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Sequence modelling 

Marco Saerens (UCL) 
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Slides references 
  Many slides and figures have been adapted from the slides 

associated to the following books: 
–  Alpaydin (2004), Introduction to machine learning. The MIT Press. 
–  Duda, Hart & Stork (2000), Pattern classification, John Wiley & 

Sons. 
–  Han & Kamber (2006), Data mining: concepts and techniques, 2nd 

ed. Morgan Kaufmann. 
–  Tan, Steinbach & Kumar (2006), Introduction to data mining. 

Addison Wesley. 
–  Grinstead and Snell’s Introduction to Probability (2006; GNU Free 

Documentation License) 
  As well as from Wikipedia, the free online encyclopedia 
  I really thank these authors for their contribution to machine 

learning and data mining teaching 
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Dynamic programming and 
edit-distance 

Marco Saerens (UCL) 
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Dynamic programming 

 Suppose we have a lattice with N levels: 
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Dynamic programming 

 The problem is to reach level N	

 From level 1 
 With minimum cost 
 = shortest-path problem 

5 

6 

Dynamic programming 

  Some definitions 

  The local cost associated to the decision to 
jump to the state sk = j at level k	


  Given that we were in state sk–1 = i at level k–1	
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Dynamic programming 

 The total cost of a path 
is 

 The optimal cost when starting from 
state s0 is  

8 

Dynamic programming 

 The optimal cost, whatever the initial 
state, is 

 The optimal cost when starting from 
some intermediate state 
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Dynamic programming 

 Here are the recurrence relations 
allowing to obtain the optimal cost: 

10 

Dynamic programming 

 Graphically: 

S  = ik

S     = i+1k+1

S     = ik+1

S     = i–1k+1
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Dynamic programming 

 Example: 
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Dynamic programming 
 Proof: 
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Dynamic programming 

  In a symmetric way: 

14 

Dynamic programming 

 Now, if there are jumps bypassing some 
levels, 

 where                       is the set of states 
to which there is a direct jump from sk = i 
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Dynamic programming 

 To find the optimal path, we need to 
keep track of 
‒  the previous state in each node (a 

pointer from the previous state to the 
current state) 

 And use backtracking from the last node 
‒  in order to retrieve the optimal path  

16 

Application to edit-distance 

 Computation of a distance between two 
strings 
–  It computes the minimal number of 

insertions, deletions and substitutions 
– That is, the minimum number of editions 

 For transforming one character string x 
into another character string y	
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Application to edit-distance 

 Also called the “Levenstein distance” 
 We thus have two character strings 

  xi being the character i of string x	


18 

Application to edit-distance 

 The length of the string x is denoted by  
|x|	


  In general, we have 

 The substring of x , beginning at 
character i and ending at j is defined by 
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Application to edit-distance 

  We will now read the characters of x one by 
one 

  In order to construct the string y 
  To this aim, we define the three editing 

operations: 
–  Insertion of a character in y (without taking any 

character from x) 
–  Deletion of a character from x (without 

concatenating it to y) 
–  Substitution of a character from y by one of x 

20 

Application to edit-distance 

 First convention: 

– Means that we have read (extracted) the i–
1 first characters of x	


– Thus, x has been cutted from its i–1 first 
characters  

– They have been taken in order to construct 
y	
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Application to edit-distance 

 Second convention: 

– Means that the j first characters of y have 
been transcribed 

 We progressively read the first 
characters of x in order to build y	


22 

Application to edit-distance 

  It corresponds to a process with levels (steps) 
and states 
–  We will now apply dynamic programming 

–  One state is characterized by a couple (i, j) 
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Application to edit-distance 

 Here is the formal definition of the three 
operations 

– For the two first operations, we are jumping 
from level k to level k+1 

– For the last one, we directly jump to level k
+2 (one level is passed)  

24 

Application to edit-distance 
 This situation can be represented in a 

two-dimensional table 
– One level is represented by 
	
(i + j) = constant	


– One state is represented by (i, j) 	

– One operation corresponds to a valid 

transition in this table	
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Application to edit-distance 

 Exemple of a table computing the 
distance between “livre” and “lire” 

26 

Application to edit-distance 

 Each level corresponds to a diagonal of 
the table: 
–  (i + j) = constant	
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Application to edit-distance 
 A cost (or penalty) is associated to each 

operation (insertion, deletion, 
substitution); for instance 

 with 

28 

Application to edit-distance 
 The dynamic programming formula can 

be applied to this problem: 
–  Initialization: 

– Then: 
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Application to edit-distance 

 And finally: 

 This value is the edit-distance or 
Levenstein distance  

30 

Application to edit-distance 

  One example: 

  dist(lire, livre) = 1 
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Application to edit-distance 

  In order to find the optimal path (optimal 
sequence of operations) 
– A pointer to the previous state has to be 

maintained for each cell of the table 
– The full path can be found by backtracking 

from the final state 
 Numerous extensions and 

generalizations of this basic algorithm 
have been developed 

Application to edit-distance 

 Notice that the related quantity, the 
longest common subsequence, lcs(x,y), 
can be obtained by (no proof provided) 

 and thus 

32 

dist(x,y) = lcs(x,x) + lcs(y,y)− 2 lcs(x,y)
= |x| + |y|− 2 lcs(x,y)

lcs(x,y) =
1
2
(|x| + |y|− dist(x,y))
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Application to edit-distance 

 Thus, since	

–  dist(lire, livre) = 1	


 We have	

–  lcs(lire, livre) = 0.5 (4 + 5 – 1) = 4 

33 

34 

Application to edit-distance 
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A brief introduction to Markov chains 

36 

Introduction to Markov chains 
 We have a set of states, S = {1, 2, …, n} 

–  st = k means that the process, or system, is 
in state k at time t	


 Example: 
– We take as states the kind of weather R 

(rain), N (nice), and S (snow) 
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Introduction to Markov chains 

 Markov chains are models of sequential 
discrete-time and discrete-state 
stochastic processes 

37 

38 

Introduction to Markov chains 

 The entries of this matrix P are pij with 

 We assume that the probability of 
jumping to a state only depends on the 
current state 
– And not on the past, before this state 
– This is the Markov property  
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Introduction to Markov chains 
 The matrix P is called the one-step 

transition probabilities matrix 
–  It is a stochastic matrix 
– The row sums are equal to 1 

 We also assume that these transition 
probabilities are stationary 
– That is, independent of time 

 Let us now compute P(st+2 = j | st = i) : 

40 

Introduction to Markov chains 
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Introduction to Markov chains 

 The matrix P2 is the two-steps transition 
probabilities matrix 

 By induction, Pτ is the τ-steps transition 
probabilities matrix containing elements 

42 

Introduction to Markov chains 
  If x(t) is the column vector containing 

the probability distribution of finding the 
process in each state of the Markov 
chain at time step t, we have 
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Introduction to Markov chains 
  In matrix form, x(t) = PT x(t–1)	


 
 Or, in function of the initial distribution, 

 x(t) = (PT)t x(0)	


 Now, xj(t) = x(t)T ej = x(0)T Pt ej 	


44 

Introduction to Markov chains 

 Thus, when starting from state i, 
  x(0) = ei, and 
	


xj(t | s0 = i) = xj|i(t) = (ei)T Pt ej  
  

  It is the probability of observing the 
process in state j at time t when starting 
from state i at time t = 0	
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Introduction to Markov chains 

46 

Introduction to Markov chains 

 Let us now introduce absorbing Markov 
chains 

 A state i of a Markov chain is called 
absorbing if it is impossible to leave it, 
pii = 1	


 An absorbing Markov chain chain is a 
Markov chain containing absorbing 
states 
– The other states being called transient (TR)  
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Introduction to Markov chains 

 Let us take an example: the drunkard’ 
walk (from Grinstead and Snell)  

48 

Introduction to Markov chains 

 The transition matrix can be put in 
canonical form: 

 Q is the transition matrix between 
transient states 
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Introduction to Markov chains 

 R is the transition matrix between 
transient and absorbing states 

 Both Q and R are sub-stochastic 
– Their row sums are ≤ 1 and at least one 

row sum is < 1 

49 

50 

Introduction to Markov chains 

 Now, Pt can be computed as 

 

 Since Q is sub-stochastic, it can be 
shown that:  
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Introduction to Markov chains 
 The matrix 

–  is called the fundamental matrix of the 
absorbing Markov chain 

 Let us interpret the elements nij = [N]ij of 
the fundamental matrix, where i, j are 
transient states  

52 

Introduction to Markov chains 
  Recall that since i, j are transient states, 

–  we have xj(t | s0 = i) = xj|i(t) = (ei)T Pt ej  = (ei)T Qt ej	


  Thus, entry i, j of the matrix N for transient 
states, nij, is 

nij = eT
i Nej

= eT
i

� ∞�

t=0

Q

�
ej

=
∞�

t=0

�
eT

i Qej

�

=
∞�

t=0

xj|i(t)
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Introduction to Markov chains 
 Thus, element nij contains the expected 

number of passages through transient 
state j when starting from transient state 
i	


 The expected number of visits (and 
therefore steps) before being absorbed 
when starting from each state is 

 

54 

Introduction to Markov chains 

 For the drunkard’s walk, 
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55 

Introduction to Markov chains 

56 

Introduction to Markov chains 
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Introduction to Markov chains 
 We can also compute absorption 

probabilities from each starting state 
 We can compute the probability of being 

absorbed by absorbing state j given that 
we started in transient state i by 

 
 where ntr is the number of transient states 
and the sum over k is taken on the set of 
transient states (TR) only 

bij =
∞�

t=0

ntr�

k=1
k∈TR

xk|i(t) rkj

Introduction to Markov chains 

 The formula states that the probability of 
reaching absorbing node j at time (t+1) 
is given by  
–  the probability of passing through any state 

k at t and then jumping to state j from k at (t
+1) 

 The absorption probability is then given 
by taking the sum over all possible time 
steps 

58 
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Introduction to Markov chains 

 Let us compute this quantity 

bij =
∞�

t=0

ntr�

k=1
k∈TR

xk|i(t) rkj

=
ntr�

k=1
k∈TR

� ∞�

t=0

eT
i Qtek

�
rkj

=
ntr�

k=1
k∈TR

nik rkj

= [NR]ij

60 

Introduction to Markov chains 

 The absorption probabilities are put in 
the B matrix 

 Let us reconsider the drunkard’s 
example 
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Introduction to Markov chains 

62 

Introduction to Markov chains 

 Some additional definitions 
–  If, in a Markov chain, it is possible to go to 

every state from each state, the Markov 
chain is called irreducible 

– Moreover, the Markov chain is called 
regular if some power of the transition 
matrix has only positive (non-0) elements 
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Introduction to Markov chains 

  It can further be shown that the powers 
Pt of a regular transition matrix tend to a 
matrix with all rows the same 

64 

Introduction to Markov chains 

 Moreover, the limiting probability 
distribution of states is independent of 
the initial state: 
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Introduction to Markov chains 

 The stationary vector π is the left 
eigenvector of P, corresponding to 
eigenvalue 1 and normalized to a 
probability vector: 

66 

Introduction to Markov chains 

  It provides the probability of finding the 
process in each state on the long run 

 One can prove that this vector is unique 
for a regular Markov chain 
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Introduction to Markov chains 

 Notice that the fundamental matrix for 
absorbing chains can be generalized 

 To regular chains 
–  It, for instance, allows to compute the 

average first-passage times in matrix form 
– See, for instance, Grinstead and Snell 

Application to marketing 
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Application to marketing 
 Suppose we have the following model 

–  We have a number n of customer clusters or 
segments 

–  Based, for instance, on RFM (Recency, 
Frequency, Monetary value) 

  Each cluster is a state of a Markov chain 
  The last (nth) cluster corresponds to lost 

customers 
–  It is absorbing and generates no benefit 

70 

Application to marketing 

 Each month, we observe the 
movements from cluster to cluster 

 Transition probabilities are estimated  
– by counting the observed frequencies of 

jumping from one state to another in the 
past 

– This provides the entries of the transition 
probabilities matrix 
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Application to marketing 

 Suppose also there is an average profit, 
mi per month, associated to each 
customer in state i	

– which could be negative	


 There is also a discounting factor: 
0 < γ < 1 

 The expected profit on an infinite time 
horizon can be computed 

72 

Application to marketing 

  It is given by 

–  It provides the expected profit on a infinite 
horizon 

m =
∞�

t=0

γt
n�

i=1

xi(t) mi
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Application to marketing 
 Which finally provides 

m =
∞�

t=0

γt
n�

i=1

xi(t) mi

=
∞�

t=0

γtmT(PT)tx(0)

=
∞�

t=0

γtxT(0)Ptm

= xT(0)(
∞�

t=0

γtPt)m

= xT(0)(I− γP)−1m

74 

Application to marketing 

 This is an example of the computation 
of the lifetime value of a customer 

 Which is the expected profit provided by 
the customer until it leaves the company 
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A brief introduction to dynamic 
time warping 

Marco Saerens, UCL 
Alain Soquet, ULB 

76 

Dynamic time warping 

 Context: word recognition 
 Suppose we have a database of word 

templates or references 
– Someone pronounces a word which is 

recorded and analysed 
– We want to recover the nearest template 

word in the database = nearest neighbor 
– Which will be the recognized word 
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Dynamic time warping 

 However, the timing in which the word 
has been pronounced can differ greatly 

 Hence, we have to account for 
distortions or warping of the signal 
=> Dynamic time warping 

78 

Dynamic time warping 

 Here is an example: a spectrogram is 
produced 

Time window	
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Dynamic time warping 

 We have to compare word1 and word2 
– Thus, align the two signals 

Reference word1	


Word2	


80 

Dynamic time warping 
 The two signals are aligned by 

– Defining a distance d(i,j) between two 
frames, for instance the Euclidean distance 

– Defining a time alignment that allows for 
warpings 
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Dynamic time warping 

 We have to add monotonicity 
constraints in order to obtain meaningful 
alignments 

Monotonicity	


Continuity	


Boundary	

conditions	


82 

Dynamic time warping 

 The problem can be solved by dynamic 
programming 

 By considering only the valid transitions 
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Dynamic time warping 

 Here are the dynamic programming 
recurence relations 

for	


A brief introduction to hidden 
Markov models 

Marco Saerens, UCL 
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85 

Hidden Markov models 

 Most slides are adapted from David 
Meir Blei’s slides, SRI International 

 Thanks to David Meir Blei 

86 

What is an HMM ? 

  Graphical model 
  Green circles indicate states 
  Purple circles indicate observations 
  Arrows indicate probabilistic 

dependencies between states 
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What is an HMM? 

  Green circles are hidden, unobserved, 
states (n in total) 

  Dependent only on the previous state 
(arrow) 

  “The past is independent of the future 
given the present”: Markov property 

88 

What is an HMM ? 

  Purple nodes are discrete observations 
(p in total) 

  They dependent only on their 
corresponding hidden state in which 
they were generated 
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What is an HMM ? 

 Example of a word model 

P	
 A	
 R	
 I	
 S	


90 

HMM formalism 

  {s, x, Π, P, B}  
  s : {1,…, n} is the random variable for the 

hidden states taking its values from 1 to n 
  x : {o1,…, op } is the random variable for the 

observations whose values are denoted oi	


s s s 

x x x 

s 

x 

s 

x 
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HMM formalism 

  {s, o, Π, P, B}  
  Π = {πi} are the initial state probabilities, P(s1=i) 
  P = {pij} are the state transition probabilities, P(st+1=j| st=i) 

  B = {bi(ok)} are the observation or emission 
probabilities, P(xt=ok | st=i)	


P 

B 

P P P 

B B 

s s s 

x x x 

s 

x 

s 

x 

A HMM example 

92 

Taken from wikipedia	
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Inference in an HMM 

  Three basic problems: 

1.  Compute the probability/likelihood of a given observation 
sequence (classification) ? 

2.  Given an observation sequence, compute the most likely 
hidden state sequence (decoding) ? 

3.  Given an observation sequence, which model parameters 
most closely fit the data (parameters estimation) ? 

P 

B 

P P P 

B B 

s s s 

x x x 

s 

x 

s 

x 

Likelihood computation 

94 
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x = [x1,..., xT ]T, ! = {!,P,B}
Compute P(x |! )

xT x1 xt xt–1 xt+1 

Given an observation sequence and a model, 
compute the likelihood of the observation sequence 

Likelihood computation 

96 

Likelihood computation 

P(x |! ) = P(x | s,! )P(s |! )
S
!

xT x1 xt xt–1 xt+1 

s1 st+1 sT st st–1 

P(x | s,! ) = bs1 (x1)bs2 (x2 )...bsT (xT )
P(s |! ) = " s1

ps1s2 ps2s3... psT!1sT
P(x, s |! ) = P(x | s,! )P(s |! )
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P(x |! ) = " s1
bs1 (x1)

(s1...sT )
!

t=1

T"1

#pstst+1bst+1 (xt+1)

Likelihood computation 

xT x1 xt xt–1 xt+1 

s1 st+1 sT st st–1 

It involves a sum over all possible sequences of states !	


•  The special structure gives us an efficient solution 
using some recurrence formulas 

•  Define: 

•  We will omit the dependency on θ 
98 

!i (t) = P(x1...xt, st = i |" )

Forward procedure 

xT x1 xt xt–1 xt+1 

s1 st+1 sT st st–1 
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Forward procedure 

! 

" j (1) = P(x1,s1 = j)
= P(x1 | s1 = j)P(s1 = j)
= b j (x1)# j

xT x1 xt xt–1 xt+1 

s1 st+1 sT st st–1 

100 

Forward procedure 
= P(x1...xt+1, st+1 = j)

= P(x1...xt, st = i, xt+1, st+1 = j)
i=1

n

!

= P(xt+1, st+1 = j | x1...xt, st = i)P(x1...xt, st = i)
i=1

n

!

= P(xt+1, st+1 = j | st = i)!i (t)
i=1

n

!

= P(xt+1 | st+1 = j)P(st+1 = j | st = i)!i (t)
i=1

n

!

= pij!i (t)
i=1

n

!
"

#
$

%

&
'bj (xt+1)

! j (t +1)
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Forward procedure 

! j (1) = bj (x1)" j

xT x1 xt xt–1 xt+1 

s1 st+1 sT st st–1 

! j (t +1) = pij!i (t)
i=1

n

!
"

#
$

%

&
'bj (xt+1)

102 

Forward procedure 
From Rabiner et al.:	
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Likelihood computation: solutions 

xT x1 xt xt–1 xt+1 

s1 st+1 sT st st–1 

P(x |! ) = P(x1...xT , sT = j |! )
j=1

n

! = " j (T )
j=1

n

!

The likelihood is:	


•  We now introduce the backward variable 
•  Define: 

•  We will omit the dependency on θ 

104 

Backward procedure 

xT x1 xt xt–1 xt+1 

s1 st+1 sT st st–1 

!i (t) = P(xt+1...xT | st = i," )
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Backward procedure 
!i (t) = P(xt+1...xT | st = i)

= P(xt+1xt+2...xT , st+1 = j | st = i)
j=1

n

!

= P(xt+1xt+2...xT | st = i, st+1 = j)
j=1

n

! P(st+1 = j | st = i)

= pij P(xt+1xt+2...xT | st+1 = j)
j=1

n

!

= pij P(xt+1 | xt+2...xT , st+1 = j)P(xt+2...xT | st+1 = j)
j=1

n

!

= pijbj (xt+1)! j (t +1)
j=1

n

!

106 

Backward procedure 

  When t = T – 1, we have	


xT x1 xt xt–1 xt+1 

s1 st+1 sT st st–1 

!i (T –1) = P(xT | sT –1 = i)

= pijbj (xT )
j=1

n

!

!i (T –1) = pijbj (xT )! j (T )
j=1

n

!

=> βj(T) =1	
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Backward procedure 

! 

"i(T) =1

!i (t) = pijbj (xt+1)! j (t +1)
j=1

n

!

xT x1 xt xt–1 xt+1 

s1 st+1 sT st st–1 

108 

Backward procedure 
From Rabiner et al.:	
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Likelihood computation: solutions 

P(x, st = i |! ) = P(x1…xt, st = i, xt+1…xT |! )
= P(xt+1…xT | x1…xt, st = i,! )P(x1…xt, st = i |! )
= P(xt+1…xT | st = i,! )P(x1…xt, st = i |! )
="i (t)#i (t)

xT x1 xt xt–1 xt+1 

s1 st+1 sT st st–1 

110 

Likelihood computation: solutions 

P(x |! ) = "i (T )
i=1

n

!

P(x |! ) = " i#i (1)
i=1

n

!

P(x |! ) = "i (t)
i=1

n

! #i (t)

Forward procedure 

Backward procedure 

Combination 

xT x1 xt xt–1 xt+1 

s1 st+1 sT st st–1 
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Optimal state sequence 
(decoding) 

111 

 Find the most probable state at time t 
given the observations 

112 

Best state 

xT x1 xt xt–1 xt+1 

s1 st+1 sT st st–1 

! i (t) = P(st = i | x," ) =
P(x, st = i |" )
P(x |" )

=
#i (t)$i (t)

# j (t)$ j (t)
j=1

n

!
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Best state sequence 

 Find the state sequence that best 
explains the observations 

 Viterbi algorithm = dynamic 
programming algorithm 
argmax

s
P(s | x,! ) = argmax

s
P(s,x |! )

xT x1 xt xt–1 xt+1 

s1 st+1 sT st st–1 

114 

xT x1 xt xt–1 xt+1 

Viterbi algorithm 

! j (t) =max
s1...st!1

P(s1...st!1, x1...xt!1, st = j, xt |" )

The state sequence which maximizes the 
probability of generating the observations up 
to time t–1, landing in state j, and emitting the 
observation at time t 

s1 st–1 j 
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Viterbi algorithm 

! j (t +1) =maxi !i (t)pijbj (xt+1){ }

! j (t +1) = argmax
i

!i (t)pijbj (xt+1){ }

Recursive 
computation 

xT x1 xt xt–1 xt+1 

s1 st–1 st st+1 

! j (t) =maxs1...st!1
P(s1...st!1, x1...xt!1, st = j, xt |" )

! 

" j (1) = # jb j (x1)

! 

" j (1) = 0

116 

Viterbi algorithm 
  Indeed, δj(t+1) is equal to 

max
s1...st

P(s1...st+1 = j, x1...xt+1 |! ) =max
s1...st

P(st+1 = j, xt+1 | s1...st, x1...xt! )P(s1...st, x1...xt |! )

=max
s1...st

P(xt+1 | st+1 = j,! )P(st+1 = j | st,! )P(s1...st, x1...xt |! ){ }

=max
st

max
s1...st!1

bst+1 (xt+1)pstst+1 P(s1...st, x1...xt |! ){ }

=max
st

bj (xt+1)pst jmax
s1...st!1

P(s1...st, x1...xt |! )
"
#
$

%
&
'

=max
st

bj (xt+1)pst j!st (t){ }
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Viterbi algorithm 
 And we can apply dynamic 

programming to the log-likelihood 
– The cost is then additive 

118 

Viterbi algorithm 

! 

s"(T) = argmax
i

# i(T)

! 

s"(t #1) =$s" (t )(t)

! 

P(x") =max
i
# i(T)

Compute the most 
likely state sequence by 
working backwards 

xT x1 xt xt–1 xt+1 

s1 st+1 sT st st–1 
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119 

120 

Parameter estimation 

•  Given an observation sequence, find the 
model parameters Π, P, B, that most 
likely produce that sequence (maximum 
likelihood) 

•  No closed-form solution 
•  Instance of the iterative EM algorithm 

xT x1 xt xt–1 xt+1 

P 

B 

P P P 

B B B B 

Π
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Parameter estimation 

! ij (t) = P(st = i, st+1 = j | x," ) Probability of 
traversing an arc 

! i (t) = P(st = i | x," ) Probability of 
being in state i 

xT x1 xt xt–1 xt+1 

P 

B 

P P P 

B B B B 

Π

122 

Parameter estimation 

! i (t) = P(st = i | x," ) =
P(x, st = i |" )
P(x |" )

=
#i (t)$i (t)

# j (t)$ j (t)
j=1

n

!

Recall that we already computed	
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Parameter estimation 
! ij (t) = P(st = i, st+1 = j | x," ) =

P(x1…xt, st = i, st+1 = j, xt+1…xT |" )
P(x |" )

=
P(st+1 = j, xt+1…xT | x1…xt, st = i," )P(x1…xt, st = i |" )

P(x |" )

=
P(st+1 = j, xt+1…xT | st = i," )#i (t)

P(x |" )

=
P(xt+1…xT | st = i, st+1 = j," )P(st+1 = j | st = i," )#i (t)

P(x |" )

=
P(xt+1…xT | st+1 = j," )pij#i (t)

P(x |" )

=
P(xt+1 | xt+2…xT , st+1 = j," )P(xt+2…xT | st+1 = j," )pij#i (t)

P(x |" )

=
#i (t)bj (xt+1)pij$ j (t +1)

#k (t)$k (t)
k=1

N

!

124 

Parameter estimation 

!̂ i = P(s1 = i | x,"̂ ) = # i (1)

Now we can 
compute the new 
estimates of the 
model parameters. 

xT x1 xt xt–1 xt+1 

P 

B 

P P P 

B B B B 

Π

! 

ˆ " i = probability of starting from i



27/03/13	


63	


125 

Parameter estimation 

! 

ˆ p ij =
expected number of transitions from i to j

expected number of transitions out of state i

xT x1 xt xt–1 xt+1 

P 

B 

P P P 

B B B B 

Π

126 

Parameter estimation 

p̂ij =
P(st = i, st+1 = j | x,!̂ )

t=1

T!1

"

P(st = i | x,!̂ )
t=1

T!1

"
=

" ij (t)
t=1

T!1

"

" i (t)
t=1

T!1

"

xT x1 xt xt–1 xt+1 

P 

B 

P P P 

B B B B 

Π
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Parameter estimation 

xT x1 xt xt–1 xt+1 

P 

B 

P P P 

B B B B 

Π

b̂i (ok ) =
expected number of emissions of ok  in state i

total number of emissions in state i

128 

Parameter estimation 

b̂i (ok ) =
P(st = i, xt = ok | x,!̂ )

t=1

T

!

P(st = i | x,!̂ )
t=1

T

!
=

P(st = i | x,!̂ )"(xt = ok )
t=1

T

!

P(st = i | x,!̂ )
t=1

T

!

=

P(st = i | x,!̂ )
{t:xt=ok }
!

P(st = i | x,!̂ )
t=1

T

!
=

" t (i)
{t:xt=ok }
!

" i (t)
t=1

T

!

xT x1 xt xt–1 xt+1 

P 

B 

P P P 

B B B B 

Π
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Parameter estimation 

 The two following two steps are iterated 
until convergence: 
– Recompute the forward and backward 

variables α and β 
– Recompute the parameter estimates for 

the Π, P, B 

xT x1 xt xt–1 xt+1 

P 

B 

P P P 

B B B B 

Π

130 

Parameter estimation 

  It can be shown that this iterative 
algorithm increases the likelihood 

xT x1 xt xt–1 xt+1 

P 

B 

P P P 

B B B B 

Π
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HMM applications 

 Generating parameters for n-gram 
models 

 Tagging speech 
 Speech recognition 
 Bioinformatics sequence modeling 

132 

HMM applications 

  Part-of-speech tagging 
–  The representative put chairs on the table 
–  AT       NN              VBD NNS  IN AT   NN 
–  AT       JJ                NN   VBZ   IN AT   NN 

  Some tags : 
–  AT: article, NN: singular or mass noun, VBD: verb, 

past tense, NNS: plural noun, IN: preposition, JJ: 
adjective 
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HMM applications 

  BioInformatics 
–  Durbin et al. Biological Sequence Analysis, 

Cambridge University Press. 
  Several applications, e.g. proteins 

–  From primary structure    ATCPLELLLD 
–  Infer secondary structure HHHBBBBBC.. 


