

Running C++ on a web browser
Documentation by Heikki Rasilo, 2021

1 Emmake to make library files from C++ code

1. First create an empty folder for your project, in my case “Interactive_tests” (the root
directory for your project)

2. Copy a folder including all the C code files into this folder, in my case the folder is
called “test_web”.

3. Now you need to link all the files needed in your C project together in a consistent
library. This can be done using Make (more specifically we are using Emmake to use
the emscripten builder for web-assembly). As a side-note, you can also build a library
usable in Python with make.

4. In order to use make, you need a Makefile based on which the library is created.
Makefiles can be created with CMake. You can check the basics of using CMake for
example here:
https://thatonegamedev.com/cpp/how-to-setup-cmake-for-c-windows/

5. For Cmake to know what your project consists of, and which files should be linked,
you need to make CMakeLists.txt -files for your project. Go to the project’s root
directory and create a file named “CMakeLists.txt”. In my project the file looks like
this:

• The first two lines request the use of a high enough version of cmake, and give

the project a name “test_web”.
• On line 4, a subdirectory “test_web” (where my C-code files are located) is

added to the project. Here the processing of the code shifts directly to the
CMakeLists.txt file in the added “test_web” -folder (see point 6 below),
before continuing to the further lines of this file!

• Line 6 configures cmake to make position independent code, i.e. the code is
not tied to a fixed address in memory. More info on this here
(https://eli.thegreenplace.net/2011/11/03/position-independent-code-pic-
in-shared-libraries/)

• Line 7 does the same for the CXSparse folder that is located in my case inside
the test_web folder. This is a folder created by Matlab-coder that is used to
create C-code from my Matlab project, storing some parts of the required
code.

• Lines 9-13 are configuring for Emscripten to create WASM (web-assembly)
code. I followed the advice given here:

 (https://thatonegamedev.com/cpp/programming-a-c-game-for-the-web-
emscripten/) for selecting the settings.

6. This far I have not yet listed any C-files to be included in the library. Since the C-files
are located in the test-web -folder, I need to make a new CMakeLists.txt file inside
that folder:

… All cpp-files in that folder …

• The first line again shifts the processing to the CMakeLists.txt file in the

“CXSparse”-folder, before processing this file further!
• Line 57 adds all the files mentioned after line 3 in the library.
• Line 58 links the CXSparse library contents to the test_web library. This is

linked as PRIVATE, meaning that the CXSparse functions will be used
internally by test_web, but they cannot be called from outside of this
context.

• Line 59 Includes the directory of the current CMakeLists.txt –file (i.e.
(…/Interactive_tests/test_web) in the test_web -library. This is used to
search for header files “*.h” in the given directories.

7. CMakeLists.txt in the CXSparse subfolder:

…

• Lines 1-109 Add cpp-files again, including from its subfolders
• Line 112, add these files to the CXSparse library
• Line 113, there’s some complex numbers used in the CXSparse files, so this line

compiles by definition by with the CS_COMPLEX tag. This is then undefined in
the beginning of the cpp-files that don’t need it.

• Line 114-> Include again all the necessary directories to this target library. All
directories including necessary header files are added.

8. To use Cmake, go to the root directory and make a folder called “build” by calling:

mkdir build

At this point the folder structure looks like:

9. Go to the build folder and make the make-file using emcmake.
cd build
../emsdk/upstream/emscripten/emcmake cmake ..

10. At this point the makefiles are done, and you can build the libraries by calling
../emsdk/upstream/emscripten/emmake make ..

If there’s bugs in the c++ code. They should be caught at this time.
11. Now the library files are created, in my case they appear as libtest_web.a in the

test_web -folder (inside the build folder), and libCXSparse.a under the CXSparse

Note, it is important to use the emcmake here, it configures cmake to use the
emscripten configurations. Make sure to use your installation folder of emscripten here.

folder.

12. Copy the library files in the root folder:
cd ..
cp build/test_web/libtest_web.a .
cp build/test_web/CXSparse/libCXSparse.a .

2 Compiling libraries in Web Assembly code

Now it’s time to compile the libraries in the web-assembly (WASM) code. This is done using
emcc. There are several options to give to the compiler, but here my command looks like:

../emsdk/upstream/emscripten/emcc libCXSparse.a libtest_web.a
-o hello3.html

-O1
-s WASM=1
--shell-file shell_minimal.html
-s NO_EXIT_RUNTIME=1
-s "EXPORTED_RUNTIME_METHODS=['ccall']"
-s EXPORT_ALL=1
-s LINKABLE=1
-s EXPORTED_FUNCTIONS="['_malloc']"
-s TOTAL_STACK=20mb
-s INITIAL_MEMORY=25mb
-s ALLOW_MEMORY_GROWTH=1
-s WASM_BIGINT --profiling

To create an example html-page that you can start adjusting to your needs, on the FIRST CALL
to emcc, use the -o filename.html option. This will create the html-file based on the cell file
given also in the options. I’m using the shell_minimal.html (https://github.com/emscripten-
core/emscripten/blob/main/src/shell_minimal.html), that has to be copied in the root
directory as well.

For convenience, after the first-time creation of the html file, I created a bash-script
make_and_link.sh that makes linking and compiling very fast, whenever a change in the c-
code is needed:

Codebox 1

You can just run this in the root folder using
bash make_and_link

after any change in the C-code. Your html-file remains unchanged but the underlying
functionality is updated.

3 Calling Web Assembly functions using JavaScript

The automatically created HTML-file now consists of formatting, an output text box etc. You
can clean up this file and remove all unnecessary components. I recommend leaving the text
box here, since (using the default module) your “printf” commands from the C-code will be
printed here, that can be very handy for debugging.

You can quickly start using and developing the code, by starting a server using Python. Go to
the directory of your html page and use

python3 -m http.server

Note that it is very important that when you keep on working on the html-file and adding
functionality, keep in mind that calling emcc with this flag again will overwrite the html-
file. If you need to adjust the c-code and recompile, use a flag

-o filename.js
instead (i.e. REMOVE the filename.html from the flags). This ensures that only the .js file
(and the WASM code) is updated and you don’t lose the changes made in the html-file.

NOTE: Make always a hard refresh on your browser after changes in the code! It is
possible that changes do not take place in your html-page without hard refresh due to
some caching issue. In Chrome in Mac for example, this is done using cmd+shift+R.

Out comes something like:
Serving HTTP on 0.0.0.0 port 8000 (http://0.0.0.0:8000/)

Now you can copy this http://0.0.0.0:8000/ in your browser and select the html file.

The Module is used to communicate between the Emscripten generated code and JavaScript.
For example, calling a function written in c++ will be done using Module.ccall. In the default
generated html, the Module is initialized, but it can be modified if needed.

3.1 Example of a function call

Module.ccall function can be used to call functions in the c++ code. Using this function
requires the flag:

-s "EXPORTED_RUNTIME_METHODS=['ccall']"
To be used in the compilation phase (see Codebox 1).

In my example, in the end of the html.file, I create the initial SVG of the vocal tract model, as
soon as the Module has been loaded. Without waiting the module to be loaded, the program
probably crashes, since the Module cannot be used.

 Module['onRuntimeInitialized'] = function() {
 makeInitialSVG()
 }

”makeInitialSVG()” is a call to a JavaScript function written in the same html file. This function
calls a JS function getCoordinates, that returns coordinates of the lines of the vocal tract that
are to be drawn on the website. In order for the c-code to calculate the positions of the lines,
it needs to get values of the nine vocal tract parameters as input. The Module.ccall function
cannot take an array as an input parameter
(check: https://emscripten.org/docs/api_reference/preamble.js.html#id3),
so I have to allocate memory where I write this parameter vector, and then give a pointer to
that memory as an input to ccall, since this pointer is just one number and ‘number’-style
parameter is allowed.

The first part of my getCoordinates JavaScript-function looks like:

Codebox 2

First, I define the length of the array to be written in the memory. The array is of double-
precision float format, so each array element takes Module.HEAPF64.BYTES_PER_ELEMENT
amount of memory. Module._malloc allocates the necessary amount of memory, and
parameterPointer points to this memory. To use malloc, you need to add the

-s EXPORTED_FUNCTIONS="['_malloc']"
tag in the compiling phase (see Codebox 1). Next you write the parameterVector in the
allocated memory, pointed by the pointer. Now you can call the C-function getSvgCoordinates
with ccall, using the parameterPointer as input.

3.2 The C++ side, to make things callable

In c++, you have to make a few changes to make function calls work properly. My example is
the test_web.cpp file, that was automatically coded to C++ from Matlab, using Matlab’s C-
coder application. Originally this file had just one function to test the functionality of the vocal
tract model. It didn’t take any input parameters, but it set the vocal tract parameters to some
values and returned the synthesized sound, and information about the vocal tract position:

However, this file provided a good starting point to adjust things to be more suitable for the
web-interface.

Following guidelines from
 (https://developer.mozilla.org/en-US/docs/WebAssembly/C_to_wasm),
I added a main function to test the C++ file. This function will be called by default in the loading
of the module (called in the automatically generated .js-file in the callMain-function).

#include <stdio.h>
#include <emscripten/emscripten.h>

int main() {
 printf("Hello World, from test_web file\n");
}

This text should be written in the textbox of your html page when the page is loaded.

Under this main function, the following lines must be added.

#ifdef __cplusplus
extern "C" {
#endif

This prevents the compiler from modifying the names of functions. Apparently, for c++ code
the function names are changed in the compilation stage to include some information of the
function variables. This wrapping prevents that from happening, and it will be closed in the
very end of the same file:

#ifdef __cplusplus
}
#endif

By default, other function definitions in the file are eliminated. You have to keep them alive
by using EMSCRIPTEN_KEEPALIVE, that requires the library emscripten/emscripten.h to be

loaded (see the code box above). Now I wrote a new function inside the test_web.cpp file,
that will be called from JavaScript, using ccall as seen before.

This function is defined to take a pointer as an input parameter (parameterPointer), exactly
what we are calling it with using the ccall. I define a new array of size 9, called posit, that will
be storing the contents of the memory, where the parameterPointer is pointing to. Next,
element per element, I write the contents of the memory to the posit-array.

Codebox 3

The C++ function, returnGraphCoords gives the required coordinates for drawing the vocal
tract image, given the parameter values as an input. These coordinates have to be somehow
transferred back to our JavaScript side. For this, in the beginning of this file (test_web.cpp), I
define a struct SynthesisResults, that will be used to store all the parameters that we may
need at the JS side.

A unique pointer to this struct will be created, and the outputs from returnGraphCoords will
be stored in this struct. The unique pointer is needed, so that unique access to that memory
can be returned to the JavaScript side, and the memory can be deallocated if needed later by
destroying the pointer. The pointer is passed as an output argument, that can be caught in
the ccall-function on the JS side:

Note that the SynthesisResults-struct is created outside of any function and it has a global
scope. This is important so that the memory for this struct is not automatically deallocated
during the execution of the program. If you would define this struct inside the
getSvgCoordinates for example, and return a pointer to this struct, the memory would be
deallocated in the end of the function and may be corrupted before it is used on the
JavaScript side.

return results.release();

This pointer is caught in the resultPtr variable in JS, as seen in Codebox 2. In order to easily
return the arrays stored in the different fields of the SynthesisResults struct, I have written
dedicated functions on top of the test_web.cpp-file. An example function to return pointer
to the lineCoords-field:

This function takes the resultPtr as an input parameter, and returns a pointer to the
results->lineCoords field. On the JS side, this pointer is obtained again by ccall:

Now we have only obtained a pointer to the memory, where the line coordinates are
stored. We have to read that memory into a JavaScript array in order to be able to use that
in our program. This can be done by declaring an empty array in JS, and reading the memory
from the pointer directly into the array:

As in c++, the arrays were of double datatype, which is equal to Float64 datatype, they are
stored in the HEAPF64 memory. In order to point at the right locations in that memory, the
correct number of bytes required by an array element has to be used, defined by the
datatype (float64). When all the data has been read from memory, free the pointer,
deallocating the memory using:

Or by calling the destructor function:

Optionally, instead of freeing the memory, and creating a new SynthesisResults struct in c++
every time a function is called, you could initialize the struct in the start-up of the HTML-

NOTE: Remember to deallocate the memory, after all the data has been read to
JavaScript variables! Otherwise your program will continuously grow in memory usage,
because memory for a new struct is allocated every time the function is called.

page. A pointer to that struct could be then sent back and forwards between C++ and
JavaScript. This helps to maintain fields of the struct unchanged in between several calls to
the C++ function. This is useful for example when a status of the vocal tract synthesizer has
to be saved, to continue the synthesis from the previous state on the next call to the
function. This is done in the following example, where as soon as the JS module has been
loaded, I create a struct in the C++ and return a pointer to it. This pointer is then sent back
to the “resetTube” c++ function, and again back to JavaScript:

JavaScript calls:

C++ code:

s
…

