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This paper presents a theoretical derivation of acoustic tract shapes (modeled after the vocal tract and similar 
acoustic horns) that minimize and maximize resonance frequencies. The derivation is based on a symmetry of 
Webster’s horn equation and on Ehrenfest’s adiabatic invariance hypothesis. It is shown that for minimizing 
resonance frequencies, abrupt transitions in the area of the tract are necessary, while for maximizing resonance 
frequencies, gradual transitions are needed. The shape for the tract with the minimal resonance frequency is a 
tube with constant maximal area near the closed end, followed by a tube of equal length and constant minimal 
area nar the open end. The shape for the tract with maximal resonance frequency consists of a tube with constant 
minimal area near the closed end, connected to an equally long tube of maximal area through an exponential 
horn that has the resonance frequency as its cutoff frequency. Tracts for higher resonances can be constructed by 
concatenating these basic tracts.   

1 Introduction 

This paper presents the derivation of the analytically exact 
area functions for acoustic tracts with maximal and minimal 
resonance frequencies. The only assumption is that 
Webster’s horn equation [1] is a valid approximation. 
Although the present paper is a purely theoretical endeavor, 
it aims to increase our understanding of the maximal range 
of signals that could be produced by biological vocal tracts. 
Distinctiveness of signals in biology and linguistics is 
usually measured by comparing the peaks (or formants) in 
the spectrum. These peaks are the resonances of the vocal 
tract with which the signals were generated. 
Attempts have been made to systematically explore the 
space of possible formant patterns of the human vocal tract 
[2] or to determine vocal tracts with certain acoustic 
properties by successive approximation [e. g. 3, 4]. 
However, all previous approaches have made assumptions 
about the allowable shapes of the vocal tract, so that not all 
possible shapes could be taken into account. Most 
approaches have looked at concatenated cylindrical tubes 
[e. g. 5, 6]. Approaches based on a superposition of a small 
number of sines and cosines [7, 8], or based on a set of 
perturbation functions, such as the ones used in [9, section 
B V.6] have also been made. In this paper, no assumptions 
about the area function under investigation are made. 
The core method used in this paper is adiabatic invariance. 
In the words of Ehrenfest, adiabatic invariance means that: 
“If a system is exposed to adiabatic influences, the 
‘admissible’ motions are transformed into ‘admissible’ 
ones” [10]. Translated to acoustics, admissible motions are 
the resonance frequencies, and adiabatic means changes 
that are slow compared to the resonance frequencies 
involved. Adiabatic invariance has first been used in the 
study of the vocal tract by Schroeder [8] who, using 
Ehrenfest’s theorem, demonstrated that this makes it 
possible to determine what happens to resonance 
frequencies of an acoustic tract when it is (slowly) 
deformed. Here it will be used to determine the 
(analytically) exact acoustic tract shapes for producing 
minimal and maximal resonance frequencies.   
The present paper is closely related to Carré [3]. Both 
investigate optimal acoustic tracts and both use adiabatic 
invariance [8]. However, in Carré’s paper the main interest 
is in discovering the vocal tract configuration that 
maximizes the range of speech sounds that can be made, 
whereas in this paper, individual tubes with maximal or 
minimal resonances are determined. Also, Carré’s paper 
uses numerical simulation while the present paper 
analytically derives a mathematical result. 

2 Optimal tracts 

When determining acoustic tracts with minimal and 
maximal resonance frequencies, it is useful to take a 
symmetry of Webster’s horn equation [1, 11] into account. 
For the analysis presented here, it is convenient to split this 
equation into one for pressure, and one for volume velocity. 
It then becomes [12, equation 3.2]: 
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where ( ),u x t  is volume velocity, ( ),p x t  is the differential 

pressure, ( )A x  is the cross-sectional area of the tract at 
point x along its length, ρ is the density of air and c is the 
speed of sound. It can be verified by substitution that if u1 
and p1 are solutions for a tract with area function A1, then u2 
and p2 are a solution for a tract with area function A2 if: 
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where Ca and Cb are arbitrary constants.  
Now consider a tract that is closed at one end (u is zero, p is 
maximal) and open at the other (u is maximal, p is zero) 
with an area function that fulfils the following relation: 
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where L is the length of the tract and Amin and Amax are the 
minimal and maximal cross-sectional area. Such a tract will 
be called symmetric with respect to (2), because the 
pressure in one direction is related to the volume velocity in 
the other direction as follows: 
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Now, for any acoustic tract that has ( )0, 0u t =  and 

( ), 0p L t = , there must be a point in the tract where, for a 
given resonance frequency: 
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because u and p change gradually. If 2x L≠ , it follows 
from (4) that it is possible to construct a symmetric tract 
with the same resonance frequency that is either longer 
(shorter) than the original tract by cutting the original tract 
in two at point x, taking the longest (shortest) part and 
replacing the other part with a part that is equally long to 
the remaining part, such that the total area function 
becomes symmetric with respect to (3). This process is 
illustrated in Fig. 1. As a vocal tract with a minimal 



 

(maximal) resonance frequency is by definition the shortest 
(longest) tract with that resonance frequency, it follows that 
there must be an optimal tract that is symmetric with 
respect to (3). 
Adiabatic invariance is defined by Schroeder’s Eq. 2 [8]: 

 n n

n n

f E
f E
δ δ=  (6) 

Where fn is the frequency of the nth resonance, and En is its 
energy. A small change in relative energy causes an equal 
small change in relative frequency. This relation holds true 
for many physical systems, and its validity for acoustical 
tracts was independently derived by Fant [13]. 
When deforming a tube in which a standing wave exists, 
energy is added to or subtracted from the wave. This is 
because (again, following Schroeder) a standing wave 
exerts radiation pressure. Deforming the tube requires an 
amount of work given by Schroeder’s equation 3: 
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0
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where L is the length of the tube, Pn(x) is the radiation 
pressure of the nth resonance at position x, and δA(x) is the 
(small) change in cross-sectional area at position x. As only 
the first resonance will be studied in the mathematical 
derivation, the subscript n will be omitted from now on. 
Finally, an expression for the acoustic radiation pressure is 
needed. Here, Lee and Wang’s equation 27 [14] is used: 
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where <...> indicates the average over time, P is the 
radiation pressure, p is the pressure of the wave, and v is the 
particle velocity of the wave, ρ is the density of air at rest 
and c is the speed of sound in air at rest. This expression is 
equivalent to Story’s [4] perturbation function. 

2.1 Minimization of the first resonance 

At the closed end of the tract, pressure is maximal and 
volume velocity is zero. At the open end, the reverse 
obtains. From Eq. (8) it follows that radiation pressure is 
therefore maximal at the closed end and minimal at the 
open end, illustrated in  Fig. 2. From Eqs. (6) and (7) it then 
follows that, starting from any area function, maximization 
of area near the closed end and minimization near the open 

end will result in minimization of energy and therefore in 
minimization of resonance frequency. 
It can therefore be assumed that the optimal tract of length 
L consists of a cylindrical tube of length 2l L≤  and area 
Amax at the closed end. Given the symmetry expressed in (3)
at the open end the tract must consist of a cylindrical tube 
of identical length and area Amin. Although this reasoning is 
certainly correct very close to the ends of the tube, it is 
nevertheless possible that a different situation obtains inside 
the tube, and that in fact maximizing cross-sectional area 
will not decrease frequency.  
It must therefore be determined what happens to the energy 
when a thin slice at the end of the tube with maximal area is 
replaced by a tube with smaller cross-sectional area. By 
solving the wave equation in the system consisting of a 
wide tube connected to a narrower tube, the radiation 
pressure at the start of the narrower tube can be calculated 
to be: 
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where ( )aP x  is the radiation pressure for area a of the 
narrower tube, GP  is the radiation pressure at the closed 
end, x is the distance from the closed end, Amax is the area of 
the first tube and k is the wave number (2πf/c), with f the 
frequency. 
The amount of work necessary to reduce a small section of 
length δl, from Amax to a is given by integrating over the 
change in area: 
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which, when (9) is used as the radiation pressure, solves to: 
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As δl and GP  are positive by definition, the sign of the 
change in energy only depends on the terms between 
brackets. It can be determined that it is equal to zero for the 
following condition: 

 1

max

tan a kx− =
A
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For larger values of kx, the change in energy is negative, 
otherwise it is positive. The minimal value of kx is reached 
when a is equal to Amin. For given k and Amin, there is 
therefore a position x, such that for every point nearer to the 
closed end, the total energy, and therefore the resonance 
frequency cannot be reduced by reducing the tract’s cross 
sectional area.  

 
Fig. 1: Derivation from a given tract (A) of shorter (B) 

and longer (C) tracts with the same first resonance. 
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Fig. 2: Radiation pressure in a straight tract, the tract with 
the lowest first resonance and in a tract with a low, but not 

minimal first resonance. 



 

The question now becomes: how far away from the ends is 
this point x? It can be shown that it is exactly halfway the 
tract. For a tract with area Amax at the closed end and area 
Amin at the open end, the following condition therefore 
obtains: 

 1 min
2

max

tan
2
Lk− =A

A
 (13) 

(where k2 is the wave number of the two-cylinder tract). 
This can be proven by induction. The starting point is a 
cylindrical tube of length L with constant area A2. The 
lowest resonance of this tube is a quarter wave, and its 
wave number k2 is therefore π/(2L). The value of (12) for 
Amin =Amax = A2 is equal to π/4, and therefore x = L/2. The 
condition holds for the cylindrical tract. 
Now suppose there is a tract consisting of two cylinders, the 
first with area A1, and the second with area A2. Suppose also 
that the wave number of the first resonance is k2. By 
solving the acoustic wave equations it can be found that the 
total energy (the energy density integrated over the volume) 
in this tract is given by: 

 
2

12
2CE A L

cρ
=  (14) 

where C is a constant that determines the amplitude of 
pressure at the closed end. Now a small change in area δA 
of the first cylinder will result in a change in energy of the 
total tract of: 
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where the second term was determined by solving the wave 
equation in the first cylinder. The relative change in energy 
is therefore: 
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Which according to the adiabatic hypothesis equals the 
relative change in wave number 2 2k kδ .  
Now, because we assume that k2 must have the value given 
by (13) 
a small change δA in A1, would need to be offset by the 
following change in k2: 
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The relative change can then be written as: 
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It turns out that, using the value of k2 given by (13): 
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so that Eq. (18) is equal to Eq. (16) Therefore the change in 
k2 caused by the increase in energy is exactly equal to the 
change in k2 needed to maintain condition (13). This 
condition therefore holds for all tubes consisting of two 
cylinders of equal length. 

Now suppose that the tract with the lowest resonance 
frequency has a different area function than the one found 
above. This area function necessarily has an area 
Asmall < Amax somewhere in the first half of the tract. It also 
has a lower resonance frequency, and therefore a lower 
wave number 2k k′ < . Given relations (12) and (13) this 
means that x > L/2. But this means that the wave number 
could be lowered by increasing the section with area Asmall 
to Amax. But this is in contradiction with the assumption that 
this tract had the lowest possible wave number and 
resonance frequency. There is therefore no tract with lower 
energy, and therefore lower resonance frequency, than the 
one with a cylinder of maximal area as the first half and a 
cylinder of minimal area as the second half. Its resonance 
frequency can be determined from Eq. (13). 

2.2 Maximization of the first resonance 

When maximizing resonance frequency, energy must be 
maximized. Given the boundary conditions, it appears 
useful to decrease the area of the half of the tract that is 
near the closed end, and increase the area of the half that is 
furthest from the closed end. Although the energy does 
increase in this way, the situation is different from 
minimization. For minimization, the wave number 
decreased, and the radiation pressure therefore stayed 
uniformly positive in the first half of the tract, and 
uniformly negative in the second half. In the case of 
maximization, however, the wave number increases, and 
this causes the sign of the radiation pressure to change at 
some point in each half of the tract. This is illustrated in 
Fig. 3. An extra increase in energy can therefore be 
achieved if area is increased in this part of the first half of 
the tract, and decreased in the corresponding part of the 
second half of the tract. This leads to a gradual transition 
between the first part and the second part.  
The first and last parts of the maximizing tract will still 
have constant area. By substituting Amin for Amax in Eq. (11) 
and inspecting what happens to the change in energy when 
area is increased (in the part near the closed end) it is found 
that a similar condition to (12) obtains. However, now 
energy can only decrease if one increases cross-sectional 
area nearer to the closed end (while respecting maximal and 
minimal allowable area). When energy must be maximized, 
it is therefore necessary to keep cross-sectional area 
minimal in this region. Because of the symmetry of the 
optimal tract, the area up to the same distance from the 
open end must be maximal. 
In the transition between the narrow section and the wide 
section, area must be decreased in parts with positive 
radiation pressure and increased in parts with negative 
radiation pressure (illustrated in the middle part of Fig. 3). 
However, decreasing area in a part with positive radiation 
pressure decreases the radiation pressure, while increasing 

Two tube tract Effect of gradual
transition

Optimal tract

Fig. 3: Tracts for maximizing the first resonance. It is 
shown how a gradual transition can maximize energy, 

and thus resonance frequency. 



 

area in a part with negative radiation pressure increases 
radiation pressure. This occurs because pressure p and 
volume velocity u must be equal in adjoining sections. 
Because u = vA, decreasing cross sectional area A of a 
narrow slice of the tract increases particle velocity v. As 
pressure remains constant, it follows from Eq. (8) that 
radiation pressure must decrease. Similarly, increasing area 
increases radiation pressure. The relation between energy, 
radiation pressure and area leads to an energy maximum in 
the transition zone where radiation pressure is zero. 
To investigate the exact shape of the transition zone, it is 
convenient to express the standing wave in the acoustic 
tract as the superposition of two waves traveling in opposite 
directions. The particle velocity v at a given position can 
now be expressed as v = v+ + v– and the pressure p as 
p = p+ + p–. Both quantities depend on time and place.  
For traveling waves in an acoustic horn, the relation 
between the impedance of the forward traveling wave and 
the backward traveling wave is as follows: 
 *z z+ −= −  (20) 
where z+ and z–are the forward and backward impedances, 
respectively and z* indicates the complex conjugate. This 
follows from the definition of impedance and from Eq. (1).  
Because radiation pressure must be zero, and using the 
definition of impedance, it follows from (8) that: 
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which, by using (20) and by dividing impedance by ρc, can 
be written as: 
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which is only possible if: 

 z z i
c cρ ρ
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The sign of i only determines which of the two waves is 
called the forward wave and which the backward wave. For 
convenience the positive value is chosen. The relation 
between pressure and particle velocity then becomes: 

 p iv
cρ
=  (24) 

The equations for pressure and volume velocity (1) can be 
rewritten for pressure and particle velocity as follows: 
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substituting (24) gives: 
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Combining these two equations with some simplification 
gives: 

 2dA A vv i
dx c t

∂= −
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Now, because it is investigated what the resonance 
frequency of the tract is, it can be assumed that oscillations 

are harmonic, and that therefore v i v
t

ω∂ = ⋅
∂

. Simplifying 

(27) with this, dividing out v, and using the definition of k, 
gives: 

 2dA kA
dx
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Which solves to: 
 2

0
kxA A e=  (29) 

where A0 is a constant that gives the area at the throat of the 
horn. This means that the transition zone consists of an 
exponential horn that expands at a ratio of two times the 
wave number k. This means that the horn is operating at its 
cutoff frequency [e. g. 15, sections 198 and 201]. 
The final question is what the exact value of k is for a tract 
of given maximal and minimal diameter. For maximizing 
energy, the starting point of the horn is exactly the point 
where radiation pressure first becomes zero. As the tract up 
until that point has constant area, the solution for the wave 
equation in a tract of constant area can be used. In the case 
of a tube with constant area that is closed at one end, 
radiation pressure becomes zero at a length lc such that 
klc = π/4. For reasons of symmetry, the same must be true 
for the cylindrical part of the tract near the open end. 
Furthermore, given (29) and given the minimal and 
maximal areas, the length of the horn section can be 
calculated to be: 

 max minln
2el k

= A A  (30) 

Now the total length of the tract L is equal to 2lc+le. Solving 
for k it is found that: 

 max minln
2

k
L

π += A A  (31) 

The optimal tract is illustrated in the right part of Fig. 3. 
This concludes the analysis of the tracts with maximal and 
minimal first resonances. 

2.3 Higher resonances 

From the optimal tracts for the first resonance (which will 
be called basic tracts for short), optimal tracts for higher 
resonances can be constructed straightforwardly. The basic 
tracts are the shortest (for minimal resonance frequency) or 
longest (for maximal resonance frequency) that connect a 
pressure node (at the closed end) to an anti-node (at the 
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Fig 4: derivation of tracts with minimal and maximal 2nd  

resonances from tracts with optimal 1st resonances. 



 

open end). Connecting three basic tracts for the first 
resonance front-to-front and back-to-back (as illustrated in 
Fig. 4) must therefore result in the shortest or longest 
possible tract with that frequency as the second resonance. 
If there were a differently shaped tract that had a lower 
(higher) resonance, then there would have to be a 
subsection of that tract in which a pressure node is 
connected to an anti-node that is shorter (longer) than the 
basic tract. This is in contradiction with the assumption that 
the basic tract is the shortest (longest) possible tract for that 
frequency. Hence the constructed tract must be optimal. 
Tracts for even higher resonances can be generated 
analogously by adding two basic tracts per resonance.  

3 Conclusion and Discussion 

The exact shapes for acoustic tracts minimizing and 
maximizing resonance frequencies have been derived. The 
shape for the tract with the minimal resonance frequency is 
a tube with constant maximal area near the closed end, 
followed by a tube of equal length and constant minimal 
area. The shape for the tract with maximal resonance 
frequency consists of a tube with constant minimal area 
connected to an equally long tube of maximal area through 
an exponential horn that has the resonance frequency as its 
cutoff frequency. The wave number of the minimal 
resonance is given by Eq. (13) and that of the maximal 
resonance is given by Eq. (31). Tracts for higher resonances 
can easily be derived from these tracts by concatenating 
multiple copies, as shown in figure 4.  
The analytical tools – symmetry of the wave equation and 
the use of adiabatic invariance, can possibly be used for 
other problems as well, such as finding the vocal tract shape 
in which two resonances are maximized or minimized 
simultaneously, although this would involve more 
complicated mathematics. 
An interesting observation is that for maximizing resonance 
frequencies, gradual transitions are necessary, while for 
minimizing resonance frequencies, abrupt transitions are 
necessary. It appears that this observation has never been 
made before in the literature, and it supplements (and 
should not be confused with) Fant’s classical observation 
that “The general rule is that a reduction of area contrasts 
within the vocal tract shifts F-pattern towards a neutral 
vowel” [6, p. 81].  
As real vocal tracts consist of flexible, continuous tissue, 
gradual transitions occur more readily than abrupt 
transitions, and one would expect biological signals to be 
closer to the theoretically maximal resonance frequencies 
than to the theoretical minimal ones. Also, relations (13) 
and (31) can be used to estimate a range for the ratio 
between minimal and maximal cross-sectional area from 
measurements of resonance peaks of a signal and given the 
length of the vocal tract that produced it (which is usually 
easier to measure). This can be done by substituting the 
observed length and wave number, and solving for 
Amin/Amax. 
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