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Abstract 

Humans are very sensitive to symmetry in visual patterns. Symmetry is 

detected and recognized very rapidly. While viewing symmetrical patterns, 

eye fixations are concentrated along the axis of symmetry or the 

symmetrical center of the patterns. This suggests that symmetry is a highly 

salient feature. Existing computational models of saliency, however, have 

mainly focused on contrast as a measure of saliency. These models do not 

take symmetry into account. In this paper, we discuss local symmetry as a 

measure of saliency. We developed a number of symmetry models and 

performed an eye tracking study with human participants viewing 

photographic images to test the models. The performance of our symmetry 

models is compared with the contrast saliency model of Itti et al. [1]. The 

results show that the symmetry models better match the human data than 

the contrast model. This indicates that symmetry is a salient structural 

feature for humans, a finding which can be exploited in computer vision.  

1 Introduction 

Symmetry is a visual stimulus that often occurs in our daily lives. We ourselves, for 

instance, as well as most other organisms, have a clear left-right symmetrical body. Also 

flowers and butterflies are a good example. The degree of symmetry is even an indicator 

of the fitness of the individual. Manipulated images of faces, where the symmetry is 

enhanced, are judged more attractive than the original faces [2]. Symmetry does not only 

have value for living organisms. Also in art and decoration, symmetry is usually 

preferred over asymmetry [3]. Furthermore, symmetry is said to increase the figural 

goodness, since the redundancy in a symmetrical figure makes it simpler to encode and 

is more ordered than a non-symmetrical one [4]. 

In the present research, we investigate whether this abundance of symmetry in the 

environment also means that symmetry plays a role in human visual processing. More 

specifically, we investigate whether symmetry is a salient feature that guides eye 

movements and can thus be considered a good predictor for overt visual attention. We 

propose a new model to calculate saliency on the basis of symmetry, which is able to 

predict human fixations better than existing saliency models. 

It is known that humans are highly sensitive to symmetry. We detect symmetrical 

patterns very rapidly. When patterns have multiple axes of symmetry, recognition speed 

increases even more [5]. Similarly, symmetry positively influences recall and 

discrimination [6]. This suggests that the detection mechanism works preattentively and 



in a parallel manner [7]. The improvement in performance is thought to be related to the 

redundancy in the symmetrical forms, which results in more effective and simpler 

representations [8].  

There is also evidence that eye movements are influenced by symmetry. When 

viewing symmetrical forms, humans tend to fixate on the center of the form [9], or the 

crossing points of the symmetry axes [10]. Furthermore Locher and Nodine [11] found 

that fixations are concentrated along the axis of symmetry, and that fixations are more 

spread out for non-symmetrical images. These studies, however, use relatively simple 

stimuli with only one pattern presented at a time. In our experiment, we use 

photographic images to study whether local symmetry also guides eye movements in 

more complex scenes. 

These observations suggest that symmetry is a salient feature. However, most existing 

saliency models that model overt visual attention do not use symmetry as a measure of 

saliency. Instead, most models are based on local contrast in the image. The model of 

Itti et al. [1, 12], for instance, is based on contrasts in luminance, color and orientation. 

Their model is strongly influenced by the feature integration theory of human visual 

search [13]. The saliency model of Itti et al. has been compared to human eye fixations. 

Parkhurst, Law and Niebur [14] tested the model on photographic images and they 

showed that the model matches the human fixation points significantly better than 

expected by chance. Ouerhani et al. [15] also found a positive correlation between the 

model and human fixation data. 

Other saliency models, like the model of Le Meur et al. [16] are also based on 

contrast calculations. In their model contrast is calculated in the spatial frequency 

domain. Le Meur et al. compared their model to human data and found a positive 

correlation, which was slightly higher than the performance of Itti and Koch’s model. A 

set of simpler saliency operators including other features than contrast alone have been 

proposed by Privitera and Stark [17]. These were also found to predict human fixation 

Figure 1: Examples of images containing symmetrical forms. The second column shows 

the human fixation density map, the third shows the contrast saliency map, and the last 

shows our symmetry saliency map. The bright regions are the parts of the maps above 

50% of its maximum. The preference of humans to fixate on the center of symmetry is 

correctly reproduced by our symmetry model, whereas the contrast model displays a 

wide non-specific saliency response. 



points to some extent. It must be noted that Privitera and Stark also used a basic 

symmetry operator, which weakly resembled the human data. 

Although most existing models are based on contrast, figure 1 shows that humans 

have a clear preference to fixate on the center of symmetry. This can neither be 

explained by Itti and Koch’s model, nor by any of the other contrast models. This 

apparent deficiency in current vision models was the stimulus for the present study. In 

this paper we therefore investigate the role of local symmetry in overt visual attention. 

We use photographic images that contain real-world scenes with a complexity that goes 

beyond the simple forms used in the earlier mentioned psychophysical studies. It will be 

shown that the symmetry saliency models that we developed, do match the human eye 

fixation data. 

The paper is organized as follows. We start with a description of the three symmetry 

saliency models that we developed. These models are based on the isotropic symmetry 

and radial symmetry operator of Reisfeld, Wolfson and Yeshurun [18], and the color 

symmetry operator of Heidemann [19]. Furthermore, the eye tracking study that we 

conducted to test the performance of the saliency models is discussed. Then, the results 

are shown and compared to the saliency model of Itti and Koch, that is based on contrast 

[1]. We end with a discussion on the role of symmetry in overt visual attention. 

2 Methods 

To investigate the role of symmetry in visual attention, we developed a number of 

symmetry saliency models and compared them with human eye tracking data. To 

establish a point of reference, the contrast saliency model of Itti et al. [1] is also 

compared with the human data. In this section, the developed symmetry saliency models 

are explained. Furthermore, we describe the eye tracking studies. The section ends with 

the description of the methods to compare the models with the human data. 

2.1 Symmetry operators 

We developed three symmetry saliency models based on the isotropic symmetry and 

radial symmetry operator of Reisfeld, Wolfson and Yeshurun [18], and the color 

symmetry operator of Heidemann [19]. 

The isotropic symmetry operator [18] calculates the amount of symmetry at a given 

position, x, based upon gradients of the intensity in surrounding pixels. This is done by 

comparing pairs of pixels i and j at positions xi and xj, where ( ) / 2= +
i j

x x x  (see 

fig. 2a). Every pixel pair contributes to the local symmetry by  

 ( , ) ( , , ) ( , )
i j

c i j d i j p i j m mσ= ⋅ ⋅ ⋅  (1) 

Where mi is the magnitude of the gradient at point i, ( , , )d i j σ  is a Gaussian weighting 

function on the distance between the two pixels with standard deviation σ, and the 
symmetry measurement ( , )p i j  is calculated by 

 ( ) ( )( , ) 1 cos( ) 1 cos( )i j i jp i j γ γ γ γ= − + ⋅ − −  (2) 



Where 
i i

γ θ α= −  is the angle between the direction of the gradient angle 
i

θ  and the 

angle α  of the line between pi and pj (see fig. 2b). The first term in equation (2) has a 

maximum value when  
i j

γ γ π+ = , which is true for gradients that are mirror symmetric 

with respect to p. Using only this term would result in high values for points on a 

straight edge, which are not considered symmetrical. To avoid this problem, the second 

term demotes pixel pairs with similar gradient orientation. In this way, the contributions 

of all pixel pairs, ( )pΓ , within the radius, r, are summed up to give the isotropic 

symmetry value for p.  

 iso

( , ) ( )
( , ) ( , )

i j p
x y c i j

∈Γ
=∑M  (3) 

To make the symmetry operator more sensitive to symmetrical patterns with multiple 

axes of symmetry, Reisfeld et al. [18] developed the radial symmetry operator as an 

extension of the isotropic symmetry operator. First, the orientations of the contribution 

of the pixel pairs are calculated by ( , ) ( ) / 2
i j

i jϕ θ θ= + . Next, the symmetry orientation 

is determined as ( ) ( , )p i jφ ϕ=  for ( , )i j  that give the highest contribution ( , )c i j . This 

value is then used to promote the contributions of pixels pairs with dissimilar 

orientations. 

 ( )rad 2

( , ) ( )
( , ) sin ( , ) ( )

i j p
c i j i j pϕ φ

∈Γ
= ⋅ −∑M  (4) 

The two symmetry operators mentioned above work on intensity values only. Since 

some color transitions are not detectable in gray-valued images, Heidemann [19] 

adapted the isotropic symmetry operator to the color symmetry operator. This operator 

uses three color channels, red, green and blue. Equation (3) is adapted so that not only 

the gradients of pixels in one channel, but also between different channels are compared.  

 col

( , ) ( , )

( , ) ( , , , )
i j

i j

i j k k K

x y c i j k k
∈Γ ∈

= ∑ ∑M  (5) 

Where K contains all combinations of color channels, and ( , , , )
i j

c i j k k is the symmetry 

contribution calculated by comparing pixel i in color channel ki with pixel j in color 

channel kj. Furthermore, equation (2) is altered to 
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( , ) cos ( ) cos ( ) cos ( )
i j i j

p i j γ γ γ γ= + ⋅ ⋅  (6) 

Figure 2: The basis of our symmetry models. (a) gives three examples of pixel pairs 

whose gradients are compared by the symmetry operator. The geometry of the 

contribution of a pixel pair is shown in (b) and further explained in the text. (c) gives an 

overview of the multi scale setup of the symmetry models.   

 



so that the function becomes π-periodic in the first term, giving the same result for 
gradients that are rotated 180°. The second term keeps the same functionality as the 

second term in equation (2). 

2.2 Symmetry saliency models 

The given symmetry operators operate on a single spatial scale. However, most existing 

saliency models operate on multiple scales, and the human visual system is also thought 

to process on multiple spatial scales. We therefore developed the operators into multi-

scale symmetry saliency models, similarly to Itti et al’s model [1]. 

The process to calculate the symmetry maps is depicted in figure 2c. First, five spatial 

scales of the input image are created by progressively applying a Gaussian filter 

followed by a down scaling of the image by a factor two. The different scales are then 

processed to symmetry feature maps using the symmetry operators as discussed in the 

previous section, where we use 24r =  and 36σ = . Next, the five feature maps are 

normalized using the normalization operator, N, used in [1]. This normalization consists 

first of scaling the feature map values to the range [0..1], and then multiplying the 

feature map with 2(1 )−m , where m  is the average value of all local maxima in the map. 

This normalization promotes feature maps that contain a small number of symmetrical 

patterns that really stand out, as opposed to feature maps that contain many patterns with 

similar symmetry values. Finally, the feature maps are combined into a symmetry 

saliency map by resizing all feature maps to the same size and summing them.  

 
4

0
( )

s
s
N

=
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Where ⊕  is the summation operator that resizes all parts to the same size, and 
s

M  is 

the symmetry feature map at scale s. This procedure results in three symmetry saliency 

maps: iso
S  for isotropic symmetry, rad

S  for patterns with multiple symmetry axes, and 
col
S  which uses color information. 

2.3 Eye tracking experiment 

We recorded human fixation data during an eye tracking experiment using the Eyelink 

head-mounted eye tracking system (SR research). Fixation locations were extracted 

using the accompanied software. The images were displayed full-screen with a 

resolution of 1024 by 768 pixels on an 18’’ crt monitor of 36 by 27 cm at a distance of 

70 cm from the participants. The visual angle was approximately 29º horizontally by 22º 

vertically. Before the experiment, the eye tracker was calibrated using the Eyelink 

software. The calibration was verified prior to each session, and recalibrated if needed. 

The participants were asked to free view the images. We did not give the participants 

a task, since we are interested in the bottom-up components of visual attention. A task 

would give a strong top-down influence on the eye movements. Our approach is similar 

to [16, 20]. 

The experiment was carried out by 31 students of the University of Groningen. The 

participants ranged from 17 to 32 years old, among them 15 females and 16 males with 

normal or corrected-to-normal vision. In the experiment, 99 images in five different 

categories were presented, 12 image of animals in a natural setting, 12 images of street 



scenes, 16 images of buildings, 40 images of natural environments, and 19 images of 

natural symmetries, e.g., flowers, plants and butterflies (see figure 3). All these images 

were taken from the McGill calibrated colour image database [21]. The experiment was 

split up into sessions of approximately 5 minutes. Between the sessions, the 

experimenter had a short relaxing conversation with the participants, in order to get 

them motivated and focused for the next session. Before starting a new session, the 

calibration of the eye tracker was verified. After each presented images, drift was 

measured and corrected if needed using the Eyelink software. The participants could 

decide when to continue and were allowed to take a short break. 

2.4 Comparison methods 

We used two methods to compare the saliency models with the human data. The first 

method is a correlation method similar to [15, 16]. In this method we correlate the 

saliency maps with fixation density maps calculated from the human fixation data for 

every single trial. For every single trial, the fixation density map is constructed by 

placing Gaussian distributions for every fixation with the mean equal to the point of 

fixation and a standard deviation of 18 pixels. This value is chosen to fit the angular size 

of the fovea. The resulting value of this comparison method is given by the correlation 

coefficient, ρ, as calculated by equation (8).  

 

( ) ( )( )
,

2 2

( , ) ( , )
x y

x y x yµ µ

ρ
σ σ

− ⋅ −

=
⋅

∑ F S

F S

F S

 (8) 

Where F is the fixation density map, S is the saliency map and µ and σ2
 are respectively 

the mean and the variance of these maps. The correlation coefficient has a value 

between -1 and 1. 0ρ =  means that there is no correlation between the two maps, which 

is true when correlating with random fixation density maps. A value for ρ  close to zero 
indicates that a model is a poor predictor of human fixation locations. Positive 

correlations show that there is a similar structure in the saliency map and the human 

fixation map. 

The second comparison method, the fixation saliency method, measures the average 

saliency at the points of human fixation compared to the average saliency at a large 

number of randomly chosen points. This method is similar to that used by Parkhurst et 

al. [14]. The method puts an emphasis on the analyses of the fixation points more than 

on the comparison of the complete saliency maps. The fixation saliency score λ is 
calculated by 

Figure 3: Examples of images used in our experiments, one for each image category: 

flowers, animals, street scenes, buildings and nature. 
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Where fi is the ith human fixation location and rnd is a randomly determined location. 

We used an m of 1000 in our analysis. Furthermore, s( )p  is the average saliency value 

in a patch of the saliency map centered at point p and with a radius 28r = . If 1λ > , the 

saliency at the human fixation points is higher than in the rest of the image, which means 

that the given saliency model has predictive power. 

3 Results 

In figure 4, the results of the correlation method are shown. The five groups contain the 

results for the different categories. Within each group, the bars show the mean 

correlation coefficient, as calculated by equation (8), for every method. The error bars 

give the 95% confidence intervals. To put the scores into perspective, the plot 

furthermore shows the inter subject correlation, and the correlation of the human data 

with random fixations. The first is depicted by the horizontal gray bars with a solid line 

giving the mean and 95% confidence interval. The later is depicted by the horizontal 

dashed line. All means and confidence intervals are calculated using multi-level 

bootstrapping analysis. 

The inter-subject correlation is calculated for every image by correlating the fixation 

density maps of the participants with the maps of all other participants. This correlation 

shows how well the human fixations can be predicted using the fixations of other 

participants. This value gives a relative indication of the performance of the models. The 

random fixation scores are calculated by correlating random fixation density maps 

containing 15 random fixations with the human fixation density maps. Fifteen fixations 

are used since this compares to the average number of human fixations per image. 

Figure 4: The results of correlation method. The groups show the results for the 

different image categories. The error bars give the 95% confidence intervals. The 

horizontal gray bars with the solid line show the mean and 95% confidence interval of 

the inter subject correlation. The dashed lines show the correlation of the human data 

with random fixations (close to zero).  



It is important to note that the correlation values are relatively low. The reason for this 

is that the photographic images are complex stimuli that generate many fixations. Some 

of these appear to be random, and pull down the correlation. Some, on the other hand re-

occur for every subject, and also have high values for symmetric saliency. This causes 

significantly higher than random correlations. To measure the significance of the 

correlations between the model data and human data, they are compared with the 

random case for minimal correlation and the inter-subject case for a top performance. 

The difference between the performance of all models and the random fixations is 

highly significant. Figure 4 furthermore shows that the performance for the images 

containing natural symmetries is significantly higher for the three symmetry models than 

for the saliency model of Itti and Koch. The performance of the symmetry models is 

even comparable to the inter-subject correlation. Not only for the images containing 

explicit symmetrical forms, also for the other categories have the symmetry models 

significantly outperformed the contrast model. For these categories too, the performance 

is similar to the inter-subject correlation. 

Among the three symmetry models, there is no significant difference in performance. 

However, the performance of the radial symmetry model is somewhat higher for the 

images containing natural symmetries. 

Remarkably, for the nature images, the correlations for the symmetry models are 

higher than the inter-subject correlation. This can be explained by the higher diversity of 

fixation locations among the participants viewing these images. The images apparently 

contain many similarly interesting points. However, the higher values for the symmetry 

models suggest that the participants do primarily attend to the locally symmetrical parts. 

For the animal images, there is no significant difference between the symmetry 

models and the contrast model. Different from other images in our experiment, these 

images contain objects on low-contrast backgrounds. This explains the higher consensus 

among the participants, and also explains the higher correlation for Itti and Koch’s 

model. 

The results of the fixation saliency analysis are shown in figure 5. The bars show the 

mean fixation saliency as calculated by equation (9). The error bars are the 95% 

confidence intervals calculated using multi-level bootstrapping. The results confirm the 

Figure 5: The saliency at human fixation points relative to the average saliency at 

random points. The bars show the mean fixation saliency for the different saliency 

models. The error bars are the 95% confidence intervals. 



previous results with the correlation method. For most image categories, the saliency at 

human fixation points measured by the symmetry models is significantly higher than that 

measured by the contrast saliency model. Again, the results are not significantly 

different for the animal category. Between the symmetry models, no clear differences 

exist, although the radial symmetry model performs slightly better. 

The fact that both methods show a better performance for the symmetry models 

strengthens the conclusion that local symmetry is a highly significant feature for humans, 

and that it plays a considerable role in the guidance of eye movements. 

4 Discussion 

Investigating the role of local symmetry in guiding eye fixations, we developed three 

symmetry models and compared them to human fixation data. The performance of the 

models was analyzed using two methods and compared to the performance of the 

contrast saliency model of Itti and Koch. The results of both analyses show that humans 

pay attention to local symmetrical patterns more than they pay attention to contrast when 

viewing complex photographic images. Furthermore, the correlation results of the 

symmetry models are comparable to the inter-subject correlation, which indicates that 

symmetry is a good predictor for human eye fixations. 

There is no significant difference between the three symmetry models. However, for 

the natural symmetries, we see a slightly better performance of the radial symmetry 

model, suggesting a preference of humans for patterns containing multiple symmetry 

axes. The addition of color processing, in any case, does not improve the performance. 

To further investigate the role of symmetry in human vision, we will conduct similar 

experiments with artificial stimuli. For instance in line drawings, the role of structural 

features like symmetry is expected to be larger since it contains information about form. 

We furthermore plan to investigate the role of symmetry in artificial vision systems. 

Specifically, in current robotics, robots navigate in man-made environments containing 

many symmetrical patterns. We therefore hypothesize that our symmetry models are 

well suited to select interesting visual information for visual navigation. 

To conclude, the symmetry saliency models that we developed compare well with 

human fixations. The results show that humans are sensitive to symmetrical patterns and 

pay attention to symmetry. 
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