

62 

Introduction to Markov chains 

 Some additional definitions 
–  If, in a Markov chain, it is possible to go to 

every state from each state, the Markov 
chain is called irreducible 

– Moreover, the Markov chain is called 
regular if some power of the transition 
matrix has only positive (non-0) elements 
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Introduction to Markov chains 

  It can further be shown that the powers 
Pt of a regular transition matrix tend to a 
matrix with all rows the same 

64 

Introduction to Markov chains 

 Moreover, the limiting probability 
distribution of states is independent of 
the initial state: 
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Introduction to Markov chains 

 The stationary vector π is the left 
eigenvector of P, corresponding to 
eigenvalue 1 and normalized to a 
probability vector: 

66 

Introduction to Markov chains 

  It provides the probability of finding the 
process in each state on the long run 

 One can prove that this vector is unique 
for a regular Markov chain 
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Introduction to Markov chains 

 Notice that the fundamental matrix for 
absorbing chains can be generalized 

 To regular chains 
–  It, for instance, allows to compute the 

average first-passage times in matrix form 
– See, for instance, Grinstead and Snell 

Application to marketing 
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Application to marketing 
 Suppose we have the following model 

–  We have a number n of customer clusters or 
segments 

–  Based, for instance, on RFM (Recency, 
Frequency, Monetary value) 

  Each cluster is a state of a Markov chain 
  The last (nth) cluster corresponds to lost 

customers 
–  It is absorbing and generates no benefit 

70 

Application to marketing 

 Each month, we observe the 
movements from cluster to cluster 

 Transition probabilities are estimated  
– by counting the observed frequencies of 

jumping from one state to another in the 
past 

– This provides the entries of the transition 
probabilities matrix 
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Application to marketing 

 Suppose also there is an average profit, 
mi per month, associated to each 
customer in state i	


– which could be negative	



 There is also a discounting factor: 
0 < γ < 1 

 The expected profit on an infinite time 
horizon can be computed 

72 

Application to marketing 

  It is given by 

–  It provides the expected profit on a infinite 
horizon 

m =
∞�

t=0

γt
n�

i=1

xi(t) mi



27/03/13	



37	



73 

Application to marketing 
 Which finally provides 

m =
∞�

t=0

γt
n�

i=1

xi(t) mi

=
∞�

t=0

γtmT(PT)tx(0)

=
∞�

t=0

γtxT(0)Ptm

= xT(0)(
∞�

t=0

γtPt)m

= xT(0)(I− γP)−1m

74 

Application to marketing 

 This is an example of the computation 
of the lifetime value of a customer 

 Which is the expected profit provided by 
the customer until it leaves the company 
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A brief introduction to dynamic 
time warping 

Marco Saerens, UCL 
Alain Soquet, ULB 

76 

Dynamic time warping 

 Context: word recognition 
 Suppose we have a database of word 

templates or references 
– Someone pronounces a word which is 

recorded and analysed 
– We want to recover the nearest template 

word in the database = nearest neighbor 
– Which will be the recognized word 
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Dynamic time warping 

 However, the timing in which the word 
has been pronounced can differ greatly 

 Hence, we have to account for 
distortions or warping of the signal 
=> Dynamic time warping 

78 

Dynamic time warping 

 Here is an example: a spectrogram is 
produced 

Time window	
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Dynamic time warping 

 We have to compare word1 and word2 
– Thus, align the two signals 

Reference word1	



Word2	



80 

Dynamic time warping 
 The two signals are aligned by 

– Defining a distance d(i,j) between two 
frames, for instance the Euclidean distance 

– Defining a time alignment that allows for 
warpings 
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Dynamic time warping 

 We have to add monotonicity 
constraints in order to obtain meaningful 
alignments 

Monotonicity	



Continuity	



Boundary	


conditions	



82 

Dynamic time warping 

 The problem can be solved by dynamic 
programming 

 By considering only the valid transitions 
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Dynamic time warping 

 Here are the dynamic programming 
recurence relations 

for	



A brief introduction to hidden 
Markov models 

Marco Saerens, UCL 
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Hidden Markov models 

 Most slides are adapted from David 
Meir Blei’s slides, SRI International 

 Thanks to David Meir Blei 

86 

What is an HMM ? 

  Graphical model 
  Green circles indicate states 
  Purple circles indicate observations 
  Arrows indicate probabilistic 

dependencies between states 
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What is an HMM? 

  Green circles are hidden, unobserved, 
states (n in total) 

  Dependent only on the previous state 
(arrow) 

  “The past is independent of the future 
given the present”: Markov property 

88 

What is an HMM ? 

  Purple nodes are discrete observations 
(p in total) 

  They dependent only on their 
corresponding hidden state in which 
they were generated 
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What is an HMM ? 

 Example of a word model 

P	

 A	

 R	

 I	

 S	



90 

HMM formalism 

  {s, x, Π, P, B}  
  s : {1,…, n} is the random variable for the 

hidden states taking its values from 1 to n 
  x : {o1,…, op } is the random variable for the 

observations whose values are denoted oi	



s s s 

x x x 

s 

x 

s 

x 
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HMM formalism 

  {s, o, Π, P, B}  
  Π = {πi} are the initial state probabilities, P(s1=i) 
  P = {pij} are the state transition probabilities, P(st+1=j| st=i) 

  B = {bi(ok)} are the observation or emission 
probabilities, P(xt=ok | st=i)	



P 

B 

P P P 

B B 

s s s 

x x x 

s 

x 

s 

x 

A HMM example 

92 

Taken from wikipedia	
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Inference in an HMM 

  Three basic problems: 

1.  Compute the probability/likelihood of a given observation 
sequence (classification) ? 

2.  Given an observation sequence, compute the most likely 
hidden state sequence (decoding) ? 

3.  Given an observation sequence, which model parameters 
most closely fit the data (parameters estimation) ? 

P 

B 

P P P 

B B 

s s s 

x x x 

s 

x 

s 

x 

Likelihood computation 

94 
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x = [x1,..., xT ]T, ! = {!,P,B}
Compute P(x |! )

xT x1 xt xt–1 xt+1 

Given an observation sequence and a model, 
compute the likelihood of the observation sequence 

Likelihood computation 

96 

Likelihood computation 

P(x |! ) = P(x | s,! )P(s |! )
S
!

xT x1 xt xt–1 xt+1 

s1 st+1 sT st st–1 

P(x | s,! ) = bs1 (x1)bs2 (x2 )...bsT (xT )
P(s |! ) = " s1

ps1s2 ps2s3... psT!1sT
P(x, s |! ) = P(x | s,! )P(s |! )
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P(x |! ) = " s1
bs1 (x1)

(s1...sT )
!

t=1

T"1

#pstst+1bst+1 (xt+1)

Likelihood computation 

xT x1 xt xt–1 xt+1 

s1 st+1 sT st st–1 

It involves a sum over all possible sequences of states !	



•  The special structure gives us an efficient solution 
using some recurrence formulas 

•  Define: 

•  We will omit the dependency on θ 
98 

!i (t) = P(x1...xt, st = i |" )

Forward procedure 

xT x1 xt xt–1 xt+1 

s1 st+1 sT st st–1 
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Forward procedure 

! 

" j (1) = P(x1,s1 = j)
= P(x1 | s1 = j)P(s1 = j)
= b j (x1)# j

xT x1 xt xt–1 xt+1 

s1 st+1 sT st st–1 

100 

Forward procedure 
= P(x1...xt+1, st+1 = j)

= P(x1...xt, st = i, xt+1, st+1 = j)
i=1

n

!

= P(xt+1, st+1 = j | x1...xt, st = i)P(x1...xt, st = i)
i=1

n

!

= P(xt+1, st+1 = j | st = i)!i (t)
i=1

n

!

= P(xt+1 | st+1 = j)P(st+1 = j | st = i)!i (t)
i=1

n

!

= pij!i (t)
i=1

n

!
"

#
$

%

&
'bj (xt+1)

! j (t +1)
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Forward procedure 

! j (1) = bj (x1)" j

xT x1 xt xt–1 xt+1 

s1 st+1 sT st st–1 

! j (t +1) = pij!i (t)
i=1

n

!
"

#
$

%

&
'bj (xt+1)

102 

Forward procedure 
From Rabiner et al.:	
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Likelihood computation: solutions 

xT x1 xt xt–1 xt+1 

s1 st+1 sT st st–1 

P(x |! ) = P(x1...xT , sT = j |! )
j=1

n

! = " j (T )
j=1

n

!

The likelihood is:	



•  We now introduce the backward variable 
•  Define: 

•  We will omit the dependency on θ 

104 

Backward procedure 

xT x1 xt xt–1 xt+1 

s1 st+1 sT st st–1 

!i (t) = P(xt+1...xT | st = i," )
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Backward procedure 
!i (t) = P(xt+1...xT | st = i)

= P(xt+1xt+2...xT , st+1 = j | st = i)
j=1

n

!

= P(xt+1xt+2...xT | st = i, st+1 = j)
j=1

n

! P(st+1 = j | st = i)

= pij P(xt+1xt+2...xT | st+1 = j)
j=1

n

!

= pij P(xt+1 | xt+2...xT , st+1 = j)P(xt+2...xT | st+1 = j)
j=1

n

!

= pijbj (xt+1)! j (t +1)
j=1

n

!

106 

Backward procedure 

  When t = T – 1, we have	



xT x1 xt xt–1 xt+1 

s1 st+1 sT st st–1 

!i (T –1) = P(xT | sT –1 = i)

= pijbj (xT )
j=1

n

!

!i (T –1) = pijbj (xT )! j (T )
j=1

n

!

=> βj(T) =1	
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Backward procedure 

! 

"i(T) =1

!i (t) = pijbj (xt+1)! j (t +1)
j=1

n

!

xT x1 xt xt–1 xt+1 

s1 st+1 sT st st–1 

108 

Backward procedure 
From Rabiner et al.:	





27/03/13	



55	



109 

Likelihood computation: solutions 

P(x, st = i |! ) = P(x1…xt, st = i, xt+1…xT |! )
= P(xt+1…xT | x1…xt, st = i,! )P(x1…xt, st = i |! )
= P(xt+1…xT | st = i,! )P(x1…xt, st = i |! )
="i (t)#i (t)

xT x1 xt xt–1 xt+1 

s1 st+1 sT st st–1 

110 

Likelihood computation: solutions 

P(x |! ) = "i (T )
i=1

n

!

P(x |! ) = " i#i (1)
i=1

n

!

P(x |! ) = "i (t)
i=1

n

! #i (t)

Forward procedure 

Backward procedure 

Combination 

xT x1 xt xt–1 xt+1 

s1 st+1 sT st st–1 
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Optimal state sequence 
(decoding) 

111 

 Find the most probable state at time t 
given the observations 

112 

Best state 

xT x1 xt xt–1 xt+1 

s1 st+1 sT st st–1 

! i (t) = P(st = i | x," ) =
P(x, st = i |" )
P(x |" )

=
#i (t)$i (t)

# j (t)$ j (t)
j=1

n

!
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Best state sequence 

 Find the state sequence that best 
explains the observations 

 Viterbi algorithm = dynamic 
programming algorithm 
argmax

s
P(s | x,! ) = argmax

s
P(s,x |! )

xT x1 xt xt–1 xt+1 

s1 st+1 sT st st–1 

114 

xT x1 xt xt–1 xt+1 

Viterbi algorithm 

! j (t) =max
s1...st!1

P(s1...st!1, x1...xt!1, st = j, xt |" )

The state sequence which maximizes the 
probability of generating the observations up 
to time t–1, landing in state j, and emitting the 
observation at time t 

s1 st–1 j 
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Viterbi algorithm 

! j (t +1) =maxi !i (t)pijbj (xt+1){ }

! j (t +1) = argmax
i

!i (t)pijbj (xt+1){ }

Recursive 
computation 

xT x1 xt xt–1 xt+1 

s1 st–1 st st+1 

! j (t) =maxs1...st!1
P(s1...st!1, x1...xt!1, st = j, xt |" )

! 

" j (1) = # jb j (x1)

! 

" j (1) = 0

116 

Viterbi algorithm 
  Indeed, δj(t+1) is equal to 

max
s1...st

P(s1...st+1 = j, x1...xt+1 |! ) =max
s1...st

P(st+1 = j, xt+1 | s1...st, x1...xt! )P(s1...st, x1...xt |! )

=max
s1...st

P(xt+1 | st+1 = j,! )P(st+1 = j | st,! )P(s1...st, x1...xt |! ){ }

=max
st

max
s1...st!1

bst+1 (xt+1)pstst+1 P(s1...st, x1...xt |! ){ }

=max
st

bj (xt+1)pst jmax
s1...st!1

P(s1...st, x1...xt |! )
"
#
$

%
&
'

=max
st

bj (xt+1)pst j!st (t){ }
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Viterbi algorithm 
 And we can apply dynamic 

programming to the log-likelihood 
– The cost is then additive 

118 

Viterbi algorithm 

! 

s"(T) = argmax
i

# i(T)

! 

s"(t #1) =$s" (t )(t)

! 

P(x") =max
i
# i(T)

Compute the most 
likely state sequence by 
working backwards 

xT x1 xt xt–1 xt+1 

s1 st+1 sT st st–1 
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Parameter estimation 

119 

120 

Parameter estimation 

•  Given an observation sequence, find the 
model parameters Π, P, B, that most 
likely produce that sequence (maximum 
likelihood) 

•  No closed-form solution 
•  Instance of the iterative EM algorithm 

xT x1 xt xt–1 xt+1 

P 

B 

P P P 

B B B B 

Π
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Parameter estimation 

! ij (t) = P(st = i, st+1 = j | x," ) Probability of 
traversing an arc 

! i (t) = P(st = i | x," ) Probability of 
being in state i 

xT x1 xt xt–1 xt+1 

P 

B 

P P P 

B B B B 

Π

122 

Parameter estimation 

! i (t) = P(st = i | x," ) =
P(x, st = i |" )
P(x |" )

=
#i (t)$i (t)

# j (t)$ j (t)
j=1

n

!

Recall that we already computed	
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Parameter estimation 
! ij (t) = P(st = i, st+1 = j | x," ) =

P(x1…xt, st = i, st+1 = j, xt+1…xT |" )
P(x |" )

=
P(st+1 = j, xt+1…xT | x1…xt, st = i," )P(x1…xt, st = i |" )

P(x |" )

=
P(st+1 = j, xt+1…xT | st = i," )#i (t)

P(x |" )

=
P(xt+1…xT | st = i, st+1 = j," )P(st+1 = j | st = i," )#i (t)

P(x |" )

=
P(xt+1…xT | st+1 = j," )pij#i (t)

P(x |" )

=
P(xt+1 | xt+2…xT , st+1 = j," )P(xt+2…xT | st+1 = j," )pij#i (t)

P(x |" )

=
#i (t)bj (xt+1)pij$ j (t +1)

#k (t)$k (t)
k=1

N

!

124 

Parameter estimation 

!̂ i = P(s1 = i | x,"̂ ) = # i (1)

Now we can 
compute the new 
estimates of the 
model parameters. 

xT x1 xt xt–1 xt+1 

P 

B 

P P P 

B B B B 

Π

! 

ˆ " i = probability of starting from i
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Parameter estimation 

! 

ˆ p ij =
expected number of transitions from i to j

expected number of transitions out of state i

xT x1 xt xt–1 xt+1 

P 

B 

P P P 

B B B B 

Π

126 

Parameter estimation 

p̂ij =
P(st = i, st+1 = j | x,!̂ )

t=1

T!1

"

P(st = i | x,!̂ )
t=1

T!1

"
=

" ij (t)
t=1

T!1

"

" i (t)
t=1

T!1

"

xT x1 xt xt–1 xt+1 

P 

B 

P P P 

B B B B 

Π
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Parameter estimation 

xT x1 xt xt–1 xt+1 

P 

B 

P P P 

B B B B 

Π

b̂i (ok ) =
expected number of emissions of ok  in state i

total number of emissions in state i

128 

Parameter estimation 

b̂i (ok ) =
P(st = i, xt = ok | x,!̂ )

t=1

T

!

P(st = i | x,!̂ )
t=1

T

!
=

P(st = i | x,!̂ )"(xt = ok )
t=1

T

!

P(st = i | x,!̂ )
t=1

T

!

=

P(st = i | x,!̂ )
{t:xt=ok }
!

P(st = i | x,!̂ )
t=1

T

!
=

" t (i)
{t:xt=ok }
!

" i (t)
t=1

T

!

xT x1 xt xt–1 xt+1 

P 

B 

P P P 

B B B B 

Π
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Parameter estimation 

 The two following two steps are iterated 
until convergence: 
– Recompute the forward and backward 

variables α and β 
– Recompute the parameter estimates for 

the Π, P, B 

xT x1 xt xt–1 xt+1 

P 

B 

P P P 

B B B B 

Π

130 

Parameter estimation 

  It can be shown that this iterative 
algorithm increases the likelihood 

xT x1 xt xt–1 xt+1 

P 

B 

P P P 

B B B B 

Π
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HMM applications 

 Generating parameters for n-gram 
models 

 Tagging speech 
 Speech recognition 
 Bioinformatics sequence modeling 

132 

HMM applications 

  Part-of-speech tagging 
–  The representative put chairs on the table 
–  AT       NN              VBD NNS  IN AT   NN 
–  AT       JJ                NN   VBZ   IN AT   NN 

  Some tags : 
–  AT: article, NN: singular or mass noun, VBD: verb, 

past tense, NNS: plural noun, IN: preposition, JJ: 
adjective 
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HMM applications 

  BioInformatics 
–  Durbin et al. Biological Sequence Analysis, 

Cambridge University Press. 
  Several applications, e.g. proteins 

–  From primary structure    ATCPLELLLD 
–  Infer secondary structure HHHBBBBBC.. 


