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Dynamic programming

m The problem is to reach level N
m From level 1

m With minimum cost

m = shortest-path problem
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Dynamic programming

m Some definitions

s, = variable containing the state at level k

m The local cost associated to the decision to
jump to the state s, = at level k

d(sg =7 | sk—1 =1)

m Given that we were in state s, | =i at level k-1,
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Dynamic programming

m The total cost of a path (Sg, S1,---,SN)

is N

D(so, 81,--.,sn) = > d(s; | si—1)
=1

m The optimal cost when starting from
state s, is
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Dynamic programming

m The optimal cost, whatever the initial

state, is
D* = min{D*(sg)}

m The optimal cost when starting from
some intermediate state sy

N
D*(sp) =  min > d(si | siz1)
(8k+1....,SN) ’i=k)+1
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Dynamic programming

m Here are the recurrence relations
allowing to obtain the optimal cost:

D*(sy) =0

D*(sp = 1) = min{d(sgs1 | S = 1) + D*(sp11)}

Sk+1

D* = min {D*(s¢)}

S0
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Dynamic programming

m Graphically:
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Dynamic programming

2 \
m Example: 5
%\ 4

D*(SN_I = ’L) = Igl]l\]n {d(SN | SN—1 — ’L)}
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Dynamic programming

m Proof:
N
D*(s — min d S; | Si—
o) = min ){z o 1)}
= min d(sg+1 | sk) Z d(si | si—1
(Sk+1500008N) i=k+2

)

N
= min{ minSN) {d(sk+1 | sk) + Z d(si | si-1)

skt | (skazpom, ot

= min< d(spr1 | sk)+ mm l Z d(s; | si—1 ‘|

Sk+1 sk+2 ..... ikt

}

D (Sk+1)
= min{d(ses1 | sk) + D" (sk+1)}
Sk4+1
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Dynamic programming

® In a symmetric way:

D*(50) = 0

D*(sp = 1) =min{d(sx =1 | sp_1) + D*(sp—1)}

Sk—1

D* = min{D*(sn)}

SN
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Dynamic programming

m Now, if there are jumps bypassing some
levels,

D*(sn) =0

D*(sp=14)= min {d(s|sx=1)+ D*(s)}

{s}sk=i—s

D* = n;in {D*(s0)}

m where {s}|sx =i — s is the set of states
to which there is a direct jump from s, =1
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Dynamic programming

m To find the optimal path, we need to
keep track of

- the previous state in each node (a
pointer from the previous state to the
current state)

m And use backtracking from the last node
- in order to retrieve the optimal path
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Application to edit-distance

m Computation of a distance between two
strings
— It computes the minimal number of
insertions, deletions and substitutions
— That is, the minimum number of editions

m For transforming one character string x
into another character string y
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Application to edit-distance

m Also called the “Levenstein distance”
m We thus have two character strings

Y =U1Yy2 - - Yly|
X=T1T9.. .£C|x|

m x; being the character i of string x
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Application to edit-distance

m The length of the string x is denoted by

IxI|

® In general, we have

x| # [yl

m The substring of x , beginning at

character i and ending at j is defined by

J —
X, = Liljq1 .- Ty

18
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Application to edit-distance

m We will now read the characters of x one by
one

m In order to construct the string y

m To this aim, we define the three editing
operations:

— Insertion of a character in y (without taking any
character from x)

— Deletion of a character from x (without
concatenating it to y)

— Substitution of a character from y by one of x

MIDEIn el UIL BEN D we

Application to edit-distance

m First convention:

x|

X’L

— Means that we have read (extracted) the i-
1 first characters of x

— Thus, x has been cutted from its i—1 first

characters
— They have been taken in order to construct
y 20

27/03/13
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Application to edit-distance

m Second convention:
J
Yo

— Means that the j first characters of y have
been transcribed

m We progressively read the first
characters of x in order to build y

21
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Application to edit-distance

m |t corresponds to a process with levels (steps)
and states
— We will now apply dynamic programming

||

One state corresponds to (x; ,yg)
The level k corresponds to 7 + j = const = k

— One state is characterized by a couple (i, ))

22
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Application to edit-distance

m Here is the formal definition of the three
operations

{ Insertion with respect to x: (xLx|, yi ) — (xLx|, y?)

Deletion with respect to x: (x*,y?) — (xXI, y?)

Substitution with respect to x: (xi’ill, yih — (xLxl,yé)

— For the two first operations, we are jumping
from level & to level k+1

— For the last one, we directly jump to level k
+2 (one level is passed) 2

10 . 1

Application to edit-distance

m This situation can be represented in a
two-dimensional table
— One level is represented by
(i +j) = constant
— One state is represented by (i, j)

— One operation corresponds to a valid
transition in this table

N
—| S

24
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Application to edit-distance

m Exemple of a table computing the
distance between “livre” and “lire”

y
g 1 i v r e
g0 1 2 3 4 5
111 0 1 2 3 4
x 112 1 0 1 2 3
r |3 2 1 1 1 2
e |4 3 2 2 2 1

25
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Application to edit-distance

m Each level corresponds to a diagonal of
the table:

— (i +j) = constant

y
g 1 1 v r e
|0 1 2 3 4 5
1|1 0 1 2 3 4
x 1]/2 1 0 1 2 3
r |3 2 1 1 1 2
e 4 3 2 2 2 1

26
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Application to edit-distance

m A cost (or penalty) is associated to each
operation (insertion, deletion,
substitution); for instance

{ 5iHS(yz) =1
dgel(z;) =1
5sub(mz Yj ) 52_7

= with
dij = 1six; # vy
5ij:OSiLEi:yj
27
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Application to edit-distance

m The dynamic programming formula can
be applied to this problem:
— Initialization:

D*(ng,yo) 0

— Then:

D*(x* yi ™) +1
D*(x yl) =min{ D*(x :Zx:l,yo)—l—l
* x 1
D*(x;"1, ¥y ) +dij

27/03/13
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Application to edit-distance

= And finally:
dist(x,y) = D*(x{il,yl)y')

m This value is the edit-distance or
evenstein distance

29
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Application to edit-distance

m One example:

y
g 1 i v r e
g0 1 2 3 4 5
111 0 1 2 3 4
x 112 1 0 1 2 3
r |3 2 1 1 1 2
e |4 3 2 2 2 1

m dist(lire, livre) = 1

30
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Application to edit-distance

m In order to find the optimal path (optimal
sequence of operations)
— A pointer to the previous state has to be
maintained for each cell of the table
— The full path can be found by backtracking
from the final state
m Numerous extensions and
generalizations of this basic algorithm
have been developed

31
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Application to edit-distance

m Notice that the related quantity, the
longest common subsequence, lcs(x.y),
can be obtained by (no proof provided)

dist(x,y) = les(x,x)+les(y,y) — 2les(x,y)
= |x|+|y| — 2les(x,y)
= and thus

1 .
les(x,y) = 5(\){] + |y| — dist(x,y))

32
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Application to edit-distance

® Thus, since
— dist(lire, livre) = 1

® We have
— les(lire, livre) =054 +5-1)=4

33
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Application to edit-distance

SEARCH INSIDE!™

34
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A brief introduction to Markov chains

10 i &

Introduction to Markov chains

m We have a set of states, S={1,2, ...,n}

— s, = k means that the process, or system, is
in state k at time ¢

m Example:
— We take as states the kind of weather R
(rain), N (nice), and S (snow)
R N S
R /1/2 1/4 1/4
P=N{1/2 0 1/2
S \1/4 1/4 1/2

36
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Introduction to Markov chains

m Markov chains are models of sequential
discrete-time and discrete-state
stochastic processes

37
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Introduction to Markov chains

= The entries of this matrix P are p,; with
pij = P(st41 = jlst = 1)

m We assume that the probability of
jumping to a state only depends on the
current state

— And not on the past, before this state
— This is the Markov property

38
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Introduction to Markov chains

m The matrix P is called the one-step
transition probabilities matrix

— It is a stochastic matrix
— The row sums are equal to 1

m We also assume that these transition
probabilities are stationary
— That is, independent of time

m Let us now compute P(s,., =jls,=i):

39
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Introduction to Markov chains

n

P(3t+2 = j|3t = 1) = ZP(5t+2 =J,8t41 = k|3t = l)
k=1

= ZP(SH—2 = jlst =4, 8t41 = k)P (8141 = klsy = 1)

k=1

n
= ZP(5t+2 = j|st+1 = k)P (st41 = k|st = 1)
k=1

= Z Pk;jDik

k=1
= [P?;

40
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Introduction to Markov chains

= The matrix P? is the two-steps transition
probabilities matrix

m By induction, P7is the -steps transition
probabilities matrix containing elements

Pg) = P(st4r = jlst = 1)

41
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Introduction to Markov chains

m If x(7) is the column vector containing
the probability distribution of finding the
process in each state of the Markov
chain at time step r, we have

zi(t) = P(sz=1)

P(St = i, St—1 = k)

P(St = i|5t_1 = k)P(St_l = k)

I
M IM: IM:

PriTx(t — 1) 42

x~
Il
—
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Introduction to Markov chains

m In matrix form, x(r) = PTx(¢-1)

m Or, in function of the initial distribution,
x(1) = (PT)"x(0)

= Now, x(1) = x()T e; = x(0)T Pe;

43
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Introduction to Markov chains

m Thus, when starting from state i,
x(0) =e;, and

x(tlsy=1)=x(t) = (e)TPle
m It is the probability of observing the

process in state j at time r when starting
from state i at time r=0

44

27/03/13

22



Introduction to Markov chains

Rain Nice Snow

Rain /.500 .250 .250
P! = Nice | .500 .000 .500

Snow \ .250 .250 .500

Rain Nice Snow

Rain [ .438 .188 .375
P2 = Nice | .375 .250 .375
Snow \ .375 .188 .438

Nice Snow

406 .203 .391
406 188  .406

Rain
P3 = Nice

Snow \ .391 .203 .406

)
(&£ %)
(Ram Nice snow>
(52 R)
()

398 203 .398
398 199 .402

Rain Nice Snow
1400 .200 .399
400 199 400
399 200 .400

P’ = N1ce
Snow

Rain Nice Snow

1400 .200  .400
Pé = N1ce
Snow

1400 .200 .400
1400 .200 .400

45
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Introduction to Markov chains

m Let us now introduce absorbing Markov
chains

m A state i of a Markov chain is called
absorbing if it is impossible to leave it,
pi=1

m An absorbing Markov chain chain is a
Markov chain containing absorbing
states

— The other states being called transient (TR)

27/03/13
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Introduction to Markov chains

m Let us take an example: the drunkard’
walk (from Grinstead and Snell)

47
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Introduction to Markov chains

m The transition matrix can be put in
canonical form:

TR. ABS.
TR. / Q | R
P =

m Q is the transition matrix between
transient states

48
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Introduction to Markov chains

m R is the transition matrix between
transient and absorbing states
m Both Q and R are sub-stochastic

— Their row sums are < 1 and at least one
row sum is < 1

49
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Introduction to Markov chains

= Now, P’ can be computed as

TR. ABS.
TR. [ Q

m Since Q is sub-stochastic, it can be
shown that: Q! - 0ast— oo

50
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Introduction to Markov chains

m The matrix
N=I+Q+Q*+Q’+---=(1I-Q)!

—is called the fundamental matrix of the
absorbing Markov chain

® Let us interpret the elements n; = [N],; of
the fundamental matrix, where i, j are
transient states

51
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Introduction to Markov chains

m Recall that since i, j are transient states,
— we have xi(t s, =1) = x,(1) = (e)" P'e; = (e)" Q'e,
m Thus, entry i, j of the matrix N for transient

states, s is
ng; = eiT Nej

= e (i Q) e;
t=0

= > (efQey)

t=0

o
= ) x(t) 62
t=0

27/03/13
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Introduction to Markov chains

= Thus, element n; contains the expected
number of passages through transient
state j when starting from transient state
l

m The expected number of visits (and
therefore steps) before being absorbed
when starting from each state is

n = Ne

53
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Introduction to Markov chains

m For the drunkard’ s walk,

2
1/2

1 3
0 0
1/2 0 1/2
0 0
0 0
0 0

54
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Introduction to Markov chains

(0 1/2 0)
Q=1[1/2 0 1/2

0 1/2 0

( 1 -1/2 0 )

I-Q={-1/2 1 -1/2

0o -1/2 1
1 2 3
1/3/2 1 1/2
N=I-Q'=2|1 2 1
3\1/2 1 3/2

55
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Introduction to Markov chains

3/2 1 1/2\ (1
n=Ne = 1 2 1 1
1/2 1 3/2) \1

3

= |4

3

56
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Introduction to Markov chains

m We can also compute absorption
probabilities from each starting state

m We can compute the probability of being
absorbed by absorbing state j given that
we started in transient state i by

oo Nir

bij = Z Z mkﬁ(t) T'kj

t=0 k=1
keTR

where n,, is the number of transient states
and the sum over k is taken on the set of .
transient states (TR) only

NI EE e vl WED EOEE D e

Introduction to Markov chains

m The formula states that the probability of
reaching absorbing node j at time (#+1)
is given by
— the probability of passing through any state

k at t and then jumping to state j from £ at (¢

+1)
= The absorption probability is then given
by taking the sum over all possible time
steps

58
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Introduction to Markov chains

m Let us compute this quantity

bij = szkli(t)rkj

t=0 k=1
keTR

- Y [Z e?Qtek] e

k=1 Lt=0
keTR

Ntr
= E Nk Tk
k=1
kETR

= [NR]; 59
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Introduction to Markov chains

m The absorption probabilities are put in
the B matrix

m Let us reconsider the drunkard’ s
example

60
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Introduction to Markov chains

3/2 1 1/2\ [1/2 0
1 2 1 0 0
(1/2 1 3/2) ( 0 1/2)

0 4

1/3/4 1/4
= 2(1/2 1/2
3(1/4 3/4)

o)
I
Z
=
I

61
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Introduction to Markov chains

m Some additional definitions

— If, in a Markov chain, it is possible to go to
every state from each state, the Markov
chain is called irreducible

— Moreover, the Markov chain is called
regular if some power of the transition
matrix has only positive (non-0) elements

62
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Introduction to Markov chains

m It can further be shown that the powers
P’ of a regular transition matrix tend to a
matrix with all rows the same

T

iy
t 7TT
lim P* = .
t—o00 :
7.‘.T

63
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Introduction to Markov chains

m Moreover, the limiting probability
distribution of states is independent of
the initial state:

7klim x(t)=m

64
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Introduction to Markov chains

m The stationary vector x is the left
eigenvector of P, corresponding to
eigenvalue 1 and normalized to a
probability vector:

T = tlim x(t)

= lim PTx(t—1)

= P7 tlim x(t—1)

- PTx

65
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Introduction to Markov chains

m It provides the probability of finding the
process in each state on the long run

m One can prove that this vector is unique

for a regular Markov chain

66
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Introduction to Markov chains

m Notice that the fundamental matrix for
absorbing chains can be generalized

m To regular chains

— It, for instance, allows to compute the
average first-passage times in matrix form

0 — See, for instance, Grinstead and Snell

| .

Application to marketing

27/03/13
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Application to marketing

m Suppose we have the following model

— We have a number n of customer clusters or
segments

— Based, for instance, on RFM (Recency,
Frequency, Monetary value)

m Each cluster is a state of a Markov chain

m The last (nth) cluster corresponds to lost
customers
— It is absorbing and generates no benefit

69
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Application to marketing

m Each month, we observe the
movements from cluster to cluster

m Transition probabilities are estimated

— by counting the observed frequencies of
jumping from one state to another in the
past

— This provides the entries of the transition
probabilities matrix .

27/03/13
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Application to marketing

m Suppose also there is an average profit,
m, per month, associated to each
customer in state i

— which could be negative

m There is also a discounting factor:
O<y<l

m The expected profit on an infinite time
horizon can be computed

71
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Application to marketing

m It is given by

m= ifyt En:xz(t) m;
t=0 =1

— It provides the expected profit on a infinite
horizon

72

27/03/13

36



Application to marketing

m Which finally provides
m = Z’ythi(t)mi
t=0 =1
= Y 2'm"(PT)'x(0)
t=0
= thxT(O)Ptm
t=0

= x"(0)(}_~7'P')m

— X"(0)(I-+P) 'm s
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Application to marketing

m This is an example of the computation
of the lifetime value of a customer

m Which is the expected profit provided by
the customer until it leaves the company

74

27/03/13

37



27/03/13

A brief introduction to dynamic
time warping

Marco Saerens, UCL
Alain Soquet, ULB

Dynamic time warping

m Context: word recognition
m Suppose we have a database of word
templates or references

— Someone pronounces a word which is
recorded and analysed

— We want to recover the nearest template
word in the database = nearest neighbor

— Which will be the recognized word

76
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Dynamic time warping

m However, the timing in which the word
has been pronounced can differ greatly

m Hence, we have to account for
distortions or warping of the signal

=> Dynamic time warping

7
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Dynamic time warping

m Here is an example: a spectrogram is
produced e

R %i+1
t'*‘;‘"’ 0i+2

OO Time window

9;

,,,,,,
o

78
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Dynamic time warping

m We have to compare word1 and word2
— Thus, align the two signals

Word2 ©|

Reference word1

79
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Dynamic time warping

m The two signals are aligned by

— Defining a distance d(i,j) between two
frames, for instance the Euclidean distance

— Defining a time alignment that allows for
warpings o 2

J c
I K

0!

%

0y I
K .\ 80
oo r
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Dynamic time warping

m We have to add monotonicity
constraints in order to obtain meaningful
alignments

J [

U
, Monotonicity {jkzjk_l (i-1,3), w=1 (i,j)
Jid (=% _
0 i—ip <1 w=2/" lw=1
Continuity { o
jk_.lk—lgl (l"l,_]"l) (|,J'1)
o o
s ! Boundary {’1 =Lih=1
R conditions |ix = Ljg =J

81
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Dynamic time warping

m The problem can be solved by dynamic
programming
m By considering only the valid transitions

oy

o3

01 &
n n n n
ryora2 rs .o r'r 82
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Dynamic time warping

m Here are the dynamic programming
recurence relations
g(1,1) = d(r},0))
" g(i=1,j)+d(r},0))

1= ..
P _ . . . ‘ll ’ ]
g(i, j) = mmr(l—1,]—1)+2d(1i,oj) for {j —12 .7

g(i, j-1)+d(r},0))

1
D(R",0) = 758(L)

83
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A brief introduction to hidden
Markov models

Marco Saerens, UCL
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Hidden Markov models

m Most slides are adapted from David
Meir Blei’s slides, SRI International

m Thanks to David Meir Blei

85
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=

hat is an HMM ?

. N N g E j
m Graphical model
m Green circles indicate states

m Purple circles indicate observations

m Arrows indicate probabilistic
dependencies between states 86

27/03/13

43



What is an HMM?

O O—O0—0O—

5o o e

m Green circles are hidden, unobserved,
states (n in total)

m Dependent only on the previous state
(arrow)

m “The past is independent of the future
given the present”: Markov property

O
-

87
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What is an HMM ?

> 900 o
O O O O O

m Purple nodes are discrete observations
(p in total)

m They dependent only on their
corresponding hidden state in which
they were generated

88
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What is an HMM ?

m Example of a word model

66686

89

m {s,x, I1,P, B}
ms:{l,...,n}is the random variable for the
hidden states taking its values from 1 to n

mm " x:{o....0,} is the random variable for the
observations whose values are denoted o,

e

HMM formalism

90
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HMM formalism
P AP NP L\P

’ S S S

B B B

{s, 0,11, P, B}

IT= {x;} are the initial state probabilities, P(s,=i)

P ={p;} are the state transition probabilities, P(s,,,=jl s=i)
B ={b(o,)} are the observation or emission
probabilities, P(x=o, | s,=i)

91
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A HMM example

Taken from wikipedia

92
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Inference in an HMM
P NP P /S_\ P

’ S S

B B B

m  Three basic problems:

1. Compute the probability/likelihood of a given observation

sequence (classification) ?

2. Given an observation sequence, compute the most likely

hidden state sequence (decoding) ?

3. Given an observation sequence, which model parameters

most closely fit the data (parameters estimation) ?
93
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Likelihood computation

94
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Likelihood computation
Given an observation sequence and a model,
compute the likelihood of the observation sequence

X =[x,....,x,1", 8 ={I1,P,B}
Compute P(x160)

95
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Likelihood computation

ﬁzmm
(=) o

P(x1s,0)=b, (x,)b, (x,)...h, (x;)

P(s10) = T, Dy, Pos, - Dsy sy
P(x,s10)=P(x1s,0)P(s|0)

P(x16) = EP(XIS,H)P(SIH)

96
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Likelihood computation

o ooe

P(xI0)= Y 7,b, <xl>Hpsts,1

(51 ST)

t+1 )

It involves a sum over all possible sequences of states !

97
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Forward procedure

()= (s (s

t+1

» The special structure gives us an efficient solution

using some recurrence formulas
* Define: | o, (t)=P(x,..x,,s, =i10)

» We will omit the dependency on 6
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Forward procedure

Iﬁ/s;\@@
g

a (1) =P(x;,s = j)
=P(x, |s, = ))P(s, = J)
=b;(x)7;

99
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Forward procedure

(Zj(t'l'l) = P('xl“'xt+l’st+1 = J)

n
= EP(XI...)C,,S, = i’xt+1’st+1 = J)
i=1
n
- EP(‘xt+l’st+l = J I XyoeXy, 8, = i)P(xl"'xt’st =1)
i=1
n
= EP(xt+l’st+1 = j I st = i)al(t)
i=1

= Y P(x,, I, = NPCs,,y = jls, =)y (1)
i=1

= (Ep,]a, (t)) bj(xt+1)
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Forward procedure

()= 55 (5w}

t+1

a,(1)=b,(x)m,

a;t+1)= (Spgai(t))bj(xm)

Ml EErn wnl Wl BN D el

101
Forward procedure
From Rabiner et al.: o
(@)
Sn ay;j
1 141
a,(i) a4 ti)
7
o >
>
N\
T S T
OBSERVATION, 1
Fig. 4. (a) lllustration of the sequence of operations 102

(b)

of the ¢ ion of ali) in terms of

a lattice of observations t, and states i.

required for the computation of the forward variable a, , 1(j).
N ¥
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Likelihood computation: solutions

a@\@@
(=) g

The likelihood is:

P(XI6)=SP(x1...xT,sT = jl6)= Saj(T)

103

-

10

Backward procedure

Ia e—0 @
(= g

e

* We now introduce the backward variable

* Define: |,(1)=P(x,,,..x; s =1i,0)

* We will omit the dependency on 6

104
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Backward procedure

ﬁi(t) = P(XHI...XT |st =1i)

jel

el

= ¥ pib(x,. Bt +1)

n
= Epg P(xt+1xt+2"'xT I S = .])
=

n
= EP(xt+1xt+2‘“xT’sz+l =J | St = l)

n
= EP(lexM...xT IS, = 0,5, = P, = jls, =10)
=

= E P PGy 1 X, e X8, = DP(X, X s,y = )

105
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Backward procedure

) — ()

m When¢t=T-1, we have

BT -1)=P(x, |s,  =i)

=Sp;jbj(xr)

Jj=1

BT =)= pyb;(x)B,(T)

Jj=l

=> B(7) =1

106
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Backward procedure

B e

ﬁi(T) =1
B(1) =Y pb,(x,))B;(t +1)

107

Ml EErn wnl Wl BN D el

Backward procedure

From Rabiner et al.:

t
B,y ti)

t+1
By 4qth

Fig. 5. lllustration of the sequence of operations required
for the computation of the backward variable 8,(i).
)8
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Likelihood computation: solutions

¢ o6 o

P(x,s, =il0)=P(x,...x,,s, =1,x,,,...x;10)

=P(x,,,...x; 1 x...x,,5, =1,0)P(x,...x,,5, =110)
=P(x,,...x; s, =1,0)P(x,...x,,s, =110)
=a,(1)f;(1)

109
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Likelihood computation: solutions

P(x16)= Y a.()B,(t)  Combination
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Optimal state sequence
(decoding)

1M1

Ml EErn wnl Wl BN D el

Best state

t

oo
@
)
D
O—®

m Find the most probable state at time ¢
given the observations

P(x,s, =il6)
P(x16)

v, (1) =P(s, =ilx,0)=

__a(0p®)
Eaj(t)ﬁj(t) 112
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Best state sequence

ﬁ@)@@ &
g G

m Find the state sequence that best
explains the observations
m Viterbi algorithm = dynamic
programming algorithm
argmaxP(s|x,0) = arg msaxP(s,X 10)

S

113

MIPEn wel W) EE

Viterbi algorithm

ﬁfmfﬁf\
g

0,(t) = maxP(s,...s_,x,..x,_,s, = j,x, 10)

Sl "‘st—l

The state sequence which maximizes the
probability of generating the observations up
to time #—1, landing in state j, and emitting the
observation at time ¢ 4
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Viterbi algorithm

o oo o

0.(1) = maxP(s,...s,_, x,..x,_,s, = j,x,16)

8,1) = b,(x,)
O,(t+1)= max{éi(t) p;bi(x., )}

Recursive
Y j(l) =0 computation
¥, (t+1)=arg max{éi )p;b, (xm)} .

Ml EErn vl Wl BN D el

Viterbi algorithm

= Indeed, §(¢+1) is equal to

maxP(s,...s,,, = j,x,...x,,, |0) =maxP(s,,, = j,x

ST o,

Is,,, = j,0)P(s,, =jls,.0)P(s,...s,.x,...x, IB)}

Is)...8,,%..x,0)P(s,...s,, x,...x, 1 0)

t+1

= max {P(x

t+1
SpeeSy

= max max {b-‘m (%P5, PS8, X, | 0)}

S S8

= max {bj (%,.1)p,,; maxP(s,...s,, x,...x, | 6)}

ST

= max {bj (x,, )Ps,j‘ss, (t)}

116
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Viterbi algorithm

m And we can apply dynamic
programming to the log-likelihood
[ ] — The cost is then additive

117

Viterbi algorithm

ﬁ/sﬁ@@ &
() gg Cr

s (T) = argmaxéi(T)

Compute the most

* likely state sequence b
s‘(t=-D) =y, (¢ Y d Y
( ) v, (s )( ) working backwards

P(x") =max0,(T)

118
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Parameter estimation

119

Parameter estimation

RN

« Given an observation sequence, find the
model parameters I1, P, B, that most
likely produce that sequence (maximum
likelihood)

B . No closed-form solution

l * Instance of the iterative EM algorithm

120
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Parameter estimation
Il
. PP P NP

>

B B B B

y;()=P(s, =i,s,, = jIx,0) Probab.lllty of
traVCTSIDg an arc

) Probability of
()=P(s. =ilx.0 J
7:(t) (s, =1 ) being in state i

Ml EErn wnl Wl BN D el

Parameter estimation

Recall that we already computed

_ _; =P(x,st=ilt9)
y.(t)=P(s, =i1x,0) =T
__a®B®)
N a,(0B,(1)

122
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Parameter estimation

PAGTAG
k=1

7, =P(s, =i,5,,, = j1%,0) = P(x,...x,,s, =;z;l| ;)J,xm...xT 16)
PG, =jox . xp 1 xx,,8, =L,0)P(x, ... x,,8, =110)
- P(x16)
PG, =X xp s, =1,0)a, (1)
- P(x16)
_P(x,...xp s, =1,5,, = ,0)P(s,, = jls, =i,0)a,(t)
- P(x16)
_ Pl xp 1, = . 0)pyo (1)
- P(x16)
PO Xy X8, = J,0)P(x,, Xy s,y = ,0)pye ()
- P(x16)
_% (t)b,- (X1 )pijﬁj (t+1)

123
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Parameter estimation
Il
. PP P NP

>

B B B

7, = probability of starting from i

7 =P(s, =ilx,0)=7,(1)

Now we can
compute the new
estimates of the

model parameters.

124

27/03/13

62



>

Parameter estimation
= P @ P P P

—_—

B B B B

A

expected number of transitions from i to j

: expected number of transitions out of state i

125
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>

Parameter estimation

i
. PP NP P
B B B B
T-1 " T-1
Y P(s, =is,0 = j1%,0) Yy, @)
ﬁ“ — t=1 _ =1
ij

T-1 "
EP(st =ilx,0)
t=1

Eyi(t)

126
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Parameter estimation
Il
. PP P NP

B B B B

b.(0,)=

expected number of emissions of o, in state i

total number of emissions in state i

127

Parameter estimation
Il
. PP P NP

B B B B

MIDEIn el UIL BEN D we

T T
Y P(s,=ix, =0, 1%,0) Y P(s, =i1x,0)8(x, = 0,)
bo) =" =

T
N P(s, =i1x,60) N P(s, =ilx,6)
t=1 t=1

> Pls,=ilx0) Y 7,G)

_ {t:x,=0 } — {t:x,=o }

ip(s, =ilx,0) iyi(t)
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Parameter estimation
= P @ P P P

—_—

>

B B B B

m The two following two steps are iterated
until convergence:

— Recompute the forward and backward
variables a and g

— Recompute the parameter estimates for
the I1, P, B

129
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Parameter estimation
= P @ P P P

—_—

>

B B B B

m It can be shown that this iterative
algorithm increases the likelihood
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HMM applications
. () g E i
m Generating parameters for n-gram
models
m Tagging speech

m Speech recognition
m Bioinformatics sequence modeling

131
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HMM applications

m Part-of-speech tagging
— The representative put chairs on the table

- AT NN VBD NNS IN AT NN
- AT JJ NN VBZ INAT NN
m Some tags:

— AT: article, NN: singular or mass noun, VBD: verb,
past tense, NNS: plural noun, IN: preposition, JJ:
adjective
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HMM applications

m Biolnformatics
— Durbin et al. Biological Sequence Analysis,
Cambridge University Press.
m Several applications, e.g. proteins
— From primary structure ATCPLELLLD
— Infer secondary structure HHHBBBBBC..
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