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Human language is the key evolutionary innovation that makes humans different from other species. And

yet, the fabric of language is tangled and all levels of description (from semantics to syntax) involve multiple

layers of complexity. Recent work indicates that the global traits displayed by such levels can be analyzed in

terms of networks of connected words. Here, we review the state of the art on language webs and their poten-

tial relevance to cognitive science. The emergence of syntax through language acquisition is used as a case

study to illustrate how the approach can shed light into relevant questions concerning language organization

and its evolution. � 2010 Wiley Periodicals, Inc. Complexity 15: 20--26, 2010
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INTRODUCTION

L
anguage is a privileged window into the mind, since

words allow us to compose thoughts and language

impairment provides deep clues about brain organiza-

tion and its decay. It also changes with brain as it develops

through the first years of life. Moreover, its evolutionary

origins are inseparable from the evolution of cortical maps

and both might have actually coevolved [1]. As it happens

with the brain connection matrix or connectome [2], lan-

guage is formed of multiple interacting pieces and levels.

Using Saussure’s definition, ‘‘language is a system of inter-

dependent terms in which the value of each term results

solely from the simultaneous presence of the others’’ [3].

Looking at them as interacting units would provide us

with a picture of its global organization. However, if a car-

tography of language were possible, how would language

maps look like? Is there a connectome for human lan-

guage? If yes, what could be learned from its origins, ac-

quisition, and universal traits?

From the late 1950s, an intense debate among cognitive

scientists changed the mainstream of linguistics, ruling

out studies based on statistics and information-theoretic

views and focusing research on the underlying, generative

rules of language [4, 5]. Generally, the individual as a

tabula rasa, who acquires linguistic knowledge only by
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statistical inference, was rejected. This view was tied to a

picture of language involving an innate component influ-

encing the set of available rules to generate linguistic

structures. Such biological element would pervade the

shape and structure of language and its acquisition [6].

Statistical patterns on the other hand revealed the pres-

ence of some universal trends, the best known being the

so-called Zipf’s law [7]. Specifically, if P(f) is the propor-

tion of words whose frequency is f in a given text, Zipf’s

law is a so-called scaling law:

Pðf Þ / f �a (1)

with a � 2. This means, generally, that most words are

rare and a few are very common. Its relevance was ques-

tioned on the basis that a randomized model seems to

reproduce such frequency distribution [5] although a

detailed analysis does not support that view [8]. Actually,

several different mechanisms can generate Zipf-like statis-

tics [9] and thus, one needs to be careful in not overinter-

preting the meaning of this law. Perhaps the greatest limi-

tation is that it ignores a fundamental ingredient of lan-

guage structure: the fact that words (or more generally,

linguistic units) are interacting entities. As will be shown

below, words together with their relationships define new

types of statistical patterns that can be described as net-

works.

The observation of universal trends opens several ques-

tions: What is their origin? Can they be explained in terms

of natural selection [10] or cultural transmission [11]? The

presence of universals has been a matter of discussion

within both linguistics and cognitive sciences but only

partial understanding has been achieved so far. The

answers might come from an interdisciplinary effort, with

ideas taken outside from the strict realm of linguistics [12,

13]. In this context, universals are well known in both

physics and complexity theory: very different systems

made of multiple interacting units can exhibit exactly the

same scaling laws if they share similar interaction rules

[14, 15]. These rules are responsible for the large-scale

structure of these systems and allow to uncover the under-

lying generative mechanisms on top of which selection

takes place.

In this article, we discuss the value of the study of the

patterns and processes underlying language structure from

a network perspective. We will argue that their global orga-

nization and how they change through acquisition allows

to provide the tentative answers to some of the previous

questions.

LANGUAGE AS A COMPLEX NETWORK
Language is a system of interacting units. As such, we can

map their relations onto a graph in the hope that such

mapping will capture fundamental traits of language

under a global picture. Such approach has been successful

in different fields [16] including ecology [17], computation

[18], coding [19], cell and molecular biology [20], neuro-

science [21–23] or communication networks [24], revealing

novel patterns that can help understanding the structure,

robustness, and evolution of these systems. Networks dis-

play a limited number of organization patterns (Figure 1)

and are not at all new in language studies. At the level of

grammar, network-driven approaches include, among

others, word grammar [31], which is a global proposal to

study language from the network viewpoint, or depend-

ency grammars, [32]. Several nets have been studied,

including bipartite graphs based on lexical matrices [33],

co-ocurrence [34–36], syntactic [37], semantic [38–42]

graphs, and brain activation graphs associated to cognitive

tasks involving language [43].

FIGURE 1

Two main classes of networks have been widely identified in real
systems [25, 26], namely random, homogeneous [27] ones (a) and
scale-free [28] (b), respectively. In random networks most elements
have a number of links around a given average degree < k >.
This seems to be the standard case for cortical maps [29] (c) and
the probability P(k) of finding a node with k links falls off in an ex-
ponential fashion, i.e., P(k) 5 C exp (2k/K) where K is a character-
istic cut-off. Scale-free webs are highly heterogeneous, following
power laws, i.e., P(k) 5 Ck2g. This would be the case of language
graphs, such as semantic or syntactic webs. In (d) we show a small
piece of a semantic web where links indicate associations [30]. For
a given pair of words such as {Hawaii and pain} a short path can
be found connecting them. In this case, the path is formed by
{Hawaii, relax, ease, and pain} with only three links (or degrees of
separation) required to reach one from the other. In these webs,
paths are typically very short and triangles very frequent, enhancing
rapid association between related words. These two features define
their small world organization. [Color figure can be viewed in the
online issue, which is available at www.interscience.wiley.com.]
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Three main features seem to be shared by all language

networks. First, they are sparse, meaning that the average

number of links per node is small. Second, they have a

small world structure. In a small world web, a very large

fraction of triangles is found, much larger than expected

from randomness. On the other hand, these webs are very

well communicated: it is very easy to reach a given ele-

ment from another one through very short paths [44]. This

is measured by means of the so-called path length D,

which tells us the minimal number of steps required (on

average) to reach a given node from any other node. The

SW architecture has many implications for optimality as it

occurs, for example, with cortical maps [45]. Here, short

paths are the fingerprint of efficient information transfer.

Pathological states such as Alzheimer’s disease [46] display

consistently larger path lengths, thus revealing a loss of

efficiency. Finally, language networks are highly heteroge-

neous: Most elements are connected to one or two others

and only a handful of them (the hubs) have a very large

number of links [Figure 2(a)]. Mathematically, they follow

a power law: if P(k) indicates the frequency of elements

having k links with others, these systems exhibit a so

called scale-free (SF) degree distribution [Figure 2(b)]:

PðkÞ / k�g (2)

with a scaling exponent within the interval 2 < g < 3. It

can be shown that this interval defines a window of exis-

tence of SF nets: outside these bounds the network either

becomes easily disconnected (g > 3) or too dense (g < 2).

Networks optimizing communication at low cost (in terms

of links) will have larger g values but are more likely to

deteriorate with the loss of their hubs [47]. Instead,

smaller scaling exponents will allow a larger robustness

against the removal of hubs but will also involve a larger

number of alternative paths and more connected

elements.

Within the context of semantic webs, meaning relations

enable us to conceive a network, where links glue interre-

lated concepts [38–42]. One of the most interesting exam-

ples is Wordnet [48] where words are connected through

various kinds of semantic links. Despite their large size

(N � 104–105) the path length in these semantic webs is

just D � 3. The efficient character of the semantic network

is tied to an important, universal and yet apparently

undesirable property of language: polysemy. Consistently

with this view, the analysis of semantic networks reveals a

likely reason for polysemy to exist and be so widespread.

The answer lies on the global organization of these graphs.

The analysis of Wordnet shows a scale-free structure with

P(k) � k23 thus suggesting it is highly optimized. Here

most elements would be more specialized, and thus

semantically linked to just a few others. By contrast, a few

of them would have a large number of semantic links.

Actually, this network is a small world provided that poly-

semy is included. Additionally, the scale-free topology of

semantic webs places some constraints on how these

webs can be implemented in neural hardware [39]: The

high clustering found in these webs favors search by asso-

ciation, while the short paths separating two arbitrary

items makes search very fast [40].

A different class of LNs is obtained from syntactic

relations (see Figure 3). Syntax defines the set of rules

FIGURE 2

Language networks. Different graphs can be obtained by using dif-
ferent ways of relating words. In (a) the central core of connected
words in such a graph is shown, with highly connected hubs (and
their connections) shown in yellow. Here, links indicate that words
are adjacent to each other in at least one sentence within a given
text. The structure of language networks is characterized by a
scale-free degree distribution (b) with P(k) � k2g, with 2 � g � 3
(in log--log scale it gives a straight line). Different webs display dif-
ferent, characteristic exponents g. In double logarithmic scale, a
straight line is obtained, since we have log P(k) � g log k, being g
the slope. [Color figure can be viewed in the online issue, which is
available at www.interscience.wiley.com.]
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responsible for building structures [31, 32, 37]. In syntactic

webs the hubs correspond to functional words (such as

articles or prepositions). In these networks, the scaling

exponent has been found to be gsyntax � 2.2, closer to the

lower boundary g 5 2. Paths are very short, involving just

3–4 degrees of separation. The emergence of syntactic or-

ganization through language acquisition in children pro-

vides a perfect example of how a network perspective can

help. This will be developed in detail as a case study in

the next section.

THE ONTOGENY OF SYNTAX
Let us illustrate the power of looking at language on a

global basis by studying the problem of syntax develop-

ment in children. Language acquisition involves all the

topics relevant to our paper: it leads to the emergence of a

powerful system of communication (function), through a

process of change (evolution) and to a well-organized hier-

archy of word relations, the syntax (structure). It has been

pointed out that child language (together with ape and

pidgin languages) may actually help understanding lan-

guage origins [49, 50].

Children acquire language by properly using phono-

logical, syntactic, and semantic rules in spite that no one

teaches them. They can generate a virtually infinite set of

grammatically correct sentences after being exposed to a

rather limited number of input examples. Moreover,

although the lexicon shows a monotonous growth as new

words are learned, the pattern of change in syntactic or-

ganization involves a shift from babbling, to single words,

to the rude two-words grammar to a fully, complex adult

grammar [51]. How can children acquire syntax? Are

there some specific, basic rules predefined as a part of

the biological endowment of humans? Using a global net-

work perspective allows to measure changes in the pat-

terns of word–word relations. It is thus a natural frame-

work for studying how syntax develops. The network

approach considers the number of links among words as

the key property and thus places dependencies (instead

of words) at the center of the analysis. If syntax is a sys-

tem-level property, it seems reasonable to study its struc-

ture and development by means of a global, system-level

approach where all observed syntactic relations are con-

sidered.

By analyzing child’s productions from the CHILDES

Database [52–55], a remarkable shift is well appreciated

by using a network-level. This is displayed in Figure

4(a–c), where the global architecture of syntactically

connected words is shown close to the syntactic spurt.

A sharp change is found around 2 years. Right after the

transition (b) the network displays all the features

found in adult webs, whereas immediately before (a) it

does not. Interestingly, the pretransition networks have

tree-like structure, very different from the post-transi-

tion ones, displaying a very different, small world, and

scale-free topology with a stable exponent g � 2.3. All

relevant measures of network complexity exhibit a

sharp jump, matching a change in syntactic structure

length.

The observed transition occurs in parallel with the

emergence of functional particles and inflectional mor-

phology. This phenomenon implies that semantically

degenerated items (such as it) which are the hubs in the

prefunctional stage are eventually replaced by functional

words, absent through the early period. There is also a

clear change in the behavior of the particle a (the schwa)

acting as a protofunctional, superhub particle just in the

transition period.

FIGURE 3

A method to build a syntax network from a corpus. For every sen-
tence (a) we perform the derivation (b). We identify the constituent
structure and the main verb in finite form (c). This structure can
then be projected and aggregated into syntactic dependencies (d).
We assume the head of the phrase to be the semantically most rel-
evant item of the phrase and the main verb the head of the whole
sentence. From these dependencies we build a graph. Other ways
more sophisticated (including labels for the arcs, for example) can
be found in [31].
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What is the meaning of these sharp changes? Sudden

transitions in growing graphs are known to occur in ran-

dom networks with increasing numbers of links [56]. In

these models, a threshold phenomenon known as perco-

lation leads to a global change where the web shifts from

a set of many disconnected small graphs into a web with

a large component of connected elements. However,

these networks are very different from those seen in chil-

dren graphs and no hub rearrangements are at work.

Similarly, models based on rich-gets-richer mechanisms

[57] where nodes having more links tend to acquire fur-

ther connections also fail to reproduce neither the transi-

tion nor the hub changes. The observed shifting pattern

is thus hard to explain in terms of a model of network

self-organization, as suggested by some studies [58–60].

Instead, hub rearrangements suggest the presence of

internal constrains, pointing toward some kind of hard-

wired element. This example provides a good illustration

of the power of the network approximation and reveals a

facet of language that is not shared by any other class of

complex network.

DISCUSSION
Two considerations emerge from our analysis. First, it

points to new types of universal features of language

beyond Zipf’s law. These potential universals do not focus

on properties of the elements in language inventories or

specific grammar rules but rather on global, quantitative

patterns that include a combinatorial element. The case

study presented here opens new questions that will

require careful inspection. If standard models of network

evolution are unable to explain the observed pattern of ac-

quisition, new models will be needed. This leads us to

look towards another useful perspective: the use of artifi-

cial systems where complex agents can communicate and

evolve grammatical rules.

Embodied, robotic agents (Figure 5) provide an alter-

native approach to test the presence of universals. Cur-

rent work in the fields of evolved artificial languages

[61–64] and embodied communicating agents [65, 66]

FIGURE 5

The search for universals in language might strongly benefit from
the analysis of artificial agents. New robotic implementations, such
as the Qrio robots shown here, will allow researchers to study the
emergence of syntax in nonbiological scenarios. These robots are
able to explore their environment, locate and name objects and
exchange their sharted knowledge with other robots. Picture pro-
vided with permission by SONY Computer Science Lab. [Color figure
can be viewed in the online issue, which is available at www.
interscience.wiley.com.]

FIGURE 4

Sudden changes in the global organization of children syntactic net-
works. Two networks are shown: here (a) is obtained at the presyn-
tactic spurt whereas (b) is observed right after 2 years (these are
separated by 1 month around the age of two). A clear transition
occurs from a tree-like structure to a scale-free, small world syntax
graph. The lower row shows zoomed subsets of each network.
Dominating hubs prior and after the two-year transition are very dif-
ferent, thus indicating a deep reorganization. Networks have been
reconstructed from the CHILDES database using Peter’s corpora
[53�55]. [Color figure can be viewed in the online issue, which is
available at www.interscience.wiley.com.]
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indicates that lexicon but also rudimentary forms of

grammar can emerge in artificial systems [67]. The

observed patterns of network organization displayed in

child development and their meaning could be explored

by looking at the emergence of complex combinatorial

rules in such evolving artificial grammars. In this con-

text, fluid construction grammars (FCG) can be used in

order to analyze the emergence of language under our

network perspective [68]. Using FCGs it will be possible

to know whether the sudden reorganization of syntax

graphs requires a biological substrate to be explained.

Alternatively, it might instead result from a universal

mechanism of combinatorial explosion. If so, innatism

would be seriously flawed. On the other hand, there

exists also the possibility that the acquisition of complex

grammars can take place following different paths with

no common universals. In this context, artificial systems

offer a third avenue, between real network data and

mathematical models of graphs, to gain insight into

these deep questions.

Questions for Future Research

c Are there statistical differences among networks for dif-

ferent languages?

c Can artificial communities of agents develop languages

with scale-free network structures?

c How are different language networks modified through

aging and brain damage?

c Is there a link between cortical maps involved in lan-

guage and observed language networks?

c How can neural models of language development gener-

ate the observed language webs?
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