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Abstract
The recent development in robotics and human motion piqued interest in research-
ing dynamic human-interactive devices. Specifically, many prototypical designs
for exoskeletons, which provide physical assistance, have been proposed. These
devices give support by applying strength in the direction the wearer moves to, in
order to meet the motion requirements. However, current prototypes require the
calibration of the actuators in order to provide person-specific support. In this the-
sis, we aim to set up a theoretical exoskeleton-assistance framework in which we
learn the required support using Gaussian processes, rather than calibrating it our-
selves. We introduce a novel method, called SEAM, to learn support in an on-line
environment. Additionally, we explore the capabilities of an “all-in-one” support
model, which considers the aggregation of multiple activities in one model. In this
study, we found that, although conceptually applicable, the generative aspect of
SEAM prevents a stable series of predictions, thus failing to learn a proper support
model in an on-line environment. We also found that, even though a single-task
support model performs significantly better than a multi-task support model in
terms of predictive accuracy, the latter provides a much more compact and less
redundant approach. Moreover, using a multi-task support model allows for ex-
trapolation to other unseen tasks. Overall, this study provides useful insights in
terms of modeling support provided by exoskeletons.
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1
INTRODUCTION

One of the intriguing aspects that separates us humans from other animals is our
consistent and meaningful usage of tools. Over many centuries, we came up with
new and better ideas to make physical labor easier. One of the first creations that
does this, is the ‘wheel’, which many consider one of greatest inventions in human
history. This particularly simply shaped piece of work provides us with many ap-
plications to help us do labor that requires human strength. For builders, the focus
of using the wheel was set on constructing various tools for transportation of ob-
jects, such as wheel barrows and pulleys. These gave a boost in both productivity
and life expectancy, as building became less physically restraining.

A more recent application of the wheel is the auto mobile or car, which first
appeared in Europe during the Industrial Revolution. After it became available to
the consumer market, people could transport ‘themselves’ by providing negligi-
ble energy, as is not the case with a bicycle, for example. Transporting humans
efficiently is a necessity for productive large-scale cooperations. As our broad
tapestry of civilizations is evolving towards one large community, research and
development in this area is still active and a booming business.

However, for everyday activities, such as walking, the development of trans-
portation tools has been left unattended for a long time, making it unevolved in
its current state. This is mainly due to the fact that the majority of people can do
these tasks without the need for support. Yet, people who are not capable to meet
certain motion task requirements, such as walking or standing up, also need the
opportunity to perform these activities.
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Figure 1.1: Agro’s ReWalk exoskeleton that supports paraplegics in everyday ac-
tivities such as walking and standing up. (Medical Expo, 2014)

1.1 Exoskeletons and Human Motion

Tools that currently are widely available for this purpose, comprises wheel chairs,
crutches and prosthetics, which allow people with motor dysfunctions in their
legs, or paraplegics, to transport themselves using arm strength. Even though
these are useful and helpful, we are far from making an analogy to a car, in the
sense that cars require little physical effort to make their complex system of ma-
chinery drive at fast speed.

A piece of technology invented with this idea in mind, is the powered ex-
oskeleton (Figure 1.1). It can be seen as the motorized counterpart of prosthetics,
and aims to provide better and automatic leg support to paraplegics. However,
improvements to such devices are still being researched, as it is difficult to create
an exoskeleton that is light and flexible to move around with, yet has to support
its own weight and that of the wearer.

Therefore, the analysis of human motion is crucial in order to reconstruct the
necessary parameters that characterizes it. One solution to this problem is Inverse
Kinematics (IK), in which we apply the kinematics equations to derive the joint
angles and torques from a pose (Tolani et al., 2000). This approach is the most
common, as the equations are physically sound and entirely determined, and al-
lows us to extrapolate to desired poses based on a small movement of the wearer,
providing support in the activity.

However, the desired poses are not always those indicated by the wearer. To
provide reliable pose transitions, one has to ‘model’ human motion. This do-
main is hard, due to its non-linear state space and degrees of freedom of hu-
man movements. Common approaches that tackle these problems are Hidden
Markov Models (HMM) (Markov, 1906; Rabiner, 1989) and Gaussian Processes
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(GP) (Rasmussen and Williams, 2006), which are instances of Bayesian infer-
ence methods (Hastie et al., 2009). These methods induce a preference bias over
the hypothesis space in the form of Bayesian probabilities and manipulate them
according to evidential information. Bayesian methods are known to be flexi-
ble, data-efficient and fundamentally sound, which makes them appropriate for
non-linear high-dimensional state spaces. Specifically, GPs are widely applied to
time-series regression problems (Roberts et al., 2012; Cunningham et al., 2012),
and are suitable for modeling spatio-temporal data, making them appropriate for
our human motion setting. This has been done by Wang et al. (2008) in the field of
computer vision, where pose transitions for a walking human are generated from
such a process.

1.2 Research Question and Contributions

In this thesis, we set up a general theoretical framework for exoskeletal assistance,
in order to explore the applicability of GPs to model support, i.e., adjusting capa-
bility gaps (i.e., “weaknesses” in a motion trajectory) in order to meet a specific
motion task requirement. This implies researching and constructing possible sup-
port models and methods to apply them accordingly in an on-line environment.

We attempt to generalize assistance to multiple tasks and grasp the correla-
tions between them in order to define a unified concept of the impairment under
observation. This could yield a more accurate, yet compact support model, rather
than redundantly modeling each motion task separately.

We also propose a novel method to learn a support model in an on-line fashion,
which we call the Scale Extraction and Adaptation Method (SEAM). This allows
us to align the trajectory under observation with a predicted desired sequence of
poses, generated from a process that models movements suitable to adequately
perform a specific-motion task.

Additionally, we introduce the concept of multi-task support, which captures
the capability gaps over multiple activities. As the same motor dysfunction is the
cause for all these gaps, they should be highly correlated, which means we can
transfer support information between tasks. Moreover, having a multi-task sup-
port model is easier to maintain and extend than managing multiple single-task
support models. A general multi-task support model also should be able to ex-
trapolate to unknown tasks performed by the person for which the support model
has been constructed. This is useful for an exoskeleton, as it could encounter
specific motion tasks for which it has not been trained on yet.

Even though the framework should be applicable to any type of physical dis-
ability, we specifically focus on assistance in the context of paraplegia, which
is a dysfunction in the lower limb motors. To support the utility and contribu-
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Figure 1.2: Plan and contributions of the MIRAD project. (MIRAD, 2014)

tions of our framework in this context, we specifically refer to the MIRAD project
(MIRAD, 2014), as their goals are in line with ours (see Figure 1.2). MIRAD,
which stands for An Integrated Methodology to Bring Intelligent Robotic Assistive
Devices to the User, concerns itself with the design of a lower-limb exoskeleton
(see Figure 1.3). It is initiated due to the lack of paramedics and increase in mo-
tor dysfunctions. Additionally, its long-term goal is to establish development of
robotic devices which can perform dynamic human interaction, which can be used
in other areas, such as the other medical areas and the industrial sector.

Within the MIRAD project, Afschrift et al. (2014) attempted to model ‘sup-
port’ by setting up a musculoskeletal model that captures various levels of weak-
ness in the muscles. Even though the method is different, it is similar to what we
attempt to do. However, this research is performed from a biomedical point of
view, meaning that there exists a direct mapping between aspects of their method
and the actuators present in the exoskeleton. In contrast, we attempt to set up a
theoretical support framework from a more general perspective, which allows us
to gain clear insights into the various aspects required to provide exoskeletal assis-
tance. Additionally, accepting this paradigm allows us to disconnect the support
framework from the field of human motion and apply it to other domains.
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1.3 Thesis Structure
In Chapter 2, we discuss variants of Gaussian processes and properties useful to
our support framework, how we can decrease computational cost and ways to
capture correlations amongst multiple processes.

Chapter 3 lists formal definitions and explanations of models, their instantia-
tions and their interrelationships.

In Chapter 4, we explain the learning techniques used to achieve a trained sup-
port model. We cover how we can map an observed motion trajectory point-wise
with its desired generated counterpart using SEAM, and its theoretical and prac-
tical applicability. Additionally, we describe the specifics of a multi-task support
model, which captures various capability gaps over multiple physical activities.

In Chapter 5, we set up our experimental environment and present the results
for each test case. We assess the performance of our novel method SEAM and
our support models independently, after which we evaluate the application of a
single-task support model during SEAM. We also present a small proof of concept
to indicate the practical applicability of our methods.

In Chapter 6, we discuss the results shown in the previous chapter and the
insights gained from them.

We conclude the thesis in Chapter 7, mentioning possibilities for future work.

Figure 1.3: First prototype of the MIRAD exoskeleton being tested. (MIRAD,
2014)
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GAUSSIAN PROCESSES

A Gaussian process (GP) is a generalization of a multivariate normal distribution.
Instead of describing a finite vector of random variables, it characterizes a dis-
tribution over functions, which can be seen as an uncountably infinite number of
random variables. Moreover, each finite set of those variables has a joint normal
distribution. Rasmussen and Williams (2006) present a general and vast overview
of GPs and their properties.

A GP is defined by a prior mean function m(·) and covariance kernel function
k(·, ·).

m(x) = E[f(x)]

k(x,x′) = E[(f(x)−m(x))(f(x′)−m(x′))]
(2.1)

where x,x′ are input locations and f(·) is a random process. A random process is
a mapping from a (infinite) set of input locations to a set of random variables. In
other words, a process is similar to a function, but instead of mapping to a single
value, it maps to a distribution of values.1 We denote that f(·) follows a Gaussian
process (i.e., each finite set of random variables is jointly normally distributed)
with mean m(·) and covariance kernel function k(·, ·) as

f(x) ∼ GP(m(x), k(x,x′)) (2.2)

1Note that the word ‘process’ has two different meanings in this context. While a GP describes
a set of functions, f(·) ‘is’ described by a GP. Even though this distinction is small and mostly
irrelevant, we refer to the former and latter case as respectively a GP and random process.
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A common choice for a mean function is the constant zero-valued function m0(·),
as it is often hard to include prior knowledge in terms of a mean. However, there
are several popular choices for the covariance kernel. One of them is the squared
exponential (SE) kernel kSE(·, ·),

kSE(x,x′) = h2 exp(−
d∑

i=1

(xi − x′i)
2

λ2
i

) (2.3)

where d is the number of dimensions of an input, xi the ith dimension of input
parameter x, λi the input/length scale for the ith dimension and h the output scale.
The SE kernel should be used when inputs that are close to one another are highly
co-varying, and vice versa, as its value increases when its inputs are closer to
each other, which is controlled by the length scale λ. Explanations about the
impact of its scale parameters is given in Section 2.2. Note that kSE(·, ·) is indeed
a valid covariance kernel (Fasshauer, 2011), which means that every covariance
matrix constructed from this kernel is invertible (see Section 2.3). From now
on, we consider GPs to be characterized by the mean function m0(·) whenever
unspecified.

As mentioned before, each finite set of random variables has a joint normal
distribution. The prior distribution is given by

f |X ∼ N (m(X), K(X,X)) (2.4)

with a probability density function (PDF)

PDF[f |X](z) =
1√

(2π)d|K(X,X)|
exp(−1

2
(z−m(X))TK(X,X)−1(z−m(X)))

(2.5)
while the posterior distribution is defined as

f∗ |X∗, X,y ∼ N (µf∗ ,Σf∗), with
µf∗ = m(X∗) +K(X∗, X)K(X,X)−1(y −m(X))

Σf∗ = K(X∗, X∗)−K(X∗, X)K(X,X)−1K(X,X∗)

(2.6)

where X,X∗ are matrices of distinct input locations, f , f∗ their corresponding la-
tent function values and y observed function values at input location X . The vec-
tor m(X) and matrix K(X,X∗) are respectively the mean vector for f (i.e., m(·)
applied for X) and the covariance matrix between f and f∗ (i.e., k(·, ·) applied
for X and X∗). A step-by-step explanation for obtaining the mean and covari-
ance matrix of the posterior distribution is provided by Rasmussen and Williams
(2006).
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Figure 2.1: Three sample functions drawn from a prior (left) and a posterior dis-
tribution (right), interpolated at a 100 equidistant variables, of a GP with meanm0

and covariance kernel kSE . The posterior distribution is conditioned on the obser-
vations at 0.3 and 0.5, which are perceived to be 1 and −0.25. The gray areas are
the 95% confidence intervals per point.

We can sample from these distributions to retrieve a vector y of function val-
ues at input locations X . Interpolating linearly between these points gives us
an approximation of a function that could be drawn from the GP. In Figure 2.1a
and 2.1b, three functions drawn from respectively a prior and posterior distribu-
tion at 100 equidistant inputs are shown. In the latter, sampled functions are forced
to go through the observed points. Moreover, the variances of variables close (in
terms of the input domain) to the observed points are small, as they are highly
co-varying and can thus be for the most part inferred by these observations. Note
that even though in this case, in which we are certain about the observed values
(i.e., all sampled functions go through those points), uncertainty on variables can
be modeled by incorporating noise in the covariance kernel, such that our process
is not fully constrained on the observed function values.

We can apply GPs to various types of problems, such as classification (Williams
and Barber, 1998) and regression (Williams and Rasmussen, 1996). As mentioned
earlier, we can compute a posterior distribution of a GP, conditioned on observed
points and interpolate, or regress, between them. In contrast to other regression
models, such as the commonly used linear model, a GP places a preference bias
(i.e., the prior) over a function space, rather than a restriction bias (e.g., “only
consider linear functions”). Therefore, a GP is more general and flexible in what
it can model than a linear regression model (Rasmussen, 2004). Just like many
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other regression models, we can train a GP by providing a set of observed data
points, called the training set, through which the process should regress. Given
this finite set, we can model the posterior normal distribution for a set of input
locations, called the test set, as shown in Equation 2.6.

Even though GPs can model non-linear functions, in contrast to most other
regression models, there are some limitations and considerations to keep in mind.
First, the main assumption made is that the latent variables are normally dis-
tributed. This is in practice not always the case. However, more complex models
can be built by combining multiple GPs (Rosenblatt, 2000; Rasmussen, 2000).
Secondly, it is not always clear what type of prior should be induced on the func-
tion space. This requires domain knowledge and should be designed by experts
for optimal usage, as the choice of prior highly influences the model’s accuracy.

2.1 Marginal Likelihood
In a linear regression model, the function space is parametrized to capture linear
functions. In this case, the parameters are the weight vector w in the formula
f(x) = wTx.

However, a GP is nonparametric, in the sense that the mapping from the inputs
X to their predictive values y does not depend on parameters of the model. We
show this by integrating out these parameters from the likelihood, which denotes
how ‘likely’ our observations are, given the input locations and model parameters
imposed on our GP. This procedure is called marginalization. The marginalization
of the likelihood happens as follows:

p(y |X,θ) =

∫
p(y | f , X,θ)p(f |X,θ)df (2.7)

where X are inputs, f their latent function values, y the predictive values and θ a
vector of covariance parameters. The model parameters we attempt to marginalize
out are the latent function values f . In order to do this, we require densities for
the prior f | X,θ and likelihood y | f , X,θ. The former is already formalized
in Equation 2.5. We further impose Gaussian white additive noise ε (which we
consider part of θ) on the latent function values, such that

y =f(x) + ε with
ε ∼ N (0, σ2)

(2.8)

where f(x) a latent function value, y its corresponding observed value and σ2 a
variance. Using this, we can obtain the Gaussian distribution that describes the
likelihood

y | f , X,θ ∼ N (f , σ2I) (2.9)
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Figure 2.2: Mean and variance plotted for 100 equidistant test samples, condi-
tioned on 10 random training points. The test samples are drawn from a GP with
an input scale of λ.

from which we can calculate the PDF. Using these two PDFs, we can solve the
integration in Equation 2.7 to retrieve the marginal likelihood p(y |X,θ).

2.2 Hyperparameters
Even though we consider our model to be nonparametric, we still condition our
marginal likelihood on parameters θ in Equation 2.7. These refer to the parame-
ters of the covariance kernel and likelihood function (and mean function, which is
not the case for us, considering we use m0(·)), such as the input and output scales
of the kSE(·, ·) kernel presented in Equation 2.3. However, as they characterize
the prior and are not directly placed on the function space, these are independent
of the underlying parametric model we marginalized. We refer to these as hyper-
parameters.

These hyperparameters can have a large impact on the model. In the SE ker-
nel kSE(·, ·), the input (or length) and output scale characterize respectively the
desired magnitude of the input and output values of a function drawn from the
GP. Figure 2.2 shows the impact of different input scales λ. We can see that the
plotted function on the left has less fluctuations than the one on the right. This is
due to the higher length scale, which means that distinct variables are considered
less influential towards each other. Thus, the kernel associated with the left fig-
ure is less ‘short-sighted’ than the one considered in the right figure. This is also
visible in terms of variance, as the GP becomes more uncertain about unobserved
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variables for smaller length scales. Note once more, that these scales are param-
eters of the covariance kernel and not of the underlying parametric models, thus
characterize the stochastic process and not an actual function itself, which means
that functions with different length scales are still possible, but less probable.

As different hyperparameters give us distinct behaviours, it is therefore impor-
tant for solving a regression problem that we can optimize these hyperparameters
w.r.t. our domain of application. We do this by choosing the model for which the
observations are most ‘likely’ to occur given the model. This means we must opti-
mize the likelihood of our observations (presented in Equation 2.7) w.r.t. hyperpa-
rameters θ. We attempt to minimize the equivalent, simpler and computationally
stable negative log-likelihood, expressed as

− log p(y |X,θ) =
1

2
(yTK(X,X)−1y + log |K(X,X)|+ n log 2π) (2.10)

with n the number of training points.
There are various approaches to solve this optimization problem. One simple

method is conjugate gradient descent, which is an iterative method that gradually
alters the solution towards the gradient of the objective function in order to find
a local minimum. In our context, this means we require the derivative of the
negative log-likelihood function w.r.t. a hyperparameter θi, which is expressed as

− ∂

∂θi
log p(y |X,θ) =

1

2
yTK(X,X)−1

∂K(X,X)

∂θi
K(X,X)−1y

+
1

2
tr(K(X,X)−1

∂K(X,X)

∂θi
)

(2.11)

Adjusting different θi at a time towards the direction of the gradient brings us
closer towards a local minimum. Note that this method does not provide us with
the ‘global’ minimum, but rather the local one, which may be suboptimal. More-
over, as the approach optimizes the objective w.r.t. a data set (X,y), one must be
cautious of overfitting, which is the phenomenon of modeling noise in the training
data instead of the underlying signal. A large, representative data set or limiting
the number of iterations could generally prevent this. More information about this
method can be found in (Shewchuk, 1994).

2.3 Positive Definite Kernels

So far, we assumed that the matrices K(X,X), given in Equations 2.6, 2.10
and 2.11, are indeed invertible. Even though it is an intrinsic property of a covari-
ance matrix to be invertible, there is no guarantee that the kernels we use would
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give us a covariance matrix. In order have a valid covariance kernel, it needs to be
positive semi-definite (PSD).

Definition 2.1. A matrix K is PSD if and only if

∀v 6= 0 : vTKv ≥ 0

A kernel k is PSD if and only if every covariance matrix K(X,X)
for inputs X constructed from k is PSD.

Given this definition, we have the following theorem.

Theorem 2.1. Any PSD matrix is invertible.

Proof. Every PSD matrix K has a Cholesky decomposition K = UTU (Schnabel
and Eskow, 1990). Moreover, the Cholesky factor U is an upper triangular matrix
with non-negative diagonal elements. Therefore, the linear systems of equations

• UM1 = I (2.12)

• UTM2 = M1 (2.13)

can be solved uniquely, using respectively back and forward substitution, leaving
us with M2 = K−1.

�

Thus, in order to invert the matrices K(X,X) in our posterior distribution and
marginal likelihood, it is sufficient that the kernels from which they are con-
structed, are PSD.

2.3.1 Cholesky Update Rule and Process Approximations
In Equations 2.12 and 2.13, we use back and forward substitution on the factors
of the Cholesky decomposition (Schnabel and Eskow, 1990) of matrix K, which
can be considered as the square root of a matrix. This is a stable method for
matrix inversion and is widely used in case of PSD matrices. However, the com-
plexity of this approach is of the same order as the commonly used Gauss-Jordan
elimination for matrix inversion. Even though the back and forward substitutions
methods both have a quadratic complexity, the Cholesky decomposition still re-
quires O(n3).

There are various approximation methods to counter this expensive operation.
One of them introduces the concept of inducing inputs (Candela et al., 2007),
which are a fixed selective set of inputs Z on which covariances between other
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entries should be induced. Candela et al. (2007) show that Subset of Regressors
(SoR) approximation algorithm, which is a method based on ‘inducing inputs’, is
equivalent to using a covariance kernel kSoR(·, ·) defined as follows:

kSoR(x,x′) = k(x,Z)K(Z,Z)−1k(Z, x′) (2.14)

where k(x,Z) is a vector obtained by applying the covariance kernel k(·, ·) to
input x and inducing inputs Z, while K(Z,Z) is the matrix constructed by ap-
plying this kernel to the inducing inputs. We can see that covariances amongst
variables for which the inputs are not in Z, cannot be expressed directly, which
means covariance information has to be transfered through these inducing vari-
ables. Therefore, the inducing inputs have to be chosen in such a way that the co-
variance information over the entire system is maintained as well as possible. We
can do this by including these in the hyperparameters, and optimize in terms of the
negative log-likelihood. This approach is applicable in many settings. However,
in settings where accurate predictions are necessary, such as generative models
(Wang et al., 2008), we cannot use this method.

One other improvement that can be made, is when we are dealing with a
Toeplitz PSD matrix, which can be inverted in O(n2) (Mukherjee and Maiti,
1988). In our GP setting, we can obtain one by applying a stationary (i.e., in-
variant over the input space) PSD kernel, such as the kSE kernel, over equidistant
input samples. However, such a setting is in general not always possible, or at the
most inflexible.

Another improvement can be made when we are operating in an on-line mod-
eling environment, in which samples are sequentially to the data set. For this,
we consider updating the Cholesky factor U of a PSD matrix K, rather than the
matrix itself, when encountering adding a new sample (Seeger, 2008).

Assume we want to add an additional input sample to the n × n-matrix K11

with Cholesky decomposition K11 = UT
11U11. Then we have

[
UT
11 0

u12
T u22

] [
U11 u12

0 u22

]
=

[
UT
11U11 UT

11u12

u12
TU11 u12

Tu12 + u222

]
=

[
K11 k12

k12
T k22

]

(2.15)
with unknowns k12,u12 ∈ Rn×1 and k22, u22 ∈ R. We can derive that

• UT
11u12 = k12 (2.16)

• u22 =
√
k22 − u12

Tu12 (2.17)

Thus, given our previous Cholesky matrix U11, we can solve the linear system in
Equation 2.16 using back substitution in O(n2) time, and Equation 2.17 in O(n),
giving us an approach to update our covariance matrix in quadratic time.

It is also possible to remove a data point inO(n2) (Seeger, 2008) when old data
has become irrelevant or when we have too much data to handle the complexity.
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2.4 Multiple Outputs
So far, we only considered processes that model multi-input, single-output func-
tions. For example, the kSE(·, ·) kernel in Equation 2.3 can handle inputs with
any number of dimensions, but returns only one real number (i.e., the covariance
between all dimensions of both inputs).

However, in many situations, we are dealing with multi-dimensional output
data. Even though modeling the dimensions as separate GPs is an option, the
outputs are often strongly correlated, e.g., when dealing with multiple weather
sensors from a local area (Osborne et al., 2008). This valuable information will
be lost if one opts for this simplistic approach.

There are various approaches to resolve this issue. One way is to view Gaus-
sian processes as a convolution of Gaussian white noise sources with smoothing
kernels (Boyle and Frean, 2005). The basic idea of this method is to produce out-
puts, each generated from convoluted processes that share a common Gaussian
white noise process, which grasps the correlations between both. This approach is
demanding in terms of computational cost and requires a lot of storage (Álvarez
and Lawrence, 2009). However, various sparse approximations were proposed to
counter these issues (Álvarez and Lawrence, 2009; Álvarez et al., 2010).

A more straightforward method considers explicitely incorporating an addi-
tional input parameter, namely a label l, to denote the output dimension associ-
ated with the input x and have a cross-dimensional covariance kernel that captures
the correlations among the outputs (Osborne et al., 2008; Roberts et al., 2012).
Technically, based on this label, we could define different mean and covariance
functions for each pair of input labels l, l′ and pick the ones appropriate for the
associated dimensions. However, it is generally difficult to use separate kernels
to construct one valid covariance matrix (Melkumyan and Ramos, 2011). There-
fore, we stick to the easier approach of having one shared covariance kernel for
all dimensions and adapt it according to the labels provided in the inputs.

First, we transform our single-output covariance kernel into a quasi-equivalent
multi-output kernel, i.e., a kernel that provides values for multiple dimensions. We
define a label kernel k̃label(·, ·) as

k̃label(l, l
′) = h2l δ(l, l

′) (2.18)

where l, l′ are labels associated with an output dimension, hl is the output scale
for l’s dimension and δ(·, ·) the Kronecker delta (i.e., a function that maps to 0 or
1 when both its inputs are respectively not equal or equal). We can then write our
wrapper multi-output kernel k̃m(·, ·) as

k̃m([x, l], [x′, l′]) = ks(x,x
′)k̃label(l, l

′) (2.19)
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where ks(·, ·) is a single-output kernel that considers the inputs x,x′. Even though
at first sight, this kernel seems to capture the same amount of information as
multiple single-output kernels. However, Bonilla et al. (2008) prove that incor-
porating noise on the latent values allows for transfer of covariance information
among multiple dimensions when inverting the block-diagonal covariance matrix
in Equation 2.6. When the observations are noiseless, the multi-output and single-
output approaches are equivalent.

We now introduce a new label kernel klabel(·, ·) by introducing explicit corre-
lation values, allowing for a more intuitive approach.

klabel(l, l
′) = hlhl′Sl,l′ (2.20)

where hl, h′l are output scales for labels l, l′ and Sl,l′ their corresponding value in
the correlation matrix S. This matrix is built up from a vector θc of spherical co-
ordinates (Pinheiro and Bates, 1996), which guarantees a positive definite matrix.
The spherical parametrization of S provides a direct interpretation of θc in terms
of correlations and variances among the output dimensions. Moreover, each pos-
sible vector θ maps to a unique matrix S, which allows for a stable optimization
of an objective function w.r.t. θc.

The correlation parameters θc and output scales hl for all labels l can be in-
cluded in our set of hyperparameters θ, such that these can be optimized for our
negative log-likelihood function given in Equation 2.10. However, one should be
wary of the fact that the size of θc increases quadratically with the number of
output dimensions (O(d2out)), which can be expensive in terms of time and data to
properly optimize these.

Finally, we can define a wrapper multi-output kernel km as follows:

km([x, l], [x′, l′]) = ks(x,x
′)klabel(l, l

′) (2.21)

This approach can be used to capture correlations amongst different tasks, i.e.,
instances of various latent correlated models, as has been done by Bonilla et al.
(2008).

Note that for a training set X with n observations, the multi-output kernel
provides a matrix K(X,X) of sizeO(doutn). Computing its inverse can therefore
be computationally expensive, as it requires O(d3outn

3) time (see Equations 2.6,
2.10 and 2.11).

2.5 Dynamic Process
GPs are widely used to model spatio-temporal data (Banerjee et al., 2008, 2013)
and timeseries (Cunningham et al., 2012; Osborne et al., 2008). A simple and
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intuitive way to apply them in such settings, is to define the input locations over
the time dimension and model the latent function values as latent states at a certain
time frame. Thus, our prior distribution (see Equation 2.4) looks as follows

ζt | t,θ ∼ N (m(t), K(t, t′)) (2.22)

where t is an input vector with time stamps and ζt their corresponding latent
states. By observing states st at times t, we can thus built up our posterior distri-
bution (see Equation 2.6) and train our model to predict our mean series.

However, this approach introduces some issues, which originate from the fact
that we use absolute time stamps. In contrast to applications such as weather
forecasts, many practical settings consider a sequence of observed states over time
as training data, but require models that are independent of the actual moment of
measurement. For example, human motion consists of a series of pose transitions,
that are measured over time, but the actual model of the movement should be
independent of when those transitions were executed. Moreover, generalizing
over time for dynamic systems such as human motion is difficult, as it is likely
that the data set contains movement trajectories with different paces, even though
they all refer to the same activity we are trying to model. Both problems are
demonstrated in Figure 2.3. We can see here that the series have distinct time
scales. Additionally, states measured at the same time stamp have therefore the
same input, yet emerged from different latent states.

Thus, exactly for these types of problems, it seems appropriate to introduce a
dynamic variant of a time series model. For this, we consider the state space itself
as the input domain, rather than the time dimension, as is done by Wang et al.
(2008). More specifically, we transfer the sequentiality of events from the time
space to the state space, such that our dynamic GP models state transitions instead
of independent subsequent frames over time. This means that independently of
‘when’ a state is measured, it will always map to the same latent state for a fixed
length scale. The issue of different scales still exists in this approach. However,
given that the sampling rate of state observations is small enough, this should not
form too much of a problem, as the observed transitions will be approximately the
same. Note that our model should support multiple outputs when it has multiple
inputs, since the input and output domain are the same. Even though it is perfectly
feasible to include multiple output dimensions (see Section 2.4), we specify the
formalisms for single-output GPs for the sake of simplicity and notation.

Our new dynamic GP looks as follows:

ζt+1 ∼ GP(m(st), k(st, st′)) (2.23)

where st is an input state at time index t and ζt+1 its associated latent next state.



Dynamic Process 18

3.5 4.0 4.5 5.0

−
70

−
60

−
50

−
40

−
30

−
20

−
10

0

Time (s)

K
ne

e 
an

gl
e 

(°
)

Figure 2.3: Knee angle for one period of a gait cycle, plotted against the time of
measurement for two distinct humans walking. One trajectory has a shorter time
scale and starts off later (solid), while the other trajectory has a longer time scale
and starts off sooner (dashed).
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Wang et al. (2008) show that our dynamic GP is actually a Markov chain
(MC). These are stochastic processes that model transitions in a system of states
(Markov, 1906; Grinstead and Snell, 1988). Innate to these models is the fact that
the transition probabilities from one state to another can only depend on a finite
sequence of last encountered states. This type of conditioning of a state is called
the Markov property.

Marginalizing out the parameters g of the underlying dynamic parametric
model from the prior distribution given a subsequent set of input states s =
[s1, · · · , sn−1] with latent states ζ = [ζ2, · · · , ζn], we can induce the Markov prop-
erty as follows:

p(ζ | s,θ) =

∫
p(ζ | s,g,θ)p(s | g,θ)p(g | θ)dg

= p(s1)

∫ n∏

t=2

p(ζt | st−1,g,θ)p(g | s,θ)dg
(2.24)

which considers a first-order MC, as the transition probabilities p(ζt | st−1,g,θ)
are only conditioned on the previous state. Wang et al. (2008) note that putting an
isotropic (i.e., uniform in all directions) Gaussian prior on the dynamic parameters
g, we obtain

p(ζ|s,θ) =
p(s1)√

(2π)(n−1)d|K(s1:n−1, s1:n−1)|d
exp(−1

2
tr(K(s1:n−1, s1:n−1)

−1s2:n, s
T
2:n))

(2.25)
which is analogous to the PDF of a Gaussian prior distribution (see Equation 2.5),
with the exception of the p(s1) factor. To have a theoretically sound equivalence
between the MC and our GP model, this factor can be removed when the starting
state of a batch of subsequent states is always the same.

Note that we can also apply higher-order Markov chains by conditioning on
multiple past states. For example, this is useful in practical settings where velocity
(second-order) or acceleration (third-order) must be modeled.

An interesting property of our dynamic model is that it is generative. This
means we are able to predict a batch of consecutive states given an initial state.
We can see this generative aspect applied to human motion in Figures 2.4a and 2.5,
which respectively show a two- and three-dimensional representation of a gener-
ated gait cycle. Compared to Figure 2.4a, we can see that even though the scales
of the trajectories differ, the generated trajectory is similar the observed one. The
former is smoother due to the fact it is drawn from a model that is generalized
over multiple trials.

This generative property can be useful in computer vision, where a frame-by-
frame reconstruction of a walking human can be made (Wang et al., 2008).
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Figure 2.4: 2D representation of generated gait cycle using a dynamic GP model
(a) and an actual observed cycle performed by a human (b). A state in the cycle
consists of three dimensions, namely the hip flexion (blue), the knee angle (green)
and the ankle angle (red).
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Figure 2.5: 3D representations of generated gait cycle using a dynamic GP model.
The right plot is a rotated version of the left one for the sake of clarity.



3
MODELS

Modeling human motion is a difficult problem, due to its a high-dimensional state
space, and thus, in general, has many degrees of freedom (DoF). To be exact,
a human body has 244 DoF (Zatsiorsky and Prilutsky, 2012), for which the hip
has three DoF (i.e., flexion, rotation and adduction). However, during simple
and general motion tasks, such as walking, humans move in approximately the
same way every time. Thus, most of the possible states we encounter during such
specific activities are concentrated in a small region of the state space. We can see
this in Figure 3.1, where even cross-human trajectories are roughly the same for
a gait cycle (i.e., a regular movement pattern during walking). This means that
during such motion tasks, for an observed sequence of poses, the dimensions that
define these states are highly correlated over the trajectory.

To this end, as we only consider lower-limb activities, we model the right leg,
for which its pose is specified by three parameters, namely, one for each joint, i.e.,
hip flexion, knee angle and ankle angle. Anatomically speaking, the dimensions
we use are along the sagittal plane (see Figure 3.2). We can thus reduce this high-
dimensional state space to a three dimensional space without losing too much
information about the motion itself.

Note that we take physically existing dimensions of a state, rather than re-
ducing the space to a lower dimensional latent space, as is done in most dimen-
sion reduction algorithms such as Principal Component Analysis (Smith, 2002)
or Gaussian Process Latent Variable Models (Lawrence, 2004, 2005). These al-
gorithms might provide more accurate results, since they compress information
about the actual state space in a more advanced way, opposed to just pruning re-
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Figure 3.1: Gait cycles performed by two distinct human subjects, for which the
state transitions in terms of hip, knee and ankle parameters are recorded. The
poses are measured every 0.01 seconds

Figure 3.2: Representation of the anatomical planes, i.e., the sagittal, frontal and
transverse plane.
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dundant dimensions as we do. However, working with the sagittal plane is easier
in a practical setting, as they are directly available to the exoskeleton in an on-line
environment.

We now formalize the types of models and trajectories we consider in our
exoskeleton-assisted human motion setting. First, we define normal and weak
models. The former serves as a baseline for a specific task requirement, which we
use as a generator for “optimal” trajectories w.r.t. that task. The latter are human-
specific processes that models trajectories with certain capability gaps, i.e., devi-
ations from the normal model. Next, we formalize this deviation as a difference
between the normal and weak processes. Finally, we can define a support model,
which accounts for that deviation and transforms a weak trajectory into a normal
one.

The approach of maintaining human-specific deviation models rather than
modeling their ‘deviated’ trajectories has the advantage that it readily implies the
needed support. More importantly, such a person-specific support model can be
learned on all tasks jointly, and applied to new unseen tasks, as long as a normal
model of them is available. A multi-task support model makes sense, as the devia-
tions are likely to be related across tasks, and re-learning them from scratch every
time introduces redundancy.

Remember that we can define a model as either a time-series model (i.e., a
process mapping absolute time stamps to latent states) or a dynamic model (i.e., a
process mapping observed states to their next latent state). As explained earlier in
Section 2.5, the latter gives us a more flexible way to shift the model in time. We
define our models to be dynamic multi-output GPs, mapping from an observed to
a latent state.

3.1 Trajectories

3.1.1 Normal
People with a regular movement pattern require no support from our exoskele-
ton. Although individually, or even collectively, we cannot grasp the concept of a
‘perfect’ motion trajectory, we consider a model based on these patterns to be an
example of optimal physical behavior.

We define the random process that captures this behavior to be the normal
process ηa(·), where a is the activity we are trying to model.1 An instance of
that process is called the normal trajectory. We approximate such an instance by
considering a finite sequence of poses Sηt at time indices t. The latent function

1For the sake of future ease, we omit the index a whenever the context is clear or when the
activity is irrelevant.
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values associated with these are defined as ζηt+1. From now on, we do not make
the distinction between a trajectory and its approximations anymore.

We can define η(·) as follows:

η(st) ∼ GP(m0, k
η(st, s

′
t)) (3.1)

with prior distribution

ζηt+1 ∼ GP(0, Kη(Sηt , S
η
t )) (3.2)

Note that we defined ηa(·) to be an optimal trajectory model, thus is considered
fixed for all humans. This means that for a specific task a, the model can be
learned off-line and does not have to be altered afterwards. We can learn this
model by generalizing over multiple independent trials of a certain activity.

3.1.2 Weak
Paraplegics (i.e., people whom we aim to help by providing leg support) do not
have a normal trajectory as we have defined before. Instead, their poses are drawn
from a process that deviates from it. For a specific person p, we refer to this as
a weak process ωp(st) = η(st) − δ̃p(st) with non-zero some deviation process
δ̃p(·). We call its observed sequence of weak poses Sωp

t with corresponding latent
function values ζωp

t+1.
Formally, we have

ωp(st) ∼ GP(m0, (st), k
ωp(st, st′)) (3.3)

with prior distribution

ζ
ωp

t+1 ∼ GP(0, Kωp(S
ωp

t , S
ωp

t )) (3.4)

Note that, as opposed to our normal model, ωp(·) is human-specific (as is
δ̃p(·)). This is mandatory, as we want to provide support to counter a specific
disability, which is different per person. Moreover, as the weak trajectories are
the ones we observe in our exoskeleton-assisted setting, we have to adjust them in
an on-line manner in order to provide real-time support.

3.2 Support

In the previous section, we defined δ̃p(st) = η(st) − ωp(st) to be the deviation
from the normal process for a specific person p. A more practical way to formalize
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the relationship between both motion models, is to consider a reduction process
δp(·), which maps an observed normal state to a latent weak state. Our GP looks
as follows:

δp(st) ∼ GP(m0, k
δp(st, st′)) (3.5)

with prior distribution

ζ̂
ωp

t ∼ GP(0, Kδp(Sηt , S
η
t )) (3.6)

where ζ̂ωp

t models the same state as ζωp

t , but refers to a different random vari-
able. We can now model ‘weakness’ in the trajectories by applying the reduction
process to a sequence of normal states, to get their corresponding weak states.

However, it is not the reduction or deviation we are particularly interested in.
We need to define a model that can provide support to weak states in order to
transform them into their normal counterpart. Thus, we define a support process
δ−1p (·) that maps an observed weak state to a normal latent state. In some sense,
the required support can be seen as the inverse of the reduction, given by δp(·).

We formalize our support process as follows:

δ−1p (st) ∼ GP(m0, kδ−1
p

(st, st′)) (3.7)

with prior distribution

ζ̂ηt ∼ GP(0, Kδ−1
p (S

ωp

t , S
ωp

t )) (3.8)

where ζ̂ηt models the same state as ζηt , but refers to a different random variable.
Using this model, we can provide on-line support by observing weak states

and map them to their corresponding predicted normal state.
A diagram of relationships between all states in terms of the defined models is

Figure 3.3.

3.3 Scale-Dependent Transitions
Observing the way humans move, it is apparent that they perform certain motion
activities at different paces. Even when we focus on one specific human, walking
will likely be done at different velocities. Therefore, it is crucial to the learning of
such models that they can handle changes in velocity.

We define our (time-)scale-dependent process the same way as we have done
previously for the scale-independent cases. The variation to it is that we introduce
an additional scale input parameter, and alter the training data such that it cov-
ers multiple instantiations of this parameter and is able to interpolate to multiple
scales.
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sηt sωt

ζ̂ηt ζηt+1 ζωt+1 ζ̂ωt

η ω
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+δ̃

−δ̃

1

Figure 3.3: Diagram representing the system of models and states. The transi-
tions are either applications of a process on an input state st to achieve a latent
state ζ (solid), additions/subtractions of deviation processes γ̃(·) (dashed) or state
transitions (double). The normal and weak processes η(·),ω(·) respectively map
an observed normal and weak state snt ,sωt to the next latent normal and weak state
ζηt+1,ζ

ω
t+1. The reduction process δ(·) maps a normal observed state sηt to a weak

latent state ζ̂ωt . In contrast, the support model δ−1(·) maps a weak observed sωt
to a normal latent state ζ̂ηt . Note that ζ̂ηt is a different random variable than ζηt ,
yet are referring to the same underlying state at time t. The sequence of events to
learn support is to align a weak trajectory with a normal trajectory, by observing a
sequence of poses sωt and generating a corresponding normal state sηt using η(·),
after which δ−1(·) can be updated. To provide support, we observe a weak state
sωt and apply the support model δ−1(·) to obtain ζ̂ηt . Its mean could then be used
as a predicted state sηt .
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Formally, we have

γ([rt, st]) ∼ GP(m0, k
γ([rt, st], [r

′
t, s
′
t])) (3.9)

for a scale-dependent process γ(·). We assume from now on that every model is
scale-dependent, unless specified otherwise.

3.3.1 Velocity
Given the states of a trajectory, we are able to approximate the velocity at a given
state st.

vγt = sγt+1 − sγt (3.10)

where rt is an observed scale and vγt is the velocity vector at observed state sγt ,
sampled from the process γ.

Note that this velocity can also be modeled over the state space using a GP,
by providing a mean and covariance function that maps state input to random
velocity variables. Modeling a velocity process instead of a state one provides
smoother human motion trajectories, as the process generalizes over these less
stable second-order functions. Even though it is not useful anymore to model
higher-order functions, as the means of all random variables are close to zero in
this case, it is possible to do so next to the velocity model, such that we get even
smoother trajectories.

However, it is not necessarily smoothness we want, as generalizing over veloc-
ity vectors might give us too much of an approximation to provide proper support.
Therefore, we consider it is sufficient to apply Equation 3.10 when we require this
second-order information.

3.3.2 Data Augmentation
As mentioned before, we introduce a new scale input parameter. This scale is a
property of the velocity vector between the input state, and the next state returned
by the process. More specifically, given a certain trajectory and an observed state,
we specify an additional velocity scale in order to describe the “units of time” that
should pass between this state and the next one. This way, we can handle multiple
paces and a certain state, and therefore model changes in paces.

However, in order to train such a model, we need trajectories with their as-
sociated artificial scale a priori. This is a difficult task, as the scales should be
correctly specified relative to one another (e.g., the scale of a trajectory that has
been executed twice as fast should have twice the scale).

We solve this problem by altering our data set. First, we assume that the
trajectories in our data set are already normalized. This gives us equally scaled
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trajectories to begin with, which makes the task of training this model much sim-
pler. Given this premise, we assign one “unit of scale” to these trajectories. Next,
we rescale our trajectories by certain factors (by resampling the data according to
the desired scale) and assign these factors to the scale parameters of their states.2

This allows us to train the model over different scales, such that it can interpo-
late (and extrapolate) towards unknown ones. After training, we have a model
to which we can provide a scale parameter and input state, and retrieve the next
state according to the specified scaling of the trajectory. These constraints can be
applied in practice by requiring the human subjects (from which we collect the
data) to walk at different paces (e.g., by using a treadmill) and use the speed as an
observed scale over the entire trajectory.

Note that the assumption about having normalized trajectories in our data set
is in practice not true. However, if the observed scales rt of the trajectories are
not too varying, the process should be able to generalize these trajectories to the
same model scales ρt, and do the same for their manipulated variants.

2This also works for real factors, in contrast to integer ones. However, this requires applying
other more complex scaling techniques on the training trajectories, which we do not consider.



4
LEARNING

Our objective is to provide support to people with weak trajectories, such that they
are transformed into normal trajectories. To do so, we observe their weak trajec-
tory state by state and use the models specified in Section 3. A scale-dependent
normal model to represent the regular gaits can be learnt off-line using multiple
trajectories from various subjects.

However, training a support model requires an alignment of the observed weak
trajectory with its associated normal trajectory in order to provide a mapping be-
tween both. We provide a novel on-line learning strategy, called the Scale Extrac-
tion and Adaptation Method (SEAM).

We discuss the steps that make up SEAM. First, we explain how we can es-
timate an approximation to the normal model scale r̂ηt from an observed weak
vector vωt . Then we introduce a confidence measure to denote the certainty of
our extracted scale. Using a sequence of scales and confidence, we propose a
running weighted average window to aggregate these to obtain the final predicted
normal scale. We then discuss the alignment procedure and the limitations of
SEAM. Afterwards, we explain how support can be learned in both a single-task
and multi-task setting.

4.1 Scale Extraction and Adaptation Method

Even though we provided scales for each trajectory in the training data for a scale-
dependent model, it is hard and counter-intuitive to specify a scale to retrieve the
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appropriate predicted state. Moreover, given that we need to be able to predict
a normal state from the ‘associated’ weak state, it is required to extract the scale
information for the normal trajectory from the weak trajectory. We propose a scale
extraction method to retrieve the scale information on-line from a weak velocity
vector and apply it our normal model in order to find the associated predicted
normal state. In short, we do this aligning the observed weak trajectory with its
predicted normal trajectory.

We start off having our observed vector of weak states Sωp = [s
ωp

1 , · · · , sωp

t ]T

already mapped to their corresponding normal states Sη = [sη1, · · · , sηt ]. Observ-
ing weak state s

ωp

t+1, we can compute the velocity v
ωp

t at sωp

t by using Equa-
tion 3.10.

Given this weak velocity vector, we must extract the scale information w.r.t.
the weak latent trajectory and transform it accordingly into scale information w.r.t.
to the normal latent trajectory. However, as the model scales ρηt are generally
unknown for a desired state transition, and the observed scale rωp

t originates from
a different process, it is hard to infer what scale rηt we should provide to our model
to get the wanted next predicted normal state.

4.1.1 Separating Scale from Deviation Information
The proposed method for inferring the correct model scale ρηt originates from
the orthogonal relationship between the observed weak velocity vector vωp

t with
corresponding scale rωp

t and a predicted normal velocity vector vηt with associated
scale rηt = ρ̂ηt .

More specifically, the discrepancies in time scales can be seen as ‘horizontal
difference’ ∆h

t , since a velocity vector describes the displacement over time, while
its scale characterizes its instantiation of time. Formally, we have

∆h
t = (Tη

t+1 − Tη
t )− (T

ωp

t+1 − T
ωp

t ) (4.1)

where Tγ
t is the time of measurement for state sγt

The difference between the means of two corresponding latent states ζωp

t+1 and
ζηt+1 (of respectively the last observed weak state s

ωp

t and its predicted normal
state sηt ) can be viewed as ‘vertical difference’ ∆v

t . More formally, given the
model scale ρηt that provides us with the appropriate latent state ζηt+1, we have

∆v
t = ζηt+1 − ζ

ωp

t+1 (4.2)

As the dimensions over which these two differences operate, are orthogonal, we
could easily separate both information pieces by calculating the observed hori-
zontal difference and then infer the vertical difference using the observed velocity
vector.
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α

vωp

v

vproj

vrej

Figure 4.1: Projection and rejection of vector v w.r.t. vector vωp .

However, we are not dealing with a time-dependent GP, as we are modeling
state transitions rather than incorporating time in our input. Therefore, we cannot
use exhibitions of time directly to retrieve the difference in scales. We are dealing
with this issue by using the axis defined by the weak velocity vector as an analogue
to the time axis. This assumption provides us with an orthogonal relationship only
defined in terms of our state space, namely the dimension parallel to the weak
velocity vector, and the one orthogonal to it.

Consider the normalized weak velocity vector v̂ωp which defines the horizon-
tal axis, and a velocity vector v from which we attempt to extract the scale. We
can project v onto the horizontal dimension to retrieve the vector vp.

vproj = (||v||cos(α))v̂ωp

= (v.v̂ωp)v̂ωp
(4.3)

where α is the angle between v̂ωp and v. We compute the rejected vector as well.

vrej = v − vproj (4.4)

The obtained vectors can be viewed in Figure 4.1.
Applied to our case, we consider v to be equal to an approximated normal vec-

tor v̂η, obtained using Equation 3.10. Given that we know the observed scale rωp

of the normal vector and that the considered transition starts at the associated la-
tent states for both processes ωp and η, we can update the approximated predicted
scale r̂η as follows:

r̂η =
||vωp||
||vηproj||

r̂η (4.5)
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Figure 4.2: Representation showing the different types of poses in a gait cycle.
(Martín-F’elez et al., 2011)

Since we are working with orthogonal dimensions, we can extract the vertical
difference by applying the same ratio using the rejected vector to the means.

4.1.2 Confident Scale Information

In our case, these transformations are theoretically unsound, as a weak latent state
that deviates from the normal process might have the same distribution as an-
other normal latent state further down the road. In other words, there are various
solutions to the separation problem we set up, for which our method can assign er-
roneously information to either the horizontal scale property or the vertical mean
property.

Therefore, we consider a more stable approach, in which we introduce a new
assumption about the observed weak trajectories. Namely, we assume that the
“weakness” segment (i.e., a significant deviation from the normal model) in an
observed trajectory occurs in a concentrated region after a considered amount of
observations. This allows us to learn a confident scaling of the trajectory before-
hand, without worrying too much about it when encountering the weak segment.
Moreover, this assumption is especially helpful in settings where the scaling over
the entire observed trajectory is approximately the same (w.r.t., the model scale).

Note that this assumption is not unreasonable in most practical cases, as an
activity is initialized from a resting position, in which both legs provide support to
the entire body. Moreover, in Figure 4.2), we can see there is a segment where the
human does not support himself well, namely at the moment the human switches
his pivoting foot. This in general the point where the weakness in the cycle will
occur.

Using this assumption, we attempt to evaluate how confident we are in the
scale information we extracted at a particular weak state. We do this by weighting
the information with the inverse squared norm of the rejected normal velocity
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vector.

conf(r̂η) =
1

||vηrej||2
(4.6)

When the direction of vη is mainly in the direction of the corresponding weak
velocity vector vωp , we have good reason to believe that there is not a lot of
vertical difference that pollutes the scale information. This means we could apply
Equation 4.5 without too much trouble. However, when the rejected vector is
large, the weak trajectory deviates heavily from the normal model, in which case
we have vertical and horizontal information contained in the weak velocity vector.

Note that even when the weak and normal vectors are mainly overlapping,
there can still be multiple cases to the separation problem. However, in this case,
other solutions than the trivial one (which is that the weak and normal states are
considering the closely related latent states) are only appearing when there are a
lot of states on the weak trajectory similar to the normal state we are considering.
Given a small sampling rate, this phenomenon should not have too much of an
impact on the extraction method, which means the trivial solution is the most
convincing in our case.

4.1.3 Running Average over Scales
Now that we have a confidence for the predicted scale r̂η, we know which infor-
mation is valuable and which is not. Given our assumption that most of the earlier
states in the weak and normal trajectory are quasi-overlapping, we can discard the
information we are uncertain about during the weak segment, and only keep the
observed scales for which the transitions are much alike over both trajectories.
The questions of how we decide whether we should keep information and how we
should extrapolate the scales in those sparse uninformative regions, remain.

We can solve both questions by using a moving weighted average over the last
n predicted scales r̂η = [̂rη1, · · · , r̂ηn]T (including the extracted new one r̂ηn),
where each scale is weighted by their confidence, and use this result as the next
scale. More formally, we define the weighted average for our new scale rηn as
follows:

rηn =

n∑
t=1

conf(r̂ηt)r̂
η
t

n∑
t=1

conf(r̂ηt)
(4.7)

The reasoning behind introducing such a window, is that significant changes
in pace do not occur that often. Thus, extrapolating in this manner gives us an
aggregation of the most relevant scales. Additionally, we discard scales with a
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confidence below a certain threshold threshconf , in order to not pollute the win-
dow with irrelevant scales.

4.1.4 Alignment

Now we are ready to align our trajectories. Assuming we have our states Sωp

already mapped to their associated normal states Sη, we can observe the next weak
state and compute our velocity vector vωp

t . Using the steps defined previously, we
can compute an approximate scale from the projection of the predicted normal
vector on the observed weak vector. However, we do not have the normal velocity
vector available yet, since the next normal state is what have to predict.

To solve this problem, we use an approach much like Expectation-Maximization
in which we iteratively try to estimate the required normal vector more accurately.
More specifically, we initialize the normal vector by using our moving average to
get an estimated scale and use it to predict the next normal state with our scale-
dependent normal model η(·). Once we have this vector, we can extract the scale
ratio and adjust our previous guess to get a better estimate for our normal vec-
tor. Even though multiple iterations of this are possible, we found that one is
sufficient, and that more iterations do not improve much on the estimated scale.

To summarize, first SEAM attempts to extract the scale ratio between an ob-
served weak velocity vector and a predicted normal vector projected onto the ob-
served one. Updating the current scale of the predicted normal vector with the ob-
tained ratio, we can get a better estimate for this scale. We describe the confidence
of an estimate scale as the inverse of the norm of the rejected vector squared. Us-
ing both the obtained scale and its confidence, we can add it to a running weighted
average window to obtain the final scale to estimate the normal vector. Given our
estimated normal vector, we can calculate the new normal state and reiterate the
entire process for the next weak states.

4.1.5 Assumptions

Our method relies on three large assumptions, additional to the ones imposed by
using a scale-dependent GP.

1. We consider the normal model η(·) to be accurate at all times. This means
that given a certain scale and state as input, we should assume the predicted
state is exactly the one we want. Even though this is probably not true, it
is not an unreasonable assumption to make, as we train our normal process
on multiple subjects and therefore have a generalized model that captures
regular movement patterns.
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2. In order to start the alignment of both trajectories, we require the first ob-
served weak state to be already mapped to its corresponding normal state.
This is necessary, as our generative GP normal model is not stable when ini-
tialization is off. Additionally, the on-line extraction method does not pro-
vide guaranteed convergence, which requires a good initialization to keep
the trajectories aligned.

3. We should assume that the earlier latent state pairs over both trajectories are
close to each other, as we previously mentioned.

All these assumptions are introduced to prevent the premise that trajectories
are at all times equally scaled. Compared to this, the three assumptions allow for
a looser-constrained domain of application.

4.2 Support
While applying our scale extraction method, we can learn our support model
δ−1p (·) on-line as well. Every time we observe a weak state and predict its corre-
sponding normal state, we can add this mapping to the support model as training
data. Eventually, after various trajectories of the weak subject, we have a model
that captures the support needed to account for the subject’s disability.

Moreover, once we properly learnt the support, we can apply this model as
well while performing the scale extraction method. More specifically, when we
observe a weak state, we can use the support model to map it to a corresponding
normal state, and extract the scale from that state instead. This way, we have
more accurate predictions, as we are dealing with a trajectory that is allegedly
closer to the normal trajectory we want to predict. We can then add the achieved
mapping again to the support model in order to provide more accurate support.
This iterative process should provide on-line support while keeping it up-to-date
to the status of the disability.

4.2.1 Multi-Task
As mentioned in Section 2.4, we can capture correlations amongst multiple dimen-
sions by incorporating a dimension label along with the input state, and induce a
covariance kernel that models the covariance between the cross-dimensional in-
puts (see Equation 2.21). This should provide more accurate results when the
dimensions are indeed highly correlated, as relevant information is transferred
between these dimensions, thus reducing the variance on the latent states.

However, we can apply this approach to various tasks as well. Considering
that the same type of motor dysfunction causes the capability gaps over multiple
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activities, we expect them to be highly correlated. A multi-task support model
can capture these correlations and share covariance information across multiple
activities. This provides us with a model that is easier to manage and contains less
redundant information that having multiple single-task support models. Moreover,
these correlations allow the multi-task model to extrapolate to unseen tasks, which
is a useful feature when the exoskeleton encounters an activity it was not trained
on.

We define a multi-task support model as δmulti
−1

p (·) and introduce the hyper-
parameters that specify the output scales and correlations for the activities respec-
tively as ha

l and θac . This approach has also been considered by (Bonilla et al.,
2008), in which they try to predict exam scores of students from different schools
(i.e., the tasks).



5
EXPERIMENTS

Our aim is to set up an exoskeleton-assistance framework. This requires learning a
support model on-line, which should capture the capability gaps in human-specific
trajectories. Afterwards, we can use this model to provide the support needed
during a motion task. We evaluate the various aspects that build up our framework.

First, we test our novel trajectory alignment method SEAM. It is crucial for
our on-line support framework to have a robust approach for aligning an observed
trajectory with its corresponding “optimal” trajectory, generated from the normal
model η(·). Therefore, we run SEAM on observed normal trajectories in order
to assess its stability, after which we evaluate its capability to ignore irrelevant
observed scales in weakness segments, by applying it to weak synthetic data.

Next, we perform an experiment in which we learn a support model off-line,
and apply it to an observed weak trajectory to transform it into its normal coun-
terpart. We use synthetic data, such that we can compare the predicted normal
trajectory with the actual one. Afterwards, we apply our support model on-line in
our SEAM setting, specified in the previous experiment, in the hope that SEAM
has an easier task to predict model scales.

Then, we assess the utility of our multi-task support model by incorporating
more activities using a synthetic data set. Given that motor capabilities of the
subject should operate the same over all tasks, it is expected that the capability
gaps over multiple activities are correlated.

Finally, we test all the components of our framework in a real-world setting.
Namely, we apply it to children’s gaits, which are considered to be irregular. Even
though we are not providing assistance to paraplegics, the gait cycle of a child
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is considered irregular. Note that this is just a proof of concept, rather than an
actual experiment, as we do not have an actual normal trajectory associated with
the irregular gaits to compare our predictions with.

5.1 Evaluation
In order to evaluate the accuracy of predictions performed by our methods, we
introduce the squared error (SE) measure, which is equal to ||st − s′t||22 for paired
states st, s′t. We can then aggregate these errors by taking the mean over the SEs
of all pairs of observed states, such that we obtain the mean squared error (MSE).
Formally,

MSE(Sn, S
′
n) =

n∑
t=1

||st − s′t||22
n

(5.1)

where Sn = [s1, · · · , sn] and S ′n = [s′1, · · · , s′n] are two aligned sequences of
states. We choose this as a measure of performance, as small errors in predictions
are not noticeable in practice, while large ones might become uncomfortable for
the wearer of an exoskeleton. Note that this measure can be misleading in our
case when used in our setting. As the actual normal trajectories are not neces-
sarily captured by our assumed optimal model, the scenario in which the actual
trajectory is less desirable than the predicted one, can occur. In this case, the MSE
can be high, even though the predicted trajectory seems to exhibit the desired be-
havior. Therefore, we mainly use this statistic to compare two methods, and use it
carefully, along with plotted trials, to evaluate the methods independently as well.

We use k-fold cross validation over the data of k chosen human subjects, in
which we assign the data of one subject to one fold. This way, we can do the exper-
iment k times, where each fold is used as the test set once, while the other (k− 1)
parts are used as training data. This provides us with more test data to infer reli-
able conclusions about our results. Moreover, making the test sets subject-specific
prevents biasing the test set towards subject-dependent information included in the
training set.

Finally, we perform statistical analysis to check whether there is a significant
difference between the accuracies of two methods. Until now, since we are using
GPs, we assumed the latent states follow a Gaussian distribution. Theoretically,
this means that the random variable obtained by applying the MSE formula to a
pair of latent states follows a χ2 distribution (Lancaster, 2006), which prevents
us from using the normality assumption in statistical tests, such as the Student’s
t-test. As we have no reason to believe otherwise, we should therefore settle for
a Wilcoxon signed-rank test, in which we compare the observed poses pairwise
over all trajectories for each method.
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5.2 Data
Our data consists of trajectories for various activities, carried out by different hu-
man subjects. The activities we consider are walking (i.e., the gait), standing up
from a sitting position with the knee at a starting angle of 120 degrees, and ascend-
ing stairs. We respectively call these activities ‘gait’ (a = 1), ‘sit to stand’ (a = 2)
and ‘stair ascent’ (a = 3). The activities are visually presented in Figure 5.1.

The data sets we use during the experiments are taken from the work by (Af-
schrift et al., 2014). They are constructed by monitoring trajectories, in which the
poses of the subjects are sampled at a time interval of 0.01 seconds. Using in-
verse kinematics (IK), the joint parameters for a certain pose are obtained. A pose
consists of 37 parameters, containing information about the position of the legs,
feet, arms, hands, upper body and lower body, determining the pose of a human.
As we focus on providing leg support, we stick to the parameters of the right leg.
More specifically, we use the three parameters along the sagittal plane, mentioned
in Section 3, namely the hip flexion, the knee angle and the ankle angle, which
are sufficient enough to define the state of a leg.

We use two data sets throughout the experiments. The first one, called the
ADL (Activities of Daily Living) data set, is our principal data set and contains
only ‘normal’ trajectories. This dataset is used to train and test our normal models,
and to benchmark our support models and SEAM against. Additionally, the data
set provides various synthetic ‘weak’ data, in which capability gaps in the normal
trajectories have been added to simulate impairments. We use the 30% gap model,
which is constructed from an musculoskeletal model, capturing various levels of
weakness (Afschrift et al., 2014). In this data set, 7 subjects are available, each
who have done 3 trials, giving us 21 trajectories.

The second data set contains the gait cycles of children, whose movements
are generally irregular. Even though this does not completely overlap with data
containing the gait cycles of paraplegics, using this data set can give an indication
of how well our framework adjust irregular movement patterns in practice. We
consider 3 children, each which have done 5 independent walking cycles, bringing
us to 15 “weak” trajectories.

5.3 SEAM Parameters

As SEAM requires parameters sizeW and threshconf (see Section 4.1.3), we per-
form a small experiment in order to show the influences of the window size and
confidence threshold on the extraction method. We train a scale-dependent nor-
mal model η(·) on 12 trajectories of 4 human subjects (i.e., subjects 1 − 4) with
an assumed normal trajectory (3 × 4 trials), and observe 6 normal trajectories
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Figure 5.1: The three activities present in the ADL data set. From left to right, we
have what we defined as ‘gait’, ‘sit to stand’ and ‘stair ascent’. (Afschrift et al.,
2014)

sizeW subject 6 subject 7
trial 1 trial 2 trial 3 trial 1 trial 2 trial 3

1 1505.56 1397.53 404.59 1773.02 1377.03 1705.53
3 294.75 1480.63 159.93 1679.26 1377.03 1705.53
5 1808.15 1480.63 159.93 1512.91 1377.03 1705.53
7 1480.63 1480.63 159.93 1212.19 1377.03 1705.53

Table 5.1: MSE over the states per trial per sizeW (with threshconf = 0.01)

(independent from the training set) of 2 human subjects (i.e., subjects 6 − 7),
drawn from our principal data set. We run our SEAM algorithm for parameters
sizeW ∈ [1, 3, 5, 7] and threshconf ∈ [0.001, 0.005, 0.01]. In order to avoid a
quadratic number of runs, we do not consider them jointly. Instead, we first run
trials for sizeW with threshconf = 0.01, after which we pick the best sizeW to
run the threshconf trials with. Note that we picked a ‘normal’ trajectory, rather
than a weak one, to observe. This is specifically to test the stability of our method
for various parameters, as small errors in the approximated scale r̂η can throw the
predicted trajectory off track. The mean squared errors (MSE) for the sizeW and
threshconf trials are respectively given in Tables 5.1 and 5.2.

We can see that the most of the values are the same, which indicates that the
parameters have a small influence on the algorithm in general. Moreover, the MSE
values are pretty high, which indicates that the predicted trajectory goes off track
a lot. Looking at Figure 5.2b, we can see this issue arising. However, Figure 5.2a
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threshconf subject 6 subject 7
trial 1 trial 2 trial 3 trial 1 trial 2 trial 3

0.001 1839.38 1397.16 404.59 1783.61 1705.53 1705.53
0.005 1983.78 1480.94 404.59 1388.29 1377.03 1705.53
0.01 294.75 1480.63 159.93 1679.26 1377.03 1705.53

Table 5.2: MSE over the states per trial per threshconf (with sizeW = 3).

shows us an instance in which the predicted trajectory appears to converge, which
indicates our method is able to get back on the right track.

As the MSE over all states in all trials per parameter setting is as follows:

sizeW

• 1→ 1360.54

• 3→ 1116.19

• 5→ 1340.69

• 7→ 1339.44

threshconf

• 0.01→ 1081.77

• 0.005→ 1389.63

• 0.001→ 1410.31

we opt for sizeW = 3 and threshconf = 0.01 during our experiments in Chapter 5.
Note that we do not use the test set (i.e., the set containing subjects 6 and 7)

in our scale-dependent models in our main experiments. However, we do use the
set of trajectories on which we trained our normal model, which might introduce
a small bias when using these as a test set with the selected parameters later on. In
practice, these parameters can be fine-tuned for a specific subject, in which case
this small bias is justified.

5.4 SEAM Assessment
This experiment questions the capabilities of our alignment method SEAM. More
specifically, we compare the application of SEAM using a scale-dependent normal
model ηscaled(·) with the direct state generation (DSG) by a scale-independent
normal model ηunscaled(·). We first run SEAM and DSG against observed normal
trajectories, in order to assess the stability of our algorithms. Afterwards, we run
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Dimension Hip flexion Knee angle Ankle angle

Trajectory Observed Predicted
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(b) Diverging

Figure 5.2: SEAM executed on trial 1 of subject 6 (left) and on trial 2 of subject
7 (right), with sizeW = 3 and threshconf = 0.01.

them against observed weak trajectories to test their applicability in our on-line
support framework. For this, we use the ADL ‘gait’ data set with 5-fold cross-
validation over the first 5 subjects, giving us 12 training trajectories and 3 test
trials per fold. The weak test trajectories for the latter experiment are synthetically
altered versions of the normal test trajectories, as discussed in Section 5.2.

We train the models ηscaled(·) and ηunscaled(·) on multiple versions of our avail-
able training trajectories. Namely, we resample those by only keeping every β
states. This gives us states that are each 0.01β seconds away from their neighbors,
keeping them equidistant in time. We train ηscaled(·) on β = 1, β = 2 and β = 3,
while training ηunscaled(·) on β = 2. The test trajectories are scaled by a factor of
β = 2.

We use the km(., .) covariance kernel for each of the models, specified in Sec-
tion 2.4 with ks(., .) = kSE(., .). The hyperparameters are optimized w.r.t. a
subset of the training data. To built this set, we randomly select 1 trial per subject,
although we make sure the same ones are selected for both models. We apply 100
iterations of conjugate gradient descent for each parameter.

For example, the hyperparameters of ηscaled(·), trained using the trials of the
first 4 subjects, are as follows:

• σ → 0.19

• λ→ [0.12, 6.26, 9.98, 5.57]
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• hl → [1.70, 3.44, 1.75]

• θc →




2.68 −2.28 −1.19
−2.28 3.87 1.81
−1.19 1.81 2.19




Note that we do not specify the output scale h used in kSE(·, ·). However, as h
can entirely be defined by the output scales hl, we consider it a redundant degree
of freedom and decide to omit it.

We pick threshconf = 0.01 and sizeW = 3 as the configuration of SEAM
(see Section 5.3). Moreover, we only include an observed scale rt in our running
average window if 0.01 ≤ rt ≤ 0.03, which prevents the method from extrapolat-
ing (in contrast to interpolating) to other scales. Even though extrapolation could
bring us back on track faster when SEAM deviated from the desired course, we
expect SEAM to be an unstable method, given what we have seen in Section 4.1.3.
Therefore, this extra constraint provides a more robust setting to work in. Addi-
tionally, making fast adjustments in the predicted normal trajectory is unwanted
in a practical exoskeleton-support setting, as this is uncomfortable to the wearer
of the exoskeleton. To initialize our methods, we do as assumption 2, given in
Section 4.1.5, requires and map the initial observed state to its correct normal
counterpart. Moreover, as SEAM needs an initial “observed” scale and associ-
ated weight as well, we pick respectively 0.02, i.e., the general scaling of the test
trajectories, and 1.

5.4.1 Results

Normal Observed Trajectory

When we look at Figure 5.3, we can see 3 trials plotted for each approach against
a normal observed trajectory. In plots (a) and (b), the pair of trials for which
SEAM performed the best are shown. In this case, SEAM mainly manages to
stay close to the observed normal trajectory, while DSG goes off track after 0.2
seconds. Until 0.4 seconds, it still attempts to predict a trajectory, but using the
wrong scale. After 0.4 seconds, each dimension gets drawn towards a constant
value. In plots (c) and (d), we have the trial pair for which DSG performs the best.
It nearly perfectly predicts the desired normal trajectory, while SEAM fails to find
a proper scaling. Plots (e) and (f) show us respectively the trial in which SEAM
performs the worst and the corresponding DSG trial. SEAM does not manage to
form a scaled version of the desired trajectory, while even though the trajectories
in the DSG case are not aligned, we can see a scaled version appearing at the end.

Tables 5.3 and 5.4 show respectively the MSE per trajectory for the DSG and
SEAM methods. The ones presented in Figure 5.3 are highlighted. Note that one
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Dimension Hip flexion Knee angle Ankle angle

Trajectory Observed normal Predicted normal
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(a) Subject 1 / Trial 1 (SEAM)
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(b) Subject 1 / Trial 1 (DSG)

-60

-40

-20

0

20

0.0 0.2 0.4
Time (s)

O
bs

er
ve

d 
st

at
e 

di
m

en
si

on
 v

al
ue

(c) Subject 2 / Trial 1 (SEAM)
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(d) Subject 2 / Trial 1 (DSG)
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(e) Subject 4 / Trial 2 (SEAM)
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(f) Subject 4 / Trial 2 (DSG)

Figure 5.3: Predictions for SEAM (left) and DSG (right) plotted against the ob-
served normal trajectory. The top and middle two plots respectively present the
trial pairs for which SEAM and DSG performs best. The bottom two plots shows
the trials for which SEAM is the worst.
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DSG trial 1 trial 2 trial 3
subject 1 1509.83 2078.33 1865.26
subject 2 343.24 310.05 450.84
subject 3 561.68 784.64 422.243
subject 4 1003.85 1245.99 1823.69
subject 5 1187.26 852.48 1501.95

Table 5.3: MSE for each of the 15 runs of DSG, applied to an observed normal
trajectory. Each subject has a differently trained ηunscaled(·). The highlighted
entries are shown in Figure 5.3.

SEAM trial 1 trial 2 trial 3
subject 1 53.43 138.33 1295.49
subject 2 972.56 724.62 1036.61
subject 3 1100.84 1082.40 1176.64
subject 4 2994.45 2999.76 2864.94
subject 5 1933.83 1643.49 1325.91

Table 5.4: MSE for each of the 15 runs of SEAM, applied to an observed normal
trajectory. Each subject has a differently trained ηscaled(·). The highlighted entries
are shown in Figure 5.3.

row of trials uses the same model, as is described by our 5-fold cross validation
approach. We can see that the MSEs are high in many cases, which indicates the
instability of our generative models (as can be observed in Figure 5.3). Addition-
ally, the top two accuracies are due to SEAM (i.e., for trial 1 and 2 of subject 1).
However, when we compute the MSE over all observed state pairs over all tra-
jectories, we have 1069.81 for DSG and 1391.18 for SEAM, indicating that DSG
performed better in this case.

Yet, the meta-results given by our pair-wise Wilcoxon tests tell us that, with
values (W = 325390, p = 0.051), the obtained results are insignificant. There-
fore, we cannot make any assumptions about the relative performance of both
methods.

Weak Observed Trajectory

Figure 5.4 presents SEAM and DSG predictions w.r.t. an observed weak trajectory
with a synthetic capability gap. Again, plots (a) and (b) show the trial pairs for
which SEAM performs best. It seems to estimate the scale of the trajectory fairly
well, while DSG loses his grip after 0.2 seconds. Plots (c) and (d) show the
best performing DSG trial and its corresponding SEAM trial. DSG follows the
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DSG trial 1 trial 2 trial 3
subject 1 1509.83 2078.33 1865.26
subject 2 343.24 310.05 450.84
subject 3 561.68 784.64 422.24
subject 4 1003.85 1245.99 1823.69
subject 5 1187.26 852.48 1501.95

Table 5.5: MSE for each of the 15 runs of DSG, applied to an observed weak
trajectory. Each subject has a differently trained ηunscaled(·). The highlighted
entries are shown in Figure 5.4.

SEAM trial 1 trial 2 trial 3
subject 1 158.91 167.54 1357.88
subject 2 1470.47 1422.89 1180.39
subject 3 1371.89 1383.74 1469.81
subject 4 2999.21 3014.88 2826.99
subject 5 1758.87 1446.46 1592.55

Table 5.6: MSE for each of the 15 runs of SEAM, applied to an observed weak
trajectory. Each subject has a differently trained ηscaled(·). The highlighted entries
are shown in Figure 5.4.

trajectory well, except that the scales around 0.04 seconds are a bit smaller than the
desired scale. However, if we look for example at the ankle angle at that point, the
observed trajectory makes a sudden turn, while our predicted ankle state smoothly
adjusts itself, which is wanted behaviour in a practical setting. Additionally, even
when SEAM does not know what to do in the beginning, we can see a trajectory
appearing right at the end. The last pair of plots shows us the worst SEAM trial,
next to the corresponding DSG one.

Tables 5.5 and 5.6 show the MSE over all observed state pairs for respectively
DSG and SEAM, with the ones in Figure 5.4 highlighted. Now, the MSEs for
SEAM are even higher than the ones presented for the SEAM assessment on a
normal trajectory (see Tables 5.3 and 5.4). This is expected, as we are dealing with
a trajectory less similar to the optimal one we are predicting, which introduces
many irrelevant observed scales for the SEAM algorithm to deal with. The MSEs
of DSG stay similar, as the actual normal trajectory did not change. The MSEs
over all states are 1069.81 and 1542.60 for respectively DSG and SEAM.

Running a pair-wise Wilcoxon test against all the MSEs per state, we obtain
(W = 304550, p = 4.395e-05), from which we can assume that DSG is significantly
better than SEAM over all state predictions.
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Dimension Hip flexion Knee angle Ankle angle

Trajectory Observed weak Predicted normal Actual normal
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(a) Subject 1 / Trial 1 (SEAM)
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(b) Subject 1 / Trial 1 (DSG)
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(c) Subject 2 / Trial 2 (SEAM)
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(d) Subject 2 / Trial 2 (DSG)
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(e) Subject 4 / Trial 2 (SEAM)
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(f) Subject 4 / Trial 2 (DSG)

Figure 5.4: Predictions for SEAM (left) and DSG (right) plotted against the ob-
served weak trajectory. The top and middle two plots respectively present the trial
pairs for which SEAM and DSG performs the best. The bottom two plots shows
the trials for which SEAM is the worst.
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5.4.2 Discussion

First, we attempted to predict and align a normal trajectory using SEAM, while
observing a person with a normal walking pattern. Afterwards, we assessed
SEAM the same way, while observing a weak trajectory. We compared both meth-
ods to DSG.

Both the DSG and SEAM methods seem to be unstable, which might be an
inherent property of our generative models. More specifically, as trajectories are
located in a tiny, defined region of the state space for a specific motion task, a small
discrepancy from the means of the latent process could have a huge impact on the
behavior of the generative model. Note as well that, due to this phenomenon, the
initial state of the observed trajectory (and initial scale for SEAM) has an impact
on the behavior as well. If this state starts too far away from the latent normal
trajectory, the variance on these latent points will be too high for the models to
generate reliable state sequences.

Additionally, SEAM has the issue of estimating a model scale by attempting to
solve an under-constrained problem. More specifically, learning two aspects (i.e.,
the scaling of and deviation from the latent normal trajectory) while observing
just one data point requires splitting these two types of intertwined information,
which is a hard problem to solve without an oracle that gives us feedback. This is
in contrast to DSG, which only needs to worry about a proper initialization point
and a model scale similar to the observed trajectory. As we both train the scale-
independent normal model on, and observe, trajectories scaled by a factor of 2,
this should be an additional benefit to the DSG method.

While the results for the SEAM assessment by observing a normal trajec-
tory are inconclusive, the evaluation of SEAM while observing a weak trajectory
shows that DSG performs better than SEAM. However, note that the accuracy for
SEAM does not decrease that much when introducing the capability gap, which
shows that the relevance of scales is considered.

Even considering all the aspects that SEAM has to worry about, it still can
keep up with many trajectories compared to DSG. Once the SEAM method has
been polished by for example fine-tuning the parameters threshconf and sizeW , or
introducing a more method to aggregate previous scales, we could opt for SEAM
instead of the less flexible DSG approach. This allows us to provide on-line in-
formation about a possible desired normal trajectory, even when the wearer of the
exoskeleton changes his pace.

However, our use of generative models in an on-line support environment
should be revisited, as they are too unstable to consider in practical settings.
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5.5 Single-Task Support Assessment

In this experiment, we assess the learning capabilities of the single-task support
model. This entails modeling the capability gaps of a specific person off-line and
providing the needed support in an on-line fashion.

First, we attempt to learn a person-specific support model δa−1

p off-line using
ηscaled(·) and synthetically altered weak trajectories, after which we transform an
unseen test trajectory into the desired normal trajectory. We then compare the
predicted trajectory with the actual normal trajectory on which the capability gap
was induced. By doing this, we evaluate the learning capabilities of our defined
support model. The tasks we consider for this are ‘gait’ (a = 1), ‘sit to stand’
(a = 2) and ‘stair ascent’ (a = 3). We use all the trials available in the ADL data
set and pick for each subject 2 training trajectories and 1 test trajectory according
to a 3-fold cross validation scheme.

Next, we run SEAM on the same weak test trajectories, while applying our
trained support models on the observed weak states. This brings the observed
trajectory closer to the desired trajectory, which should make it easier for SEAM,
as we are more confident in the extracted scales.

We use the same scale-dependent normal models as described in Section 5.4.
Additionally, when learning or applying a model δa−1

p , we make sure that person
p is not included in the training set of ηscaled(·). We focus the ‘gait’ task and pick
the first 5 subjects of the ADL data set, which each have 3 trajectories. Again, we
use a 3-fold cross validation scheme to split these into a training set and a test set.

In both experiments, we use the km(·) kernel with ks(·) = kSE(·) and use
the same configuration for SEAM as in Section 5.4. Moreover, we optimize our
hyperparameters using 100 iterations of CGD on each parameter, using all points
in the data set. An example of hyperparameters for a single-task support model
(for subject 2, trial 3) is given below

• σ → 0.14

• λ→ [18.59, 8.63, 10.18]

• hl → [2.19, 2.76, 2.94]

• θc →




6.51 −5.65 0.25
−5.65 5.16 −0.46
0.25 −0.46 3.09
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δ1
−1

(·) trial 1 trial 2 trial 3
subject 1 8.41 1.20 0.97
subject 2 3.71 225.16 2.39
subject 3 4.64e-1 3.71e-1 3.89
subject 4 7.71 62.96 264.66
subject 5 1.77 1.50 1.75
subject 6 11.18 18.48 3.30
subject 7 39.29 4.57 8.72

Table 5.7: MSE for each of the 21 trials in the off-line single-task support exper-
iment. We applied δ1−1

(·) to an observed weak trajectory for activity 1 (‘gait’).
The highlighted entries are shown in Figure 5.5.

5.5.1 Results

Off-line Assistance

Respectively the best and worst trials for our support models are shown on the left
and on the right in Figure 5.5 for each activity. At first sight, we can see that our
single support model works well and that there is not a lot of room for improve-
ment. The best predicted trajectories are almost overlapping with the actual ones.
For the worst predictions, we only have three big deviations from the normal one,
namely, the peak in the hip flexion in plot (b) and the two discrepancies in plot (f).
Note that the capability gap induced in the trajectories of activity two is almost
negligible. This makes the support function almost equal to the identity function,
which is easy to learn.

The MSEs per trial are shown in Tables 5.7, 5.8 and 5.9 for respectively ‘gait’,
‘sit to stand’ and ‘stair ascent’. As already mentioned, the learned support model
for activity 2 is almost the identity function, which is easy to learn. We can see
here that the errors for this activity are almost negligible. The gait has MSEs
ranging from about 1 to about 260, which is still low. Most of these have just
a small region in which poor inference is being done by the support model, but
other than that, have the predicted trajectory mainly overlapping with the actual
one. Activity 3 has the highest MSE values, which indicates that this support
model is difficult to learn. This is possibly due to the fact that a lot of regions
seem similar, e.g., the areas around 0.4 and 1.4 seconds in plot (f) of Figure 5.5.
Yet, only in the area around 0.4 seconds, a capability gap is introduced, which
extrapolates support to states in the area around 1.4 seconds. For activity 1, 2 and
3, we respectively have a MSE of 29.12, 0.84 and 400.71 over all observed state
pairs.
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Dimension Hip flexion Knee angle Ankle angle

Trajectory Observed weak Predicted normal Actual normal
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(e) Task 3 / Subject 5 / Trial 1 (δ3
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(f) Task 3 / Subject 3 / Trial 3 (δ3
−1
(·))

Figure 5.5: Single-task support model (trained off-line) on observed weak trajec-
tories. The best and worst supports provided are respectively shown on the left
and right side.
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δ2
−1

(·) trial 1 trial 2 trial 3
subject 1 1.94e-2 2.33e-1 1.24e-2
subject 2 3.60e-4 1.47 3.80e-4
subject 3 2.29e-3 3.77 4.03e-3
subject 4 9.19e-3 3.73e-2 7.46e-3
subject 5 1.39e-1 1.26e-1 1.88e-3
subject 6 1.62e-3 1.76e-2 2.40e-3
subject 7 9.06 3.00 2.63

Table 5.8: MSE for each of the 21 trials in the off-line single-task support exper-
iment. We applied δ2−1

(·) to an observed weak trajectory for activity 2 (‘sit to
stand’). The highlighted entries are shown in Figure 5.5.

δ3
−1

(·) trial 1 trial 2 trial 3
subject 1 655.31 243.82 358.42
subject 2 34.46 181.57 143.59
subject 3 101.93 220.19 2065.26
subject 4 293.75 102.82 303.80
subject 5 15.29 29.72 40.36
subject 6 181.13 2695.84 45.91
subject 7 92.78 22.36 20.09

Table 5.9: MSE for each of the 21 trials in the off-line single-task support ex-
periment. We applied δ3−1

(·) to an observed weak trajectory for activity 3 (‘stair
ascent’). The highlighted entries are shown in Figure 5.5.
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SEAM + δ1
−1

(·) trial 1 trial 2 trial 3
subject 1 1360.65 805.70 716.63
subject 2 1374.01 819.82 1917.37
subject 3 1162.71 1083.71 851.64
subject 4 1752.57 1576.50 1208.92
subject 5 1536.75 1409.98 1245.98

Table 5.10: MSE for each of the 15 runs of SEAM+δ1−1(·), applied to an observed
weak trajectory. Each subject has a differently trained ηscaled(·). The highlighted
entries are shown in Figure 5.6.

Supported SEAM

In Figure 5.6, we can see the predicted series for our support enhanced SEAM, i.e.,
SEAM+δ1−1(·), and SEAM itself. First, in plot (a), we can see the best result for
SEAM+δ1−1(·), which actually converges to a constant state. In plot (b), which
shows the corresponding SEAM trial, we see that SEAM manages to follow the
observed trajectory, after which regular fluctuations appear. In the next two plots,
(c) and (d), we can see that SEAM has accurate results, while SEAM+δ1−1(·)
manages to form a normal trajectory at the end, but with a wrong scale and phase.
Plots (e) and (f) show the worst trials w.r.t. SEAM. SEAM+δ1−1(·) does not
manage to solve it.

In Table 5.10, we can find the MSEs for our support-enhanced SEAM. The
results are fairly stable compared to the ones of SEAM, shown in Table 5.6. This
probably indicates the tendency to move towards a constant around zero, which
is shown in plot (a) of Figure 5.6. Moreover, at first sight, the DSG method used
in Section 5.4 seems to outperform SEAM+δ1−1(·). The MSE over all states are
1069.81, 1542.60 and 1242.31 for respectively DSG, SEAM and SEAM+δ1−1(·).

By applying our pair-wise Wilcoxon tests to compare SEAM+δ1−1(·) with
DSG and SEAM, we respectively obtain (W = 320270, p = 0.013) and (W =
358970, p = 0.137). Thus, the results between the supported SEAM and normal
SEAM are insignificant, which means we cannot tell whether SEAM with support
is actually better than without. However, we can assume that the supported SEAM
method performs less well than DSG over all state predictions.

5.5.2 Discussion

In an off-line environment, our single-support model seems to adjust accurately
unseen weak trajectories of a specific-person to their corresponding normal tra-
jectories, even when given a small training set of 2 trials. However, when in-
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Dimension Hip flexion Knee angle Ankle angle

Trajectory Observed weak Predicted normal Actual normal
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(a) Subject 1 / Trial 3 (SEAM + δ1−1(·))
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(b) Subject 1 / Trial 3 (SEAM)
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(c) Subject 1 / Trial 1 (SEAM + δ1−1(·))
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(d) Subject 1 / Trial 1 (SEAM)
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(e) Subject 4 / Trial 2 (SEAM + δ1−1(·))
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(f) Subject 4 / Trial 2 (SEAM)

Figure 5.6: Predictions for SEAM+δ1−1(·) (left) and SEAM (right) plotted against
the observed weak trajectory. The top and middle two plots respectively present
the trial pairs for which SEAM+δ1−1(·) and SEAM performs the best. The bottom
two plots shows the trials for which SEAM is the worst.
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corporated in SEAM, providing support seems to throw the method off track.
Mainly, this is again due to the instability of generative models. When support
is learned slightly incorrectly (e.g., at places where no support is required), the
model extrapolates to unknown states, drawing it towards the mean prior and
making the predicted trajectory go off track. The comparison between SEAM
and SEAM+δ1−1(·) is inconclusive. However, we can say that SEAM+δ1−1(·)
performs worse than DSG, as is the case with the normal SEAM method.

5.6 Multi-Task Support Assessment
During this experiment, we test whether incorporating multiple tasks in our sup-
port model actually improves the prediction accuracy. To do this, we learn and
test our multi-task support model in an analogous way as the single-task support
model and compare them both.

We use the same setting as described in Section 5.5, with the exception that
we add a multi-task support model δmulti

−1
. This model is trained using the same

folds as each of the single-task support models, aggregated over the activities.
Remember that the activities we focus on are ‘gait’, ‘sit to stand’ and ‘stair ascent’.
The hyperparameters for the multi-task support model associated with test trial 1
of subject 1 are

• σ → 0.0083

• λ→ [2.73, 1.96, 1.07]

• hl → [2.73, 2.95, 1.82]

• θc →




5.37 −4.40 0.22
−4.40 4.08 −0.23
0.22 −0.23 0.39




• ha
l → [2.08, 1.26, 5.72]

• θac →




0.93 0.21 −0.17
0.21 0.74 −0.02
−0.17 −0.02 12.36




We can see that the variance for activity 3 in θac is fairly high.

5.6.1 Results
In Figure 5.7, we can see the best and worst predictions done by our multi-task
support model for all activities. Except for plot (f), which has high peaks at the
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δmulti
−1

(·) trial 1 trial 2 trial 3

activity 1

subject 1 76.45 1.15 3.31
subject 2 2.77 97.31 31.14
subject 3 1.01 7.96 5.13
subject 4 4.20 17.16 55.81
subject 5 28.58 59.69 21.86
subject 6 8.58 227.88 14.59
subject 7 58.66 53.51 8.18

activity 2

subject 1 0.30 2.80 3.91
subject 2 0.07 7.50 0.01
subject 3 0.50 6.53 4.53
subject 4 0.11 1.19 3.09
subject 5 4.58 0.50 0.27
subject 6 0.23 2.60 0.07
subject 7 0.85 0.64 2.56

activity 3

subject 1 43082.12 2118.34 926.71
subject 2 131.66 369.86 504.01
subject 3 181.30 3197.22 3203.00
subject 4 432.29 824.59 410.98
subject 5 21.20 44.33 8066.72
subject 6 470.60 3253.05 43.69
subject 7 76.12 21.57 6.77

Table 5.11: MSE for the 21 trials of each of the 3 activities in the off-line multi-
task support experiment. We applied δmulti

−1
(·) to an observed weak trajectory for

activity 1 (‘gait’), 2 (‘sit to stand’) and 3 (‘stair ascent’). The highlighted entries
are shown in Figure 5.7.

start, the support given is fairly accurate. As we can see here again, the required
support for task 2 is minimal, making it easy to learn a support function.

In Table 5.11, we can see all the results aggregated per trial, for every subject
and every activity. We can see that the results are similar to the ones in the single-
task support experiment, given in Tables 5.7, 5.8 and 5.9, in the sense that activity
2 is easy to learn support for, activity 1 has a good accuracy and activity 3 is a bit
harder to predict support for. Also, note that trial 1 of subject 1 has a high MSE,
due to the peaks in plot (f) of Figure 5.7. The aggregated MSE over all state-pairs
is given in Table 5.12.

Looking at the results of our pair-wise Wilcoxon test in Table 5.13, we can see
that the results shown in Table 5.12 are significant, meaning that we can assume
that the single-task support model works better than the multi-task one in this
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Dimension Hip flexion Knee angle Ankle angle

Trajectory Observed weak Predicted normal Actual normal
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(f) Task 3 / Subject 1 / Trial 1

Figure 5.7: Multi-task support model δmulti
−1

(trained off-line) applied on ob-
served weak trajectories. The best and worst supports for each of the trajectories
are respectively shown on the left and right side.
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a δa
−1

δmulti
−1

1 30.96 36.83
2 0.93 2.03
3 382.70 4269.98

Table 5.12: MSE over all state-pairs for both the single-task support models δa−1

and the multi-task support δmulti
−1

, for every activity a.

(W, p) δmulti
−1

δ1
−1 (2194000, 2.2e-16)

δ2
−1 (1482800, 2.2e-16)

δ3
−1 (5267900, 2.2e-16)

Table 5.13: The W- and p-values for the Wilcoxon tests between δmulti
−1

and δa−1

for every activity a.

setting.

5.6.2 Discussion
We extended our single-task to a multi-task support process, which manages mul-
tiple tasks. This model considers correlations amongst capability gaps over multi-
ple activities for a single person. As these different task-specific gaps are exhibited
by the same physical motor dysfunction, it is expected that these correlations can
induce cross-task information transfer in our model. Therefore, the management
of multiple tasks in a single model prevents redundancy, in contrast to our many
single-task support models. Additional to that, it is easy to maintain one sup-
port model, as it is easily extensible with a new task, given that a normal model
is available for that new task. Moreover, the multi-task support model has the
ability to extrapolate/interpolate to other unseen tasks, as the weakness that has
to be supported is mainly dependent on the pose in the trajectory and will thus
approximately occur at the same states over multiple tasks.

Our results show that single-task support model is significantly better than
the multi-task support model, despite the cross-task transfer. This is probably
due to the lack of training data and the fact that there is not a lot to improve on
w.r.t. the learning capabilities of the single-task model. Another possibility is
that the multi-task model is too general. For example, the model uses the same
hyperparameters for each task, which requires every activity to operate on the
same length scales. Comparing activity 1 to activity 2, we can see that the former
has a smaller length scale than the latter (see Figure 5.7), which could reduce
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the prediction capabilities of the multi-task support model. Choosing a better
covariance kernel for the domain of application could yield better results.

Even though our results show that our single-task support model is signifi-
cantly better than the multi-task one, the difference in performance is small enough
to possibly opt for the latter one, given the benefits mentioned earlier.

5.7 Children’s Gait Support

Finally, we apply our support framework in a real-world setting. This examina-
tion is rather a proof of concept than an experiment, as we are using real-world
weak trajectories and have nothing to compare their predicted normal trajectories
against. Moreover, presenting the application of our support framework to a prac-
tical setting might give us more insight on what we could improve on. We attempt
to provide support to children, in order to adjust their irregular walking pattern to
a regular gait cycle. As mentioned before, this is not particularly representative
for paraplegics. However, due to the instability of SEAM, we should push our
boundaries and first test the method in a simple real-world settings.

We learn our single-task support model δ−1(·) on the children’s gait data set.
We test our framework on 3 children, each having 5 trials. Even though we want to
test our framework in a practical setting, where manipulation of observed trajecto-
ries is impossible, we still adjust the used gaits to be twice the speed, as explained
in Section 3.3.2. Assuming these trajectories have the same scaling over time as
the ones in the ADL data set, this is necessary to make sure our model interpo-
lates to unknown scales, rather than extrapolates, as we train our scale-dependent
normal models to once, twice and thrice the actual speed. However, such manipu-
lation can be done indirectly in a practical setting by requiring the humans to walk
at different paces and train our model on those trajectories, such that interpolation
between these paces can be done.

The first 3 trials are executed without support (i.e., only SEAM running over
them). The 4th trial uses a support model trained on the observed-predicted state
pairs found during the first 3 trials. Meanwhile, we add the newly found mappings
in the 4th trial to the support model and run a final trial using the updated model.
As a generative normal model, we use the best performing one during the SEAM
assessment on weak trajectories, namely, ηscaled(·) for subject 1. As the results
for every subject are similar, we focus specifically on subject 2, as the behavior of
the support framework is the clearest for these trials.

Looking at Figure 5.8, we can see the five trials performed by subject 2, along
with a predicted normal trajectory. As expected, the SEAM method is unstable in
the first three trials. In trial 1 and 3, we can see that it can estimate the model scale
pretty well until 0.25 seconds, after which it loses grasp of the underlying desired
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Dimension Hip flexion Knee angle Ankle angle

Trajectory Observed normal Predicted normal
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(e) Trial 5

Figure 5.8: Children’s gait trials for subject 2. The SEAM method is unsupported
for the first three trials. The fourth trial uses the support model learned over
the previous three trajectories. The final trial uses a support model containing
information gathered over the other four trials.
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normal trajectory. The last two trials, for which support of the previous trials is
incorporated, fails completely due to the poorly learned support.





6
CONCLUSION

In order to build an exoskeletal-assisted framework, we began our journey by
studying Gaussian processes, which lie at the basis of our modeling and predic-
tion schemes. A Gaussian process is a Bayesian inference technique that charac-
terizes a distribution over functions. Performing regression using these processes
provides us with a flexible non-linear modeling approach for high-dimensional
spatio-temporal motion data. As we are dealing with a dynamic system of pose
transitions, we introduced multi-output dynamical GPs, which allow us to model
these transitions and generate artificial state sequences.

Next, it was necessary to formalize the models, instances of them and the
relationships amongst them. We introduced normal and weak processes, in order
to characterize respectively trajectories which meet the task’s requirements and
those which do not. Afterwards, we could define a reduction model that captured
the capability gaps induced upon the human-specific weak processes. In terms
of this, we formalized a support process, which models the adjustment of these
gaps. Additionally, we introduced scale-dependency in our processes, such that
trajectories performed at various paces, could be modeled.

Then, we described our methods for learning a support model in an on-line en-
vironment. We presented a novel method, namely the Scale Extraction and Adap-
tation Method, or SEAM, which attempts to extract the desired scale required for
normal state generation from observed weak poses. This gives us aligned trajecto-
ries, from which a mapping from weak to normal trajectory could be established
and henceforth gives rise to a support model. We extended our support process
formalism to multiple tasks, in order to manage them conjointly. This construction



Future Work 64

is driven by the idea that the capability gaps over multiple motion tasks are due to
the same motor dysfunctions, which makes us believe these are highly correlated.

Finally, we evaluated the aspects that build up our framework. SEAM seems
to be an unstable method, which is mainly inherent to generative models. How-
ever, in contrast to scale-independent approaches, it is able to change pacing at
any moment, which makes it more flexible in a practical setting. Our support
models grasp the capability gaps well and can provide the necessary assistance.
An additional benefit to the multi-task approach, is that it allows for extrapola-
tion to other tasks, which, even though single-task support is significantly better,
provides a cleaner approach to model capability gaps and prevents redundancy
of information. We concluded with a practical experiment, in which children’s
gaits were considered. These are assumed to be irregular, and therefore formed
a simple playground for our methods to be tested on. In the end, our framework
did not manage to provide proper support in this setting. However, we gained
valuable insights on what requirements should be imposed on exoskeleton-driven
support frameworks, what is applicable in these type of settings and what could
be improved upon.

6.1 Future Work
Various extensions upon this work can be done. During our experiments, we as-
sume we know what activity we are observing. Yet in a practical setting, the
exoskeleton has to infer which one this is. Hidden Markov Models can be incor-
porated in our framework, in order to recognize the task under observation, after
which support can be induced accordingly.

As our framework is general enough to be disconnected from the field of hu-
man motion, we can apply it to other areas of research. In general terms, our
multi-task support model encourages the idea of capturing correlations among de-
viations from certain optima and extrapolate that knowledge to other instances of
that. Therefore, this model could be applicable to any domain which has unsolved
problems closely related to a group of solved ones. For example, in the domain
of reinforcement learning, when we want agents to learn a specific value function
similar to a group of previously learned related value functions, we could guide
an agent towards the optimal path, given that we have support models available
for this group of related value functions.

Finally, this method gave valuable insights on the requirements for exoskeleton-
driven support. These findings could therefore prove useful to similar research,
e.g., performed by MIRAD. As we adopted another perspective than a biomedi-
cal one, our findings could be inspirational when they start incorporating on-line
learning capabilities into their exoskeleton.
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