Publications: Learning in Multi-Agent Systems


Catteeuw, D., De Beule, J., & Manderick, B.. (2011). Roth-Erev Learning in Signaling and Language Games. In P. De Causmaecker, Maervoet, J., Messelis, T., Verbeeck, K., & Vermeulen, T. (Eds.), Proceedings of the 23rd Benelux Conference on Artificial Intelligence (pp. 65–74). Ghent, Belgium.
PDF icon bnaic2011_submission_62.pdf (865.81 KB)


Martinez, Y., Van Vreckem, B., Catteeuw, D., & Nowé, A.. (2010). Application of Learning Automata for Stochastic Online Scheduling. In M. Diehl, Glineur, F., Jarlebring, E., & Michiels, W. (Eds.), Recent Advances in Optimization and its Applications in Engineering (pp. 491–498). Springer.
Martinez, Y., Wauters, T., De Causmaecker, P., Nowé, A., Verbeeck, K., Bello, R., & Suarez, J.. (2010). Reinforcement Learning Approaches for the Parallel Machines Job Shop Scheduling Problem. In Proceedings of the Cuba-Flanders Workshop on Machine Learning and Knowledge Discovery.. Santa Clara, Cuba.
Kaddoum, E., Martinez, Y., Wauters, T., Verbeeck, K., Nowé, A., De Causmaecker, P., et al.. (2010). Adaptive methods for flexible job shop scheduling with due-dates , release-dates and machine perturbations. In Workshop on Self-tuning, self-configuring and self-generating search heuristics (Self* 2010). Krakow, Poland.
Wauters, T., Martinez, Y., De Causmaecker, P., Nowé, A., & Verbeeck, K.. (2010). Reinforcement Learning approaches for the Parallel Machines Job Shop Scheduling Problem. In Proceedings of ITEC2010 - International conference on interdisciplinary research on technology, education and communication. Kortrijk, Belgium.
De Causmaecker, P., Verbeeck, K., Wauters, T., & Martinez, Y.. (2010). Scalable decentralised approaches for job shop scheduling. In Proceedings of the 24th European Conference on Operational Research EURO XXIV. Lisbon, Portugal.
Vrancx, P. (2010). Decentralised Reinforcement Learning in Markov Games. Computational Modeling lab, Vrije Universiteit Brussel, Brussels, Belgium.
PDF icon phd.pdf (4.02 MB)


Martinez, Y., & Nowé, A.. (2009). A Multi-Agent learning approach for the Job Shop Scheduling Problem. In Proceedings of the 23rd European Conference on Operational Research. Bonn, Germany.


Rodriguez, L., Casas, G., Grau, R., & Martinez, Y.. (2008). Fuzzy Scan Method to Detect Clusters. International Journal of Biological and Life Sciences, 3, 111–115. Retrieved from
Suarez, J., & Martinez, Y.. (2008). Propuesta de solución al problema de secuenciación en múltiples máquinas utilizando la metaheur\'ıstica ACO. In IV Conferencia Cient\'ıfica de la Universidad de Ciencias Informáticas, UCIENCIA 2008. Havana, Cuba.


Puris, A., Bello, R., Martinez, Y., & Nowé, A.. (2007). Two-stage ant colony optimization for solving the traveling salesman problem. Lecture Notes in Computer Sciences. Book "Nature Inspired Problem-Solving Methods in Knowledge Engineering", 4528, 307–316.
Puris, A., Bello, R., Trujillo, Y., Nowé, A., & Martinez, Y.. (2007). Two-stage ACO to solve the job shop scheduling problem. Lecture Notes in Computer Science. Book "Progress in Pattern Recognition, Image Analysys and Applications", 4756, 447–456.


Bello, R., Puris, A., Nowé, A., Martinez, Y., & Garcia, M. M.. (2006). Two Step Ant Colony System to solve the feature selection problem. Lecture Notes in Computer Science. Book "Progress in Pattern Recognition, Image Analysis and Applications, 4225, 588–596.