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ABSTRACT

In this demonstration, we allow humans to interactively ad-
vise a Mario agent during learning, and observe the result-
ing changes in performance, as compared to its unadvised
counterpart. We do this via a novel potential-based reward
shaping framework, capable for the first time of handling
the scenario of online feedback.

Categories and Subject Descriptors
1.2.6 [Artificial Intelligence]: Learning
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1. INTRODUCTION

Advice is an integral part of learning, both for humans and
machines. While priceless in some situations, it is heuristic
in nature, and may be extremely suboptimal. In reinforce-
ment learning (RL) [10], where learning implies optimizing
a given reward function that specifies the task, care must
be taken so as to maintain focus on solving that task, and
use advice only as guidance. The alternative is to learn to
optimize the advice itself, which may solve the problem if
the advice comes from a perfect oracle, but is likelier to re-
sult in suboptimal behaviors, and even prevent solving the
problem altogether [9]. We wish to ensure that regardless
of the quality of advice, the agent does not suffer negative
consequences for heeding it.

For this, we place ourselves into the potential-based re-
ward shaping (PBRS) framework [8], which gives the nec-
essary form of modifying the reward function of an MDP
without altering its (near-)optimal policies. Namely, PBRS
constrains the additional shaping reward function F' to:

F=~®-® (1)

where @ is a potential function over the state(-action) space.
We now make explicit the implicit assumption above of ad-
vice being expressed as a reward function R*. While there is
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evidence that reward shaping offers more advantages than
pure exploration guidance |2} 6], previous attempts of in-
tegrating human feedback into the reward scheme have not
shown much promise [5| [1]. This is unsurprising, as these at-
tempts are either not potential-based, or do not capture the
advice properly, since previously there has been no clear way
to translate the advice function R* into <I> The recently
proposed technique by Harutyunyan et al. [3] allows to ex-
press any arbitrary reward function in the potential-based
form of Eq. . The authors do this by simultaneously with
the main learning process, learning a second value function
®4 w.r.t. a version of the input (advice) reward function
R*, and using the successive estimates of ®* as the poten-
tials in Eq. . This process is shown to produce shaping
rewards that are equivalent in expectation to R“, while pre-
serving all guarantees of PBRS, allowing to leverage R* that
is being provided sporadically online (e.g. by a human), in
a true PBRS fashion.

2. SETTING AND METHOD

We assume a reward-centric feedback strategy [7], i.e. all
feedback is positive, and punishment is implicit in the ab-
sence of feedback. The advice function is then an indicator
A defined over the state-action space. We render A as a
numerical reward function R4 in a natural way:

rﬁH =c X A(s¢,at) (2)

where r{! is the component of R* at time ¢ and ¢ is a scaling
constant. We then follow the framework of Harutyunyan et
al. [3] and learn ®4 to express R*, with the following update
rules at each step:

©f+1(st,at) < —Tﬁl +'y'1>t(st+1,at+1) — @t(st,at)
i« PR (ser1, agr) — @ (se, ar)

Q(st,at) — 7Tep1+ f{il +YQ(st41,at41) — Q(5¢, at)

3

Note that we do not attempt to solve the advice dega;

problem. In our framework, the advice is implicitly propa-

gated down the trajectory via the eligibility trace, with the
remaining effect of delay being treated as noise.

!Notice how naive translation of ® = R* does not work.
Say, R*(s,a) = 1 (and 0 elsewhere), then F(s,a,s’) =
®(s',a’) — ®(s,a) = —1. The desired behavior got a neg-
ative shaping reward.



3. MARIO DOMAIN

The Mario benchmark problem [4] is based on Infinite
Mario Bros, a public reimplementation of Super Mario Bros®.
There are 12 discrete actions, corresponding to the buttons
(with valid combinations) on a NES controller. Environment
rewards correspond to the points collected in the game: the
agent is rewarded for killing an enemy, collecting a coin, etc,
and punished for getting hurt by a creature or dying. The
state space includes information about Mario’s state (can
jump, can shoot, etc), as well as the coordinates of the clos-
est enemy within a given range, totaling in 7072 features
for each action, and 84864 features total. The state-action
values are initialized to 0, resulting in near-random starting

behavior.
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Figure 1: A screenshot from Mario executing the level
used in the demonstration

4. EXPERIMENTAL RESULTS

The participants were asked to advise Mario for the first
5 episodes by watching the agent play (at full speed of 25
decisions per second), and pressing a key, whenever in their
opinion it had performed a good action. Recall that feedback
is exclusively positive. After the advice had stopped, Mario
continued learning on its own for another 95 episodes. We
have considered two classes of advice:

Expert advice The advice is provided by a domain expert
with knowledge of the state space

Non-expert advice Advisors are unaware of the state space
(and, occasionally, of Mario)

Tab. |1| gives the comparison between the performance of
Mario learning without any advice, with expert advice and
with non-expert advice. Each variant is an average of 21
independent runs. The average advising rate was recorded
to be 0.015, amounting to ~ 45 advising steps per trial. Note
that there is no significant difference between expert and
non-expert advice, suggesting robustness to advice quality.

These results show that even with incredibly sparse advice
rates, a large state space, noise incurred by the complexities
of the domain and the delay in advice, our method is able
to significantly improve the learning performance of Mario.

S. DEMONSTRATION

The demonstratioﬂ mirrors the experiment setup from
Section [4] To highlight the immediate effects of the advice,

?Please see https://vimeo.com/121085629 for an example
video.

Variant Advice phase | Cumulative
Baseline -376+51 470+83
Non-expert 401454 67760
Expert 402+62 774447

Table 1: Points collected by Mario in the three con-
sidered scenarios (indicated with standard error of the
mean). The best (p < 0.05) performance is given in bold.

a second unadvised Mario run is shown alongside. At the
end of a trial the participant is presented with the learning
curve of his Mario, and that of the average of all advisors,
as compared to the unadvised autonomous learner.

6. CONCLUSION

With the inherent noise and lack of qualitative guarantees
in human advice, it is imperative to be cautious when inte-
grating it in the RL process. PBRS specifies the necessary
form of modifying one’s MDP without altering optimality
w.r.t. the original task. We demonstrate the performance
of a framework that for the first time effectively integrates
human advice in the true PBRS fashion, showing promise
for reward shaping methods in this avenue.
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