
(Deep) Neural Network Basics
Kyriakos Efthymiadis

3, May 2019

What are they?

- Linear transformation + non-linear activation functions
- Massive modeling power by composing large structures of these modules
- Inspired by how the brain works, very coarse approximation

- Humans neuron switching time ~ .001s
- # neurons ~ 1010

- Scene recognition ~ .1s
- ANNs

- Many neurons
- Many connections
- Highly parallel distributed process

!2

When to consider?

- High dimensional input
- Structure in data
- Explainability is not an issue
- Now pretty much state of the art in most tasks

!3

Good at

- Computer vision
- Machine translation
- Speech recognition
- Self-driving cars
- RL
- Neural art
- …and more

!4

Some terminology

- Unit = Neuron
- Activation Function = Non-linearity
- Linear Transformation + Activation Function = Layer

- …or not
- Dense Layer = Fully Connected
- Convnet = Convolutional Neural Network
- Filter = Kernel (in convnets)

!5

Perceptron

!6

in
pu

ts

bias
w0

w1

w2

…

wn

x0 = 1

x1

x2

xn

…

∑ n

∑
i=0

wixi

o = {1 if∑n
i=0 wixi > 0

−1 otherwise

Rosenblatt 1958

Perceptron

!7

w0

w1

w2

…

wn

x0 = 1

x1

x2

xn

…

∑

Output
o(x1, …, xn) = {1 if w0 + w1x1 + … + wnxn > 0

−1 otherwise

In vector notation

o(⃗x) = {1 if ⃗w ⋅ ⃗x > 0
−1 otherwise or o(x) = {1 if x⊤w > 0

−1 otherwise

Representation power of Perceptron

- Can represent many boolean functions

- What weights represent AND?

- What weight represent OR?

!8

Representation power of Perceptron

- How about XOR?

- Not linearly separable

- We need something more

!9

Perceptron training rule

Classification output ±1

1. Random weights
2. Apply perceptron to each example
3. Modify weight on misclassification
4. Repeat

!10

Perceptron training rule

Weight are changed according to the training rule

where

!11

wi ← wi + Δwi

Δwi = η(t − o)xi

Perceptron training rule

- If then no change
- If then

- but needs to be > 0
- if then increase weight
- else decrease

- What happens in the opposite case?
- Proven to converge if data linearly separable and sufficiently

small

!12

Example

t = o
t − o > 0 w0 + w1x1 + … + wnxn < 0

xi > 0

η

Δwi = η(t − o)xi

Gradient Descent

- Consider simple linear unit with no threshold
- We want to learn those weight that minimize the training error

where D is the set of training examples

!13

E[⃗w] =
1
2 ∑

d∈D

(td − od)2

Hypothesis space

!14

Gradient Descent

- Finding the direction of steepest descent
- compute the derivative of the error with respect to weights

- Training rule

!15

∇E(⃗w) ≡ [∂E
∂w0

,
∂E
∂w1

, …,
∂E
∂wn]

⃗w ← ⃗w + Δ ⃗w

Δ ⃗w = − η∇E(⃗w)

Gradient Descent

!16

∂E
∂wi

=
∂

∂wi

1
2 ∑

d∈D

(td − od)2

=
1
2 ∑

d∈D

∂
∂wi

(td − od)2

=
1
2 ∑

d∈D

2(td − od)
∂

∂wi
(td − od)

= ∑
d∈D

(td − od)
∂

∂wi
(td − ⃗w ⋅ ⃗xd)

= ∑
d∈D

(td − od)(−xid)

Gradient Descent

- Important general paradigm for learning
- Search a space of continuous parameterized hypotheses when

the error is differentiable

- Practical difficulties
- slow convergence
- multiple local minima

!17

SGD

- Common variation to alleviate issues
- Compute weight updates after each example

- Minibatch is in between

!18

Δwi = η(t − o)xi

MLP of Sigmoid Units

- Perceptrons only linearly separable
- Add non-linear differentiable activations
- Add multiple layers
- Able to capture highly non-linear decision surfaces
- Trained using backpropagation

!19

MLP

!20

Sigmoid Units

!21

in
pu

ts

bias
w0

w1

w2

…

wn

x0 = 1

x1

x2

xn

…

∑
net =

n

∑
i=0

wixi

o = σ(net) =
1

1 + e−net

∂σ(y)
∂y

= σ(y)(1 − σ(y))

Backpropagation

- Learn the weights of MLP

- Learn in a large hypothesis space
- defined by all possible weight values

- Gradient descent to minimize error

!22

E(⃗w) ≡
1
2 ∑

d∈D
∑

k∈outputs

(tkd − okd)2

Backpropagation - 2 Layers
Initialize weights
Until satisfied do

1. Input training example through network and compute
output

2. For each network output unit k calculate error 

3. For each hidden unit h calculate error 
 

4. Update each network weight

!23

δk ← ok(1 − ok)(tk − ok)

δh ← oh(1 − oh) ∑
k∈outputs

wkhδk

wji ← wji + Δwji Δwji = ηδjxji

Training in a nutshell

- Initialize weights
- Pass examples to network and compare to target
- Calculate the error
- Calculate the derivative wrt to the weights of the network
- Propagate backwards the gradients and update weights
- Do until satisfactory results
- For more about neural nets read Deep Learning(Goodfellow et. al

2016) https://www.deeplearningbook.org/
!24

https://www.deeplearningbook.org/

Going deeper

- Provides more benefits
- 1 hidden layer is universal FA, but requires many units
- Deep nets are more powerful
- Break down problem in a hierarchical fashion

- edges to shapes to objects to scenes
- Multiple points in input, map to same output
- Results in exponentially more linear regions when deep,

compared to polynomial when wide [Montufar et. al 2014]
!25

Some practical issues

- ReLU instead of sigmoid
- Simpler and cheaper than sigmoid
- Favorable gradient properties

!26

ReLU

yi = maximum(0,xi)

Some practical issues

- Early stopping
- Weight decay

- keeps weights from growing large
- not for relu

- Dropout
- randomly set activations to 0
- promotes “individuality”

!27

Overfitting and regularization

Some practical issues

- Classical bias-variance doesn't apply in deep learning
- # parameters not a good measure of inductive bias
- Large models might be able to discover better functions

!28

Overfitting and regularization

Belkin et. al. 2018(arxiv)

http://cs231n.github.io/convolutional-networks/

Some practical issues

- Weight should be small
- too small results in vanishing gradients
- too big in exploding

- Research on this
- Xavier initialization and more

- Batch normalization
- scale and offset activations
- good for training too

!29

Weight initialization

Some practical issues

- Check your loses
- Check your gradients
- Check dead units
- Good tip, try to overfit in a small set of your problem

- if loss != 0 on small datasets then something must be wrong

!30

Debugging

Some practical issues

- In general you will not implement units, layers, activations,
losses

- Many great libraries/frameworks
- TensorFlow by Google
- PyTorch from Facebook
- Example later

!31

Implementation

Tensorflow playground

!32https://playground.tensorflow.org

https://playground.tensorflow.org

Convolutional Networks

Convnets

!34

Convnets

- Can take advantage of spatial information
- Provide translation invariance
- Weight sharing
- Extract features hierarchically in deep networks(edges to

scenes)

!35

Convnets

!36

Convnets

Built using a series of
- Convolutional layers
- Non-linearities
- Pooling layers
- Output

!37

Convnets

At each layer
- Convolve input with sets of weights(filters)
- Produce feature maps
- Filters choices 3x3, 5x5, 7x7
- Can be valid, same, strided, dilated, transposed
- Pooling to reduce spatial dimensions, achieve invariance
- Learning filter weights with back-propagation

!38

Convolution - Cross Correlation

Convolution operation

actually cross correlation

More in Deep Learning [Goodfellow et. al, 2016]

!39

al = σ(∑
m

wl
m * x + bl)

Convolution example

!40
http://cs231n.github.io/convolutional-networks/

http://cs231n.github.io/convolutional-networks/

What do filters learn?

!41

An Example in Image Recognition

Fashion MNIST

- Dataset by Zalando to replace MNIST
- 28x28 grayscale images
- 10 classes

!43

Steps

- Load data
- Define network structure
- Define training loop
- Decide on loss(criterion)
- Start learning
- Use early stopping

!44

Model in PyTorch

!45

Typical training

!46

The main loop

!47

Some results

!48

No early stopping

!49

- Rosenblatt, F., 1958. The perceptron: a probabilistic model for information storage and organization in the
brain. Psychological review, 65(6), p.386.

- Goodfellow, I., Bengio, Y. and Courville, A., 2016. Deep learning. MIT press.
- Montufar, G.F., Pascanu, R., Cho, K. and Bengio, Y., 2014. On the number of linear regions of deep neural networks.

In Advances in neural information processing systems (pp. 2924-2932).
- Schawinski, K., Zhang, C., Zhang, H., Fowler, L. and Santhanam, G.K., 2017. Generative adversarial networks recover

features in astrophysical images of galaxies beyond the deconvolution limit. Monthly Notices of the Royal Astronomical
Society: Letters, 467(1), pp.L110-L114.

- He, K., Gkioxari, G., Dollár, P. and Girshick, R., 2017. Mask r-cnn. In Proceedings of the IEEE international conference on
computer vision (pp. 2961-2969).

- Krizhevsky, A., Sutskever, I. and Hinton, G.E., 2012. Imagenet classification with deep convolutional neural networks.
In Advances in neural information processing systems (pp. 1097-1105).

- Zeiler, M.D. and Fergus, R., 2014, September. Visualizing and understanding convolutional networks. In European
conference on computer vision (pp. 818-833). Springer, Cham.

- Xiao, H., Rasul, K. and Vollgraf, R., 2017. Fashion-mnist: a novel image dataset for benchmarking machine learning
algorithms. arXiv preprint arXiv:1708.07747.

- Belkin, Mikhail, et al. "Reconciling modern machine learning and the bias-variance trade-off." arXiv preprint arXiv:
1812.11118 (2018).

- Pascanu, Razvan, et al. "On the saddle point problem for non-convex optimization." arXiv preprint arXiv:1405.4604 (2014).
- Santurkar, Shibani, et al. "How does batch normalization help optimization?." Advances in Neural Information Processing

Systems. 2018.

!50

