
(Deep) Neural Network Basics
Kyriakos Efthymiadis

3, May 2019



What are they?

- Linear transformation + non-linear activation functions 
- Massive modeling power by composing large structures of these modules 
- Inspired by how the brain works, very coarse approximation 

- Humans neuron switching time ~ .001s 
- # neurons ~ 1010 

- Scene recognition ~ .1s 
- ANNs 

- Many neurons 
- Many connections 
- Highly parallel distributed process
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When to consider?

- High dimensional input 
- Structure in data 
- Explainability is not an issue 
- Now pretty much state of the art in most tasks
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Good at

- Computer vision 
- Machine translation 
- Speech recognition 
- Self-driving cars 
- RL 
- Neural art 
- …and more
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Some terminology

- Unit = Neuron 
- Activation Function = Non-linearity 
- Linear Transformation + Activation Function = Layer 

- …or not 
- Dense Layer = Fully Connected 
- Convnet = Convolutional Neural Network 
- Filter = Kernel (in convnets)
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Perceptron
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Perceptron
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Representation power of Perceptron

- Can represent many boolean functions 

- What weights represent AND? 

- What weight represent OR?
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Representation power of Perceptron

- How about XOR? 

- Not linearly separable 

- We need something more
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Perceptron training rule

Classification output ±1 

1. Random weights 
2. Apply perceptron to each example 
3. Modify weight on misclassification 
4. Repeat
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Perceptron training rule

Weight are changed according to the training rule 

where 
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wi ← wi + Δwi

Δwi = η(t − o)xi



Perceptron training rule

- If          then no change 
- If                then  

- but needs to be > 0 
- if           then increase weight 
- else decrease 

- What happens in the opposite case? 
- Proven to converge if data linearly separable and    sufficiently 

small 
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Example

t = o
t − o > 0 w0 + w1x1 + … + wnxn < 0

xi > 0

η

Δwi = η(t − o)xi



Gradient Descent

- Consider simple linear unit with no threshold 
- We want to learn those weight that minimize the training error 

where D is the set of training examples
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Hypothesis space
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Gradient Descent

- Finding the direction of steepest descent 
- compute the derivative of the error with respect to weights 

- Training rule
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Gradient Descent
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Gradient Descent

- Important general paradigm for learning 
- Search a space of continuous parameterized hypotheses when 

the error is differentiable 

- Practical difficulties 
- slow convergence 
- multiple local minima
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SGD

- Common variation to alleviate issues 
- Compute weight updates after each example 

- Minibatch is in between
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Δwi = η(t − o)xi



MLP of Sigmoid Units

- Perceptrons only linearly separable 
- Add non-linear differentiable activations 
- Add multiple layers 
- Able to capture highly non-linear decision surfaces 
- Trained using backpropagation
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MLP
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Sigmoid Units
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Backpropagation

- Learn the weights of MLP 

- Learn in a large hypothesis space 
- defined by all possible weight values 

- Gradient descent to minimize error
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Backpropagation - 2 Layers
Initialize weights  
Until satisfied do 

1. Input training example through network and compute 
output 

2. For each network output unit k calculate error 

3. For each hidden unit h calculate error 
 

4. Update each network weight
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δk ← ok(1 − ok)(tk − ok)

δh ← oh(1 − oh) ∑
k∈outputs

wkhδk

wji ← wji + Δwji Δwji = ηδjxji



Training in a nutshell

- Initialize weights 
- Pass examples to network and compare to target 
- Calculate the error 
- Calculate the derivative wrt to the weights of the network 
- Propagate backwards the gradients and update weights 
- Do until satisfactory results 
- For more about neural nets read Deep Learning(Goodfellow et. al 

2016) https://www.deeplearningbook.org/
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https://www.deeplearningbook.org/


Going deeper

- Provides more benefits 
- 1 hidden layer is universal FA, but requires many units 
- Deep nets are more powerful 
- Break down problem in a hierarchical fashion 

- edges to shapes to objects to scenes 
- Multiple points in input, map to same output 
- Results in exponentially more linear regions when deep, 

compared to polynomial when wide [Montufar et. al 2014]
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Some practical issues

- ReLU instead of sigmoid 
- Simpler and cheaper than sigmoid 
- Favorable gradient properties
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ReLU

yi = maximum(0,xi)



Some practical issues

- Early stopping 
- Weight decay 

- keeps weights from growing large 
- not for relu 

- Dropout 
- randomly set activations to 0 
- promotes “individuality”

!27

Overfitting and regularization



Some practical issues

- Classical bias-variance doesn't apply in deep learning 
- # parameters not a good measure of inductive bias 
-  Large models might be able to discover better functions
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Overfitting and regularization

Belkin et. al. 2018(arxiv)

http://cs231n.github.io/convolutional-networks/


Some practical issues

- Weight should be small 
- too small results in vanishing gradients 
- too big in exploding 

- Research on this 
- Xavier initialization and more 

- Batch normalization 
- scale and offset activations 
- good for training too
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Weight initialization



Some practical issues

- Check your loses 
- Check your gradients 
- Check dead units 
- Good tip, try to overfit in a small set of your problem 

- if loss != 0 on small datasets then something must be wrong
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Debugging



Some practical issues

- In general you will not implement units, layers, activations, 
losses 

- Many great libraries/frameworks 
- TensorFlow by Google 
- PyTorch from Facebook 
- Example later
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Implementation



Tensorflow playground

!32https://playground.tensorflow.org

https://playground.tensorflow.org


Convolutional Networks



Convnets
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Convnets

- Can take advantage of spatial information 
- Provide translation invariance 
- Weight sharing 
- Extract features hierarchically in deep networks(edges to 

scenes)
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Convnets
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Convnets

Built using a series of 
- Convolutional layers 
- Non-linearities 
- Pooling layers 
- Output
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Convnets

At each layer 
- Convolve input with sets of weights(filters)  
- Produce feature maps 
- Filters choices 3x3, 5x5, 7x7 
- Can be valid, same, strided, dilated, transposed 
- Pooling to reduce spatial dimensions, achieve invariance 
- Learning filter weights with back-propagation
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Convolution - Cross Correlation

Convolution operation 

actually cross correlation 

More in Deep Learning [Goodfellow et. al, 2016]
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al = σ(∑
m
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Convolution example
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http://cs231n.github.io/convolutional-networks/

http://cs231n.github.io/convolutional-networks/


What do filters learn?
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An Example in Image Recognition



Fashion MNIST

- Dataset by Zalando to replace MNIST 
- 28x28 grayscale images 
- 10 classes
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Steps

- Load data 
- Define network structure 
- Define training loop 
- Decide on loss(criterion) 
- Start learning 
- Use early stopping
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Model in PyTorch
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Typical training

!46



The main loop
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Some results
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No early stopping
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