(Deep) Neural Network Basics

Kyriakos Efthymiadis

3, May 2019

c<

RIJE
NIVERSITEIT
BRUSSEL

What are they”

- Linear transformation + non-linear activation functions

- Massive modeling power by composing large structures of these modules

- Inspired by how the brain works, very coarse approximation
- Humans neuron switching time ~ .001s
- # neurons ~ 1010
- Scene recognition ~ .1s

- ANNS
- Many neurons
- Many connections
- Highly parallel distributed process

When to consider?

- High dimensional input

- Structure in data

- Explainabllity is not an issue

- Now pretty much state of the art in most tasks

00d at

Computer vision

- Machine translation
- Speech recognition
- Self-driving cars
- RL e

- Neural art

" PSF=2.5", 50

- ...and more

Some terminology

Unit = Neuron

- Activation Function = Non-linearity

Linear Transformation + Activation Function = Layer
- ...0r not

Dense Layer = Fully Connected
Convnet = Convolutional Neural Network
Filter = Kernel (iIn convnets)

Perceptron

O

o {1 if Y wx; >0

—1 otherwise

Rosenblatt 1958

Output

| fwya+wx;+...4+4wx >0
0(x1,”,xn)={ 0 .11 n’'n
—1 otherwise

O
O

INn vector notation

— 1 ifw-X>0 1 ifx'w>0
p— X) =
o) {—1 otherwise Or o) {—1 otherwise

Representation power of Perceptron

- Can represent many boolean functions
- What weights represent AND?

- What weight represent OR?

Representation power of Perceptron

- How about XOR?

- Not linearly separable

- We need something more

Perceptron training rule

Classification output +1

1. Random weights

2. Apply perceptron to each example
3. Modify weight on misclassification
4. Repeat

10

Perceptron training rule

Welight are changed according to the training rule
w; <— w; + Aw;

where
Aw, = n(t — o)x;

11

Perceptron training rule

- If t =0 then no change Aw; = n(t — 0)x;

-lft—0>0thenwy+wx;+...+wx <0

- but needs to be > 0
- if x; > 0 then increase weight
- else decrease

- What happens in the opposite case”

- Proven to converge If data linearly separable and n sufficiently
small

12

Gradient Descent

- Consider simple linear unit with no threshold
- We want to learn those weight that minimize the training error

1
E[W] ==), (= 0))’
deD

where D Is the set of training examples

13

Hypothesis space

14

Gradient Descent

- FInding the direction of steepest descent
- compute the derivative of the error with respect to weights

OE OE aE]

, , e o o , -
aWO awl aWn

VE(w) = [

- Training rule
W~ w+ AW

AW =—-nVEW)

15

Gradient Descent

10

Gradient Descent

- Important general paradigm for learning

- Search a space of continuous parameterized hypotheses when
the error Is differentiable

- Practical difficulties
- slow convergence
- multiple local minima

17

- Common variation to alleviate issues
- Compute weight updates after each example

Aw, = n(t — o)x;

- Minibatch Is In between

18

MLP of Sigmoid Units

- Perceptrons only linearly separable

- Add non-linear differentiable activations

- Add multiple layers

- Able to capture highly non-linear decision surtfaces
- Irained using backpropagation

19

Sigmoid Units

@

1
1 + e—net

0 = o(net) =

%0L) = o(y)(1 — o(y))

Backpropagation

- Learn the weights of MLP

E(W) = % D D) (= o)’

deD kcoutputs

- Learn in a large hypothesis space
- defined by all possible weight values

- Gradient descent to minimize error

22

Backpropagation - 2 Layers

Initialize weights

Until satisfied do

1. Input training example through network and compute
output

2. For each network output unit k calculate error
5](<« Ok(l — Ok)(tk — Ok)

3. For each hidden unit h calculate error
5]1 <«— Oh(l — Oh) 2 thék

keoutputs

4. Update each network weight

Wi; < Wy + iji Aw = ;75

23

[raining In a nutshell

- Initialize weights

- Pass examples to network and compare to target

- Calculate the error

- Calculate the derivative wrt to the weights of the network
- Propagate backwards the gradients and update weights
- Do until satistactory results

- For more about neural nets read Deep Learning(Goodfellow et. al
20106) https:// www.deeplearningbook.org/

24

https://www.deeplearningbook.org/

Going deeper

- Provides more benefits
- 1 hidden layer is universal FA, but requires many units
- Deep nets are more powerful

- Break down problem in a hierarchical fashion
- edges to shapes to objects to scenes

- Multiple points In Input, map to same output

- Results in exponentially more linear regions when deep,
compared to polynomial when wide [Montufar et. al 2014]

25

Some practical Issues

- RelLU instead of sigmoid

- Simpler and cheaper than sigmoid
- Favorable gradient properties

-
yl — maxzmum(()axl) 1100 -75 50 -25 0.0 2.5 5.0 75 10.0
X

Some practical Issues

Overfitting and regularization

- Early stopping

- Weight decay
- keeps weights from growing large
- not for relu

- Dropout
- randomly set activations to O
- promotes “individuality”

27

Some practical Issues

Overfitting and regularization

- Classical bias-variance doesn't apply in deep learning

- # parameters not a good measure of inductive bias
- Large models might lbe able to discover better functions

A under-fitting over-fitting A
. Test risk
~ ‘ —
a a
N :
~ o Training risk
sweet spot_ + — _
~a — >

under-parameterized

Test risk

“classical”
regime

s\ over-parameterized

“modern”
interpolating regime

~ Training risk:
< . _interpolation threshold
— J —_

Complexity of ’7{

Co;lplexity of H

Belkin et. al. 2018(arxiv)

28

http://cs231n.github.io/convolutional-networks/

Some practical Issues

Welgnht initialization

- Welight should be small
- too small results in vanishing gradients
- too big In exploding

- Research on this
- Xavier initialization and more

- Batch normalization
- scale and offset activations
- good for training too

29

Some practical Issues

Debugging

- Check your loses

- Check your gradients
- Check dead units

- Good tip, try to overfit in a small set of your problem
- If loss = 0 on small datasets then something must be wrong

30

Some practical Issues

Implementation

- In general you will not implement units, layers, activations,
l0Sses

- Many great libraries/frameworks
- TensorFlow by Google

- PyTorch from Facebook

- Example later

31

Tensorflow playground

FEATURES + — 2 HIDDEN LAYERS OUTPUT

Which properties do | | Test loss 0.001

you want to feed in”? Y — Y Training loss 0.000 \
4 neurons 2 neurons

Q
O 04

@92 08
o'

S——— w ‘
\\ !‘l :: ,&" “0“
llllllll‘lllll’ﬁ

O
Ooo

The outputs are
mixed with varying
weights, shown

by the thickness
of the lines.
X 1X2 < This is the output
from one neuron.
Hover to see it
larger.
sin(Xy)
Colors shows
: data, neuron and 1! ‘l) _1
sin(X,) weight values.

[J Show testdata [] Discretize output

https://playground.tensorflow.org

32

https://playground.tensorflow.org

Convolutional Networks

e, Vi, i, i Wi, Wiy
CrVLYLY
W W W Ww e
R o ol RN O N A

£

TRy Y.

s Nt BF
¥ : 4 ﬁ
d

-

a

s

SR R SR N N N
DN wN A
> °Q ©) % o B
,_0~o.o_\0\s>~Q,0

kT,

vy Oy O

personi,00

* degraded

PSF=2.5%, 60
«

- mite

* GAN recovered

5 Y

* deconvolved

container ship motor scooter
mite container ship motor scooter leapard
black widow | | lifeboat go-kart jaguar
cockroach amphibian moped cheetah
tick fireboat bumper car snow leopard
starfish drilling platform golfcart Egyptian cat

: z 7 S
9 ;
V’ R

grille mushroom cherry Madag_;scar cat
convertible agaric dalmatian squirrel monkey
grille mushroom grape | spider monkey
pickup jelly fungus elderberry titi
beach wagon gill fungus |ffordshire bullterrier indri
fire engine || dead-man's-fingers currant howler monkey

34

Convnets

- Can take advantage of spatial information
- Provide translation invariance
- Welignht sharing

- Extract features hierarchically in deep networks(edges to
SCEeNes)

35

Convnets

8@128x128

8@64x64

Max-Pool

24@48x48

Convolution

24@16x16

1x256

Max-Pool

Dense

1x128

36

Convnets

Bullt using a series of
- Convolutional layers
- Non-linearities

- Pooling layers

- Output * -

INPUT CONV DENSE OUTPUT

Convnets

At each layer

Convolve input with sets of weights(filters)

Produce feature maps

Filters choices 3x3, 5x95, 7x/

Can be valid, same, strided, dilated, transposed

Pooling to reduce spatial dimensions, achieve invariance
Learning filter weights with back-propagation

33

Convolution - Cross Correlation

Convolution operation

al=0(2w,£,l*x+bl)

actually cross correlation

More in Deep Learning [Goodfellow et. al, 2016}

39

Convolution example

Input Volume (+pad 1) (7x7x3)
X[:,:,0]

Filter WO (3x3x3)
wO[:,:,0]

o O O O
o O N O
S =N = N \= O
O = O = == NN\O

(Ix1x1)

:,:,0]

Filter W1 (3x3x3)

wl[:,:,0]
1 0 1

0O 0 -1
-1 -1 -1

wl[:,:,1]
-1 -1 0

0O 1 O
1 -1 0

wl[:,:,2]
0 -1 -1

-1 0 -1
0O 1 -1

Bias b1 (1x1x1)
bl[:,:,0]
0

Output Volume (3x3x2)

ol

:2,:,0]

0

2 1

7
3

o[
-8

7
3

6 2
0 O

tr2,1]
-7 -1

-9 -1
-9 -1

toggle movement

http://cs231n.github.io/convolutional-networks/

http://cs231n.github.io/convolutional-networks/

What do filters learn?

T =

".ffmf

N
S

S

!

N

An Example In Image Recognition

Fashion MNIST

- Dataset by Zalando to replace MNIST
- 28X28 grayscale Images
- 10 classes

43

- Load data

- Define network structure
- Define training loop

- Decide on loss(criterion)
- Start learning

- Use early stopping

24

Model In Py Torch

FashionSimpleNet(nn.Module):
e Simple network™™™

__init__ (self):
super().__init__ ()
f.features = nn.Sequential(
nn.Conv2d(1,32, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel size=2, stride=2),

.Conv2d(32, 64, kernel_size=3, padding=1),

.ReLU(inplace=) »
.MaxPool2d(kernel size=2, stride=2)

f.classifier = nn.Sequential(
nn.Dropout(),

nn.Linear(64 x 7 x 7, 128),
nn.ReLU(inplace=)
nn.Linear(128, 10)

forward(self, x):

X = . features(x)
X = X.view(x.size(Q), 64 x 7 x 7)
X = .classifier(x)

return X

45

lypical training

run_model(net, loader, criterion, optimizer, train =
running_Lloss = 0
running_accuracy = 0

if train:
net.train()

else:
net.eval()

(X, y) in enumerate(loader):

X, y = X.to(device), y.to(device)

optimizer.zero_grad()

with torch.set_grad_enabled(train):
output = net(X)
_, pred = torch.max(output, 1)
loss = criterion(output, y)

1t train:
loss.backward()
optimizer.step()

running_loss += loss.item()
running_accuracy += torch.sum(pred == y.detach())
return running_loss / len(loader), running_accuracy.double() / len(loader.dataset)

he main l1oop

net = model.__dict__[args.modell]l().to(device)
criterion = torch.nn.CrossEntropyLoss()

optimizer = optim.Adam(net.parameters())

patience = args.patience

best_loss le4d

writeFile = open('{}/stats.csv'.format(current_dir), 'a')
writer = csv.writer(writeFile)

writer.writerow(['Epoch', 'Train Loss', 'Train Accuracy', 'Validation Loss',

for e range(args.nepochs):
start = time.time()

train_loss, train_

val_loss, val_acc
end = time.time()
stats = """Epoch:

val loss:

time:

print(stats)

acc = run_model(net, train_loader,
criterion, optimizer)

= run_model(net, val loader,
criterion, optimizer,

\t train Lloss: , train acc: \t
, val acc: \t
s""", format(e+1, train_loss, train_acc, val _loss,
val_acc, end - start)

'‘Validation Accuracy'])

writer.writerow([e+1, train_loss, train_acc.item(), val_loss, val_acc.item()])

if val_loss < best_loss:
best _loss = val _loss

patience = args.patience
utils.save_model({
‘arch': args.model,
'state dict': net.state dict()
}, 'saved-models/{}-run-{}.pth.tar'.format(args.model, run))

else:
patience -= 1

if patience == 0:
print('Run out of patience!')
writeFile.close()

break

47

Some results

train-accuracy
tag: data/train-accuracy

0.96
0.94
0.92

0.9
0.88

0.86

val-accuracy
tag: data/val-accuracy

0.93
0.92
0.91

0.9
0.89

0.88 -

train-loss
tag: data/train-loss

val-loss
tag: data/val-loss

0.32

0.3
0.28
0.26
0.24
0.22

0.2

16

20

24

24

48

NoO early stopping

val-accuracy val-loss
tag: data/val-accuracy tag: data/val-loss
0.935 | I — I S SR N R 0.36
0.32
0.925 -
0.28
0.915 |
0.24
0.905 - 0.2

0 20 40 60 80 100 0 20 40 60 80 100

- Rosenblatt, F., 1958. The perceptron: a probabilistic model for information storage and organization in the
brain. Psychological review, 65(6), p.386.

- Goodfellow, |., Bengio, Y. and Courville, A., 2016. Deep learning. MIT press.

- Montufar, G.F., Pascanu, R., Cho, K. and Bengio, Y., 2014. On the number of linear regions of deep neural networks.
In Advances in neural information processing systems (pp. 2924-2932).

- Schawinski, K., Zhang, C., Zhang, H., Fowler, L. and Santhanam, G.K., 2017. Generative adversarial networks recover
features In astrophysical images of galaxies beyond the deconvolution limit. Monthly Notices of the Royal Astronomical
Society: Letters, 467(1), pp.L110-L114.

- He, K., Gkioxari, G., Dollar, P. and Girshick, R., 2017. Mask r-cnn. In Proceedings of the IEEE international conference on
computer vision (pp. 2961-2969).

- Krizhevsky, A., Sutskever, |. and Hinton, G.E., 2012. Imagenet classification with deep convolutional neural networks.
In Advances in neural information processing systems (pp. 1097-1105).

- Zeiler, M.D. and Fergus, R., 2014, September. Visualizing and understanding convolutional networks. In European
conference on computer vision (pp. 818-833). Springer, Cham.

- Xiao, H., Rasul, K. and Vollgraf, R., 2017. Fashion-mnist: a novel image dataset for benchmarking machine learning
algorithms. arXiv preprint arXiv:1708.07747 .

- Belkin, Mikhall, et al. "Reconciling modern machine learning and the bias-variance trade-off.” arXiv preprint arxiv:
1812.11118 (2018).

- Pascanu, Razvan, et al. "On the saddle point problem for non-convex optimization." arXiv preprint arXiv:1405.4604 (2014).

- Santurkar, Shibani, et al. "How does batch normalization help optimization?." Advances in Neural Information Processing
Systems. 2018.

50

