
27/03/13	

1	

Sequence modelling

Marco Saerens (UCL)

2

Slides references
  Many slides and figures have been adapted from the slides

associated to the following books:
–  Alpaydin (2004), Introduction to machine learning. The MIT Press.
–  Duda, Hart & Stork (2000), Pattern classification, John Wiley &

Sons.
–  Han & Kamber (2006), Data mining: concepts and techniques, 2nd

ed. Morgan Kaufmann.
–  Tan, Steinbach & Kumar (2006), Introduction to data mining.

Addison Wesley.
–  Grinstead and Snell’s Introduction to Probability (2006; GNU Free

Documentation License)
  As well as from Wikipedia, the free online encyclopedia
  I really thank these authors for their contribution to machine

learning and data mining teaching

27/03/13	

2	

Dynamic programming and
edit-distance

Marco Saerens (UCL)

4

Dynamic programming

 Suppose we have a lattice with N levels:

3 3

5

4 3

1

2 2

1

0

0

03

3

2

2

2

2

2

2

1

3

1

3
2

2
2

2
2

3

2
1

2

2
3

2

3
2

1

27/03/13	

3	

Dynamic programming

 The problem is to reach level N	

 From level 1
 With minimum cost
 = shortest-path problem

5

6

Dynamic programming

  Some definitions

  The local cost associated to the decision to
jump to the state sk = j at level k	

  Given that we were in state sk–1 = i at level k–1	

27/03/13	

4	

7

Dynamic programming

 The total cost of a path
is

 The optimal cost when starting from
state s0 is

8

Dynamic programming

 The optimal cost, whatever the initial
state, is

 The optimal cost when starting from
some intermediate state

27/03/13	

5	

9

Dynamic programming

 Here are the recurrence relations
allowing to obtain the optimal cost:

10

Dynamic programming

 Graphically:

S = ik

S = i+1k+1

S = ik+1

S = i–1k+1

27/03/13	

6	

11

Dynamic programming

 Example:

0

4

2

3

1

5

3

5

12

5

4

2

2

4

1

4

4

12

Dynamic programming
 Proof:

27/03/13	

7	

13

Dynamic programming

  In a symmetric way:

14

Dynamic programming

 Now, if there are jumps bypassing some
levels,

 where is the set of states
to which there is a direct jump from sk = i

27/03/13	

8	

15

Dynamic programming

 To find the optimal path, we need to
keep track of
‒  the previous state in each node (a

pointer from the previous state to the
current state)

 And use backtracking from the last node
‒  in order to retrieve the optimal path

16

Application to edit-distance

 Computation of a distance between two
strings
–  It computes the minimal number of

insertions, deletions and substitutions
– That is, the minimum number of editions

 For transforming one character string x
into another character string y	

27/03/13	

9	

17

Application to edit-distance

 Also called the “Levenstein distance”
 We thus have two character strings

  xi being the character i of string x	

18

Application to edit-distance

 The length of the string x is denoted by
|x|	

  In general, we have

 The substring of x , beginning at
character i and ending at j is defined by

27/03/13	

10	

19

Application to edit-distance

  We will now read the characters of x one by
one

  In order to construct the string y
  To this aim, we define the three editing

operations:
–  Insertion of a character in y (without taking any

character from x)
–  Deletion of a character from x (without

concatenating it to y)
–  Substitution of a character from y by one of x

20

Application to edit-distance

 First convention:

– Means that we have read (extracted) the i–
1 first characters of x	

– Thus, x has been cutted from its i–1 first
characters

– They have been taken in order to construct
y	

27/03/13	

11	

21

Application to edit-distance

 Second convention:

– Means that the j first characters of y have
been transcribed

 We progressively read the first
characters of x in order to build y	

22

Application to edit-distance

  It corresponds to a process with levels (steps)
and states
–  We will now apply dynamic programming

–  One state is characterized by a couple (i, j)

27/03/13	

12	

23

Application to edit-distance

 Here is the formal definition of the three
operations

– For the two first operations, we are jumping
from level k to level k+1

– For the last one, we directly jump to level k
+2 (one level is passed)

24

Application to edit-distance
 This situation can be represented in a

two-dimensional table
– One level is represented by
	

(i + j) = constant	

– One state is represented by (i, j) 	

– One operation corresponds to a valid

transition in this table	

27/03/13	

13	

25

Application to edit-distance

 Exemple of a table computing the
distance between “livre” and “lire”

26

Application to edit-distance

 Each level corresponds to a diagonal of
the table:
–  (i + j) = constant	

27/03/13	

14	

27

Application to edit-distance
 A cost (or penalty) is associated to each

operation (insertion, deletion,
substitution); for instance

 with

28

Application to edit-distance
 The dynamic programming formula can

be applied to this problem:
–  Initialization:

– Then:

27/03/13	

15	

29

Application to edit-distance

 And finally:

 This value is the edit-distance or
Levenstein distance

30

Application to edit-distance

  One example:

  dist(lire, livre) = 1

27/03/13	

16	

31

Application to edit-distance

  In order to find the optimal path (optimal
sequence of operations)
– A pointer to the previous state has to be

maintained for each cell of the table
– The full path can be found by backtracking

from the final state
 Numerous extensions and

generalizations of this basic algorithm
have been developed

Application to edit-distance

 Notice that the related quantity, the
longest common subsequence, lcs(x,y),
can be obtained by (no proof provided)

 and thus

32

dist(x,y) = lcs(x,x) + lcs(y,y)− 2 lcs(x,y)
= |x| + |y| − 2 lcs(x,y)

lcs(x,y) =
1
2
(|x| + |y|− dist(x,y))

27/03/13	

17	

Application to edit-distance

 Thus, since	

–  dist(lire, livre) = 1	

 We have	

–  lcs(lire, livre) = 0.5 (4 + 5 – 1) = 4

33

34

Application to edit-distance

27/03/13	

18	

A brief introduction to Markov chains

36

Introduction to Markov chains
 We have a set of states, S = {1, 2, …, n}

–  st = k means that the process, or system, is
in state k at time t	

 Example:
– We take as states the kind of weather R

(rain), N (nice), and S (snow)

27/03/13	

19	

Introduction to Markov chains

 Markov chains are models of sequential
discrete-time and discrete-state
stochastic processes

37

38

Introduction to Markov chains

 The entries of this matrix P are pij with

 We assume that the probability of
jumping to a state only depends on the
current state
– And not on the past, before this state
– This is the Markov property

27/03/13	

20	

39

Introduction to Markov chains
 The matrix P is called the one-step

transition probabilities matrix
–  It is a stochastic matrix
– The row sums are equal to 1

 We also assume that these transition
probabilities are stationary
– That is, independent of time

 Let us now compute P(st+2 = j | st = i) :

40

Introduction to Markov chains

27/03/13	

21	

41

Introduction to Markov chains

 The matrix P2 is the two-steps transition
probabilities matrix

 By induction, Pτ is the τ-steps transition
probabilities matrix containing elements

42

Introduction to Markov chains
  If x(t) is the column vector containing

the probability distribution of finding the
process in each state of the Markov
chain at time step t, we have

27/03/13	

22	

43

Introduction to Markov chains
  In matrix form, x(t) = PT x(t–1)	

 Or, in function of the initial distribution,

 x(t) = (PT)t x(0)	

 Now, xj(t) = x(t)T ej = x(0)T Pt ej 	

44

Introduction to Markov chains

 Thus, when starting from state i,
 x(0) = ei, and
	

xj(t | s0 = i) = xj|i(t) = (ei)T Pt ej

  It is the probability of observing the
process in state j at time t when starting
from state i at time t = 0	

27/03/13	

23	

45

Introduction to Markov chains

46

Introduction to Markov chains

 Let us now introduce absorbing Markov
chains

 A state i of a Markov chain is called
absorbing if it is impossible to leave it,
pii = 1	

 An absorbing Markov chain chain is a
Markov chain containing absorbing
states
– The other states being called transient (TR)

27/03/13	

24	

47

Introduction to Markov chains

 Let us take an example: the drunkard’
walk (from Grinstead and Snell)

48

Introduction to Markov chains

 The transition matrix can be put in
canonical form:

 Q is the transition matrix between
transient states

27/03/13	

25	

Introduction to Markov chains

 R is the transition matrix between
transient and absorbing states

 Both Q and R are sub-stochastic
– Their row sums are ≤ 1 and at least one

row sum is < 1

49

50

Introduction to Markov chains

 Now, Pt can be computed as

 Since Q is sub-stochastic, it can be
shown that:

27/03/13	

26	

51

Introduction to Markov chains
 The matrix

–  is called the fundamental matrix of the
absorbing Markov chain

 Let us interpret the elements nij = [N]ij of
the fundamental matrix, where i, j are
transient states

52

Introduction to Markov chains
  Recall that since i, j are transient states,

–  we have xj(t | s0 = i) = xj|i(t) = (ei)T Pt ej = (ei)T Qt ej	

  Thus, entry i, j of the matrix N for transient
states, nij, is

nij = eT
i Nej

= eT
i

� ∞�

t=0

Q

�
ej

=
∞�

t=0

�
eT

i Qej

�

=
∞�

t=0

xj|i(t)

27/03/13	

27	

53

Introduction to Markov chains
 Thus, element nij contains the expected

number of passages through transient
state j when starting from transient state
i	

 The expected number of visits (and
therefore steps) before being absorbed
when starting from each state is

54

Introduction to Markov chains

 For the drunkard’s walk,

27/03/13	

28	

55

Introduction to Markov chains

56

Introduction to Markov chains

27/03/13	

29	

57

Introduction to Markov chains
 We can also compute absorption

probabilities from each starting state
 We can compute the probability of being

absorbed by absorbing state j given that
we started in transient state i by

 where ntr is the number of transient states
and the sum over k is taken on the set of
transient states (TR) only

bij =
∞�

t=0

ntr�

k=1
k∈TR

xk|i(t) rkj

Introduction to Markov chains

 The formula states that the probability of
reaching absorbing node j at time (t+1)
is given by
–  the probability of passing through any state

k at t and then jumping to state j from k at (t
+1)

 The absorption probability is then given
by taking the sum over all possible time
steps

58

27/03/13	

30	

59

Introduction to Markov chains

 Let us compute this quantity

bij =
∞�

t=0

ntr�

k=1
k∈TR

xk|i(t) rkj

=
ntr�

k=1
k∈TR

� ∞�

t=0

eT
i Qtek

�
rkj

=
ntr�

k=1
k∈TR

nik rkj

= [NR]ij

60

Introduction to Markov chains

 The absorption probabilities are put in
the B matrix

 Let us reconsider the drunkard’s
example

27/03/13	

31	

61

Introduction to Markov chains

62

Introduction to Markov chains

 Some additional definitions
–  If, in a Markov chain, it is possible to go to

every state from each state, the Markov
chain is called irreducible

– Moreover, the Markov chain is called
regular if some power of the transition
matrix has only positive (non-0) elements

27/03/13	

32	

63

Introduction to Markov chains

  It can further be shown that the powers
Pt of a regular transition matrix tend to a
matrix with all rows the same

64

Introduction to Markov chains

 Moreover, the limiting probability
distribution of states is independent of
the initial state:

27/03/13	

33	

65

Introduction to Markov chains

 The stationary vector π is the left
eigenvector of P, corresponding to
eigenvalue 1 and normalized to a
probability vector:

66

Introduction to Markov chains

  It provides the probability of finding the
process in each state on the long run

 One can prove that this vector is unique
for a regular Markov chain

27/03/13	

34	

67

Introduction to Markov chains

 Notice that the fundamental matrix for
absorbing chains can be generalized

 To regular chains
–  It, for instance, allows to compute the

average first-passage times in matrix form
– See, for instance, Grinstead and Snell

Application to marketing

27/03/13	

35	

69

Application to marketing
 Suppose we have the following model

–  We have a number n of customer clusters or
segments

–  Based, for instance, on RFM (Recency,
Frequency, Monetary value)

  Each cluster is a state of a Markov chain
  The last (nth) cluster corresponds to lost

customers
–  It is absorbing and generates no benefit

70

Application to marketing

 Each month, we observe the
movements from cluster to cluster

 Transition probabilities are estimated
– by counting the observed frequencies of

jumping from one state to another in the
past

– This provides the entries of the transition
probabilities matrix

27/03/13	

36	

71

Application to marketing

 Suppose also there is an average profit,
mi per month, associated to each
customer in state i	

– which could be negative	

 There is also a discounting factor:
0 < γ < 1

 The expected profit on an infinite time
horizon can be computed

72

Application to marketing

  It is given by

–  It provides the expected profit on a infinite
horizon

m =
∞�

t=0

γt
n�

i=1

xi(t) mi

27/03/13	

37	

73

Application to marketing
 Which finally provides

m =
∞�

t=0

γt
n�

i=1

xi(t) mi

=
∞�

t=0

γtmT(PT)tx(0)

=
∞�

t=0

γtxT(0)Ptm

= xT(0)(
∞�

t=0

γtPt)m

= xT(0)(I− γP)−1m

74

Application to marketing

 This is an example of the computation
of the lifetime value of a customer

 Which is the expected profit provided by
the customer until it leaves the company

27/03/13	

38	

A brief introduction to dynamic
time warping

Marco Saerens, UCL
Alain Soquet, ULB

76

Dynamic time warping

 Context: word recognition
 Suppose we have a database of word

templates or references
– Someone pronounces a word which is

recorded and analysed
– We want to recover the nearest template

word in the database = nearest neighbor
– Which will be the recognized word

27/03/13	

39	

77

Dynamic time warping

 However, the timing in which the word
has been pronounced can differ greatly

 Hence, we have to account for
distortions or warping of the signal
=> Dynamic time warping

78

Dynamic time warping

 Here is an example: a spectrogram is
produced

Time window	

27/03/13	

40	

79

Dynamic time warping

 We have to compare word1 and word2
– Thus, align the two signals

Reference word1	

Word2	

80

Dynamic time warping
 The two signals are aligned by

– Defining a distance d(i,j) between two
frames, for instance the Euclidean distance

– Defining a time alignment that allows for
warpings

27/03/13	

41	

81

Dynamic time warping

 We have to add monotonicity
constraints in order to obtain meaningful
alignments

Monotonicity	

Continuity	

Boundary	

conditions	

82

Dynamic time warping

 The problem can be solved by dynamic
programming

 By considering only the valid transitions

27/03/13	

42	

83

Dynamic time warping

 Here are the dynamic programming
recurence relations

for	

A brief introduction to hidden
Markov models

Marco Saerens, UCL

27/03/13	

43	

85

Hidden Markov models

 Most slides are adapted from David
Meir Blei’s slides, SRI International

 Thanks to David Meir Blei

86

What is an HMM ?

  Graphical model
  Green circles indicate states
  Purple circles indicate observations
  Arrows indicate probabilistic

dependencies between states

27/03/13	

44	

87

What is an HMM?

  Green circles are hidden, unobserved,
states (n in total)

  Dependent only on the previous state
(arrow)

  “The past is independent of the future
given the present”: Markov property

88

What is an HMM ?

  Purple nodes are discrete observations
(p in total)

  They dependent only on their
corresponding hidden state in which
they were generated

27/03/13	

45	

89

What is an HMM ?

 Example of a word model

P	

 A	

 R	

 I	

 S	

90

HMM formalism

  {s, x, Π, P, B}
  s : {1,…, n} is the random variable for the

hidden states taking its values from 1 to n
  x : {o1,…, op } is the random variable for the

observations whose values are denoted oi	

s s s

x x x

s

x

s

x

27/03/13	

46	

91

HMM formalism

  {s, o, Π, P, B}
  Π = {πi} are the initial state probabilities, P(s1=i)
  P = {pij} are the state transition probabilities, P(st+1=j| st=i)

  B = {bi(ok)} are the observation or emission
probabilities, P(xt=ok | st=i)	

P

B

P P P

B B

s s s

x x x

s

x

s

x

A HMM example

92

Taken from wikipedia	

27/03/13	

47	

93

Inference in an HMM

  Three basic problems:

1.  Compute the probability/likelihood of a given observation
sequence (classification) ?

2.  Given an observation sequence, compute the most likely
hidden state sequence (decoding) ?

3.  Given an observation sequence, which model parameters
most closely fit the data (parameters estimation) ?

P

B

P P P

B B

s s s

x x x

s

x

s

x

Likelihood computation

94

27/03/13	

48	

95

x = [x1,..., xT]T, ! = {!,P,B}
Compute P(x |!)

xT x1 xt xt–1 xt+1

Given an observation sequence and a model,
compute the likelihood of the observation sequence

Likelihood computation

96

Likelihood computation

P(x |!) = P(x | s,!)P(s |!)
S
!

xT x1 xt xt–1 xt+1

s1 st+1 sT st st–1

P(x | s,!) = bs1 (x1)bs2 (x2)...bsT (xT)
P(s |!) = " s1

ps1s2 ps2s3... psT!1sT
P(x, s |!) = P(x | s,!)P(s |!)

27/03/13	

49	

97

P(x |!) = " s1
bs1 (x1)

(s1...sT)
!

t=1

T"1

#pstst+1bst+1 (xt+1)

Likelihood computation

xT x1 xt xt–1 xt+1

s1 st+1 sT st st–1

It involves a sum over all possible sequences of states !	

•  The special structure gives us an efficient solution
using some recurrence formulas

•  Define:

•  We will omit the dependency on θ
98

!i (t) = P(x1...xt, st = i |")

Forward procedure

xT x1 xt xt–1 xt+1

s1 st+1 sT st st–1

27/03/13	

50	

99

Forward procedure

!

" j (1) = P(x1,s1 = j)
= P(x1 | s1 = j)P(s1 = j)
= b j (x1)# j

xT x1 xt xt–1 xt+1

s1 st+1 sT st st–1

100

Forward procedure
= P(x1...xt+1, st+1 = j)

= P(x1...xt, st = i, xt+1, st+1 = j)
i=1

n

!

= P(xt+1, st+1 = j | x1...xt, st = i)P(x1...xt, st = i)
i=1

n

!

= P(xt+1, st+1 = j | st = i)!i (t)
i=1

n

!

= P(xt+1 | st+1 = j)P(st+1 = j | st = i)!i (t)
i=1

n

!

= pij!i (t)
i=1

n

!
"

#
$

%

&
'bj (xt+1)

! j (t +1)

27/03/13	

51	

101

Forward procedure

! j (1) = bj (x1)" j

xT x1 xt xt–1 xt+1

s1 st+1 sT st st–1

! j (t +1) = pij!i (t)
i=1

n

!
"

#
$

%

&
'bj (xt+1)

102

Forward procedure
From Rabiner et al.:	

27/03/13	

52	

103

Likelihood computation: solutions

xT x1 xt xt–1 xt+1

s1 st+1 sT st st–1

P(x |!) = P(x1...xT , sT = j |!)
j=1

n

! = " j (T)
j=1

n

!

The likelihood is:	

•  We now introduce the backward variable
•  Define:

•  We will omit the dependency on θ

104

Backward procedure

xT x1 xt xt–1 xt+1

s1 st+1 sT st st–1

!i (t) = P(xt+1...xT | st = i,")

27/03/13	

53	

105

Backward procedure
!i (t) = P(xt+1...xT | st = i)

= P(xt+1xt+2...xT , st+1 = j | st = i)
j=1

n

!

= P(xt+1xt+2...xT | st = i, st+1 = j)
j=1

n

! P(st+1 = j | st = i)

= pij P(xt+1xt+2...xT | st+1 = j)
j=1

n

!

= pij P(xt+1 | xt+2...xT , st+1 = j)P(xt+2...xT | st+1 = j)
j=1

n

!

= pijbj (xt+1)! j (t +1)
j=1

n

!

106

Backward procedure

  When t = T – 1, we have	

xT x1 xt xt–1 xt+1

s1 st+1 sT st st–1

!i (T –1) = P(xT | sT –1 = i)

= pijbj (xT)
j=1

n

!

!i (T –1) = pijbj (xT)! j (T)
j=1

n

!

=> βj(T) =1	

27/03/13	

54	

107

Backward procedure

!

"i(T) =1

!i (t) = pijbj (xt+1)! j (t +1)
j=1

n

!

xT x1 xt xt–1 xt+1

s1 st+1 sT st st–1

108

Backward procedure
From Rabiner et al.:	

27/03/13	

55	

109

Likelihood computation: solutions

P(x, st = i |!) = P(x1…xt, st = i, xt+1…xT |!)
= P(xt+1…xT | x1…xt, st = i,!)P(x1…xt, st = i |!)
= P(xt+1…xT | st = i,!)P(x1…xt, st = i |!)
="i (t)#i (t)

xT x1 xt xt–1 xt+1

s1 st+1 sT st st–1

110

Likelihood computation: solutions

P(x |!) = "i (T)
i=1

n

!

P(x |!) = " i#i (1)
i=1

n

!

P(x |!) = "i (t)
i=1

n

! #i (t)

Forward procedure

Backward procedure

Combination

xT x1 xt xt–1 xt+1

s1 st+1 sT st st–1

27/03/13	

56	

Optimal state sequence
(decoding)

111

 Find the most probable state at time t
given the observations

112

Best state

xT x1 xt xt–1 xt+1

s1 st+1 sT st st–1

! i (t) = P(st = i | x,") =
P(x, st = i |")
P(x |")

=
#i (t)$i (t)

j (t)$ j (t)
j=1

n

!

27/03/13	

57	

113

Best state sequence

 Find the state sequence that best
explains the observations

 Viterbi algorithm = dynamic
programming algorithm
argmax

s
P(s | x,!) = argmax

s
P(s,x |!)

xT x1 xt xt–1 xt+1

s1 st+1 sT st st–1

114

xT x1 xt xt–1 xt+1

Viterbi algorithm

! j (t) =max
s1...st!1

P(s1...st!1, x1...xt!1, st = j, xt |")

The state sequence which maximizes the
probability of generating the observations up
to time t–1, landing in state j, and emitting the
observation at time t

s1 st–1 j

27/03/13	

58	

115

Viterbi algorithm

! j (t +1) =maxi !i (t)pijbj (xt+1){ }

! j (t +1) = argmax
i

!i (t)pijbj (xt+1){ }

Recursive
computation

xT x1 xt xt–1 xt+1

s1 st–1 st st+1

! j (t) =maxs1...st!1
P(s1...st!1, x1...xt!1, st = j, xt |")

!

" j (1) = # jb j (x1)

!

" j (1) = 0

116

Viterbi algorithm
  Indeed, δj(t+1) is equal to

max
s1...st

P(s1...st+1 = j, x1...xt+1 |!) =max
s1...st

P(st+1 = j, xt+1 | s1...st, x1...xt!)P(s1...st, x1...xt |!)

=max
s1...st

P(xt+1 | st+1 = j,!)P(st+1 = j | st,!)P(s1...st, x1...xt |!){ }

=max
st

max
s1...st!1

bst+1 (xt+1)pstst+1 P(s1...st, x1...xt |!){ }

=max
st

bj (xt+1)pst jmax
s1...st!1

P(s1...st, x1...xt |!)
"
#
$

%
&
'

=max
st

bj (xt+1)pst j!st (t){ }

27/03/13	

59	

117

Viterbi algorithm
 And we can apply dynamic

programming to the log-likelihood
– The cost is then additive

118

Viterbi algorithm

!

s"(T) = argmax
i

i(T)

!

s"(t #1) =$s" (t)(t)

!

P(x") =max
i
i(T)

Compute the most
likely state sequence by
working backwards

xT x1 xt xt–1 xt+1

s1 st+1 sT st st–1

27/03/13	

60	

Parameter estimation

119

120

Parameter estimation

•  Given an observation sequence, find the
model parameters Π, P, B, that most
likely produce that sequence (maximum
likelihood)

•  No closed-form solution
•  Instance of the iterative EM algorithm

xT x1 xt xt–1 xt+1

P

B

P P P

B B B B

Π

27/03/13	

61	

121

Parameter estimation

! ij (t) = P(st = i, st+1 = j | x,") Probability of
traversing an arc

! i (t) = P(st = i | x,") Probability of
being in state i

xT x1 xt xt–1 xt+1

P

B

P P P

B B B B

Π

122

Parameter estimation

! i (t) = P(st = i | x,") =
P(x, st = i |")
P(x |")

=
#i (t)$i (t)

j (t)$ j (t)
j=1

n

!

Recall that we already computed	

27/03/13	

62	

123

Parameter estimation
! ij (t) = P(st = i, st+1 = j | x,") =

P(x1…xt, st = i, st+1 = j, xt+1…xT |")
P(x |")

=
P(st+1 = j, xt+1…xT | x1…xt, st = i,")P(x1…xt, st = i |")

P(x |")

=
P(st+1 = j, xt+1…xT | st = i,")#i (t)

P(x |")

=
P(xt+1…xT | st = i, st+1 = j,")P(st+1 = j | st = i,")#i (t)

P(x |")

=
P(xt+1…xT | st+1 = j,")pij#i (t)

P(x |")

=
P(xt+1 | xt+2…xT , st+1 = j,")P(xt+2…xT | st+1 = j,")pij#i (t)

P(x |")

=
#i (t)bj (xt+1)pij$ j (t +1)

#k (t)$k (t)
k=1

N

!

124

Parameter estimation

!̂ i = P(s1 = i | x,"̂) = # i (1)

Now we can
compute the new
estimates of the
model parameters.

xT x1 xt xt–1 xt+1

P

B

P P P

B B B B

Π

!

ˆ " i = probability of starting from i

27/03/13	

63	

125

Parameter estimation

!

ˆ p ij =
expected number of transitions from i to j

expected number of transitions out of state i

xT x1 xt xt–1 xt+1

P

B

P P P

B B B B

Π

126

Parameter estimation

p̂ij =
P(st = i, st+1 = j | x,!̂)

t=1

T!1

"

P(st = i | x,!̂)
t=1

T!1

"
=

" ij (t)
t=1

T!1

"

" i (t)
t=1

T!1

"

xT x1 xt xt–1 xt+1

P

B

P P P

B B B B

Π

27/03/13	

64	

127

Parameter estimation

xT x1 xt xt–1 xt+1

P

B

P P P

B B B B

Π

b̂i (ok) =
expected number of emissions of ok in state i

total number of emissions in state i

128

Parameter estimation

b̂i (ok) =
P(st = i, xt = ok | x,!̂)

t=1

T

!

P(st = i | x,!̂)
t=1

T

!
=

P(st = i | x,!̂)"(xt = ok)
t=1

T

!

P(st = i | x,!̂)
t=1

T

!

=

P(st = i | x,!̂)
{t:xt=ok }
!

P(st = i | x,!̂)
t=1

T

!
=

" t (i)
{t:xt=ok }
!

" i (t)
t=1

T

!

xT x1 xt xt–1 xt+1

P

B

P P P

B B B B

Π

27/03/13	

65	

129

Parameter estimation

 The two following two steps are iterated
until convergence:
– Recompute the forward and backward

variables α and β
– Recompute the parameter estimates for

the Π, P, B

xT x1 xt xt–1 xt+1

P

B

P P P

B B B B

Π

130

Parameter estimation

  It can be shown that this iterative
algorithm increases the likelihood

xT x1 xt xt–1 xt+1

P

B

P P P

B B B B

Π

27/03/13	

66	

131

HMM applications

 Generating parameters for n-gram
models

 Tagging speech
 Speech recognition
 Bioinformatics sequence modeling

132

HMM applications

  Part-of-speech tagging
–  The representative put chairs on the table
–  AT NN VBD NNS IN AT NN
–  AT JJ NN VBZ IN AT NN

  Some tags :
–  AT: article, NN: singular or mass noun, VBD: verb,

past tense, NNS: plural noun, IN: preposition, JJ:
adjective

27/03/13	

67	

133

HMM applications

  BioInformatics
–  Durbin et al. Biological Sequence Analysis,

Cambridge University Press.
  Several applications, e.g. proteins

–  From primary structure ATCPLELLLD
–  Infer secondary structure HHHBBBBBC..

