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Summary
• What? Why?	


• Rational choice	


• Strategic games	


• Nash Equilibrium	


• Best  	


• Dominance	


• Mixed strategies	


• Mixed-strategy Nash 
Equilibria	


• Support finding
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• Lemke-Howson algorithm	


• Extensive-form games	


• sub-game perfect equilibrium	


• Simultaneous moves	


• Chance moves	


• Bayesian games	


• Assignment 1



The formation of agents’ 
beliefs	
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Now that we can determine the Nash and sub-
game perfect equilibria ...

How can we reach them?

Which equilibrium is 
preferred ?



The formation of agents’ 
beliefs

Can we expect that the equilibrium will be reached ?
Players could chose their action from an introspective 
analysis of the game : removing dominated strategies

Learning the beliefs about the other player in 
response of the information she receives :	


1. Best response dynamics	

2. Fictitious play	

3. Stimulus-response or reinforcement learning	

4. Evolutionary or cultural dynamics
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Levels of learning
innate

learned

reflex actions

imprinting (specific and irreversible)

Conditioning 

Observational  and imitative learning

Teaching 
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Conditioning

Scene from the Big Bang Theory (S03E03, The 
Gothowitz Deviation)
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Best-response dynamics

!
In every period after the first, choose the best response to 
the action the other players’ actions in the previous round	

!
An action profile that remains the same from period to period is 
a pure Nash equilibrium of the game
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In the first period, choose a best 
response to an arbitrary deterministic 
belief about the other players’ actions



Best-response dynamics
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Depending on the prior beliefs 
these dynamics may not 
converge

Take for instance the Battle of the sexes, 
which has 3 equilibria ((1,0),(1,0)), ((0,1),(0,1)) 
and ((2/3,1/3),(1/3, 2/3)	


BELIEF

A plays B plays

prior B B

1 B B

2 B B

... ... ...

BELIEF

A plays B plays

prior S S

1 S S

2 S S

... ... ...

BELIEF

A plays B plays

prior S B

1 B S

2 S B

... ... ...

Bach Strav.

Bach

Strav.
0

2

1 0

0

1

2

0



Fictitious play
Every agent starts with an arbitrary probabilistic belief about the other 
players actions.	

!
In the first round she chooses a BR to this prior probabilistic belief and 
observes the other player’s actions, say A.	

!

she changes here belief so that A gets probability 1	

!
In the second round, she produces a best response to this belief and 
observes the other player’s action, say B	

!

she changes here belief to one that assigns 1/2 to action A and 1/2 to 
action B	


!
In the third round ...	
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Fictitious play
Consider again the Battle of the sexes:
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Bach Strav.

Bach

Strav.
0

2

1 0

0

1

2

0BELIEF

A plays B plays

prior (1,0) (0,1)

1 S (I,I) B (I,I)

2 S (1,2) S (I,2)

3 S (2,2) S (1,3)

4 S (2,3) B (2,3)

5 S (2,4) S (2,4)

6 S (2,5) S (2,5)

7 ... ... ... ...

TOTAL = 2

TOTAL = 3

TOTAL = 4

TOTAL = 5

TOTAL = 6

TOTAL = 7



Fictitious play

So in any period, the agent adopts the belief that her opponent 
is using a mixed strategy in which the probability of each action 
is proportional to the frequency with which her opponent has 
chosen that action in the previous rounds	


The process  converges to a mixed strategy Nash equilibrium 
from initial beliefs	
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Stimulus-response 
learning
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More details on reinforcement learning by prof. De Hauwere



Culture and evolution
“Culture is the integrated pattern of human 

knowledge, belief, and behavior that depends upon 
the capacity for learning and transmitting knowledge 

to succeeding generations”	


Link between biological evolution and 
cultural learning

A trait is adaptive if 	

biology → it provides an increase in an 
individual’s chance of survival and 
reproductive success	

culture → it provides an advantage in the 
interactions with other players



Biological analog
This transmission can imply copying (reproduction), 
with the possibility of errors (mutation)

evolutionary dynamics
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The thing that evolves is the population
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Biological analog



Individuals reproduce in the population
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Biological analog

Individuals imitate other players in the population



Individuals may mutate during the reproductive process
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Biological analog

Individuals may make errors when imitating



Selection may cause the new individuals  to replace 
the others
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Biological analog

Selection may cause certain behaviors to be 
imitated more often than the others



Selection is the outcome of a competition between 
the different types of population members
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Biological analog



Social dilemmas
© Tom Lenaerts, 2013

R.M. Dawes and D.M. Messick (2000) Social Dilemmas. International Journal of Psychology 
35(2):111-116

P. Kollock (1998) Social Dilemmas: the anatomy of cooperation Ann. Rev. 
Sociol.  24:183-214



What Shanl We Mam?

The Tragedy of the Commons

The population problem has no technical solution;
it requires a fundamental extension in morality.

Garrett Hardin

At the end of a thoughtful article on
the future of nuclear war, Wiesner and
York (1) concluded that: "Both sides in
the arms race are ... confronted by the
dilemma of steadily increasing military
power and steadily decreasing national
security. It is our considered profes-
sional judgment that this dilemma has
no technical solution. If the great pow-
ers continue to look for solutions in
the area of science and technology only,
the result will be to worsen the situa-
tion."

I would like to focus your attention
not on the subject of the article (na-
tional security in a nuclear world) but
on the kind of conclusion they reached,
namely that there is no technical solu-
tion to the problem. An implicit and
almost universal assumption of discus-
sions published in professional and
semipopular scientific journals is that
the problem under discussion has a
technical solution. A technical solution
may be defined as one that requires a
change only in. the techniques of the
natural sciences, demanding little or
nothing in the way of change in human
values or ideas of morality.

In our day (though not in earlier
times) technical solutions are always
welcome. Because of previous failures
in prophecy, it takes courage to assert
that a desired technical solution is not
possible. Wiesner and York exhibited
this courage; publishing in a science
journal, they insisted that the solution
to the problem was not to be found in
the natural sciences. They cautiously
qualified their statement with the
phrase, "It is our considered profes-

The author is professor of biology, University
of California, Santa Barbara. This article is
based on a presidential address presented before
the meeting of the Pacific Division of the Ameri-
can Association for the Advancement of Science
at Utah State University, Logan, 25 June 1968.

13 DECEMBER 1968

sional judgment. . . ." Vhether they
were right or not is not the concern of
the present article. Rather, the concern
here is with the important concept of a
class of human problems which can be
called "no technical solution problems,"
and, more specifically, with the identifi-
cation and discussion of one of these.

It is easy to show that the class is not
a null class. Recall the game of tick-
tack-toe. Consider the problem, "How
can I win. the game of tick-tack-toe?"
It is well known that I cannot, if I as-
sume (in keeping with the conventions
of game theory) that my opponent un-
derstands the game perfectly. Put an-
other way, there is no "technical solu-
tion" to the problem. I can win only
by giving a radical meaning to the word
"win." I can hit my opponent over the
head; or I can drug him; or I can falsify
the records. Every way in which I "win"
involves, in some sense, an abandon-
ment of the game, as we intuitively un-
derstand it. (I can also, of course,
openly abandon the game-refuse to
play it. This is what most adults do.)
The class of "No technical solution

problems" has members. My thesis is
that the "population problem," as con-
ventionally conceived, is a member of
this class. How it is conventionally con-
ceived needs some comment. It is fair
to say that most people who' anguish
over the population problem are trying
to find a way to avoid the evils of over-
population without relinquishing any of
the privileges they now enjoy. They
think that farming the seas or develop-
ing new strains of wheat will solve the
problem-technologically. I try to show
here that the solution they seek cannot
be found. The population problem can-
not be solved in a technical way, any
more than can the problem of winning
the game of tick-tack-toe.

Population, as Malthus said, naturally
tends to grow "geometrically," or, as we
would now say, exponentially. In a
finite world this means that the per
capita share of the world's goods must
steadily decrease. Is ours a finite world?
A fair defense can be put forward for

the view that the world is infinite; or
that we do not know that it is not. But,
in terms of the practical problems that
we must face in the next few genera-
tions with the foreseeable technology, it
is clear that we will greatly increase
human misery if we do not, during the
immediate future, assume that the world
available to the terrestrial human pop-
ulation is finite. "Space" is no escape
(2).
A finite world can support only a

finite population; therefore, population
growth must eventually equal zero. (The
case of perpetual wide fluctuations
above and below zero is a trivial variant
that need not be discussed.) When this
condition is met, what will be the situa-
tion of mankind? Specifically, can Ben-
tham's goal of "the greatest good for
the greatest number" be realized?
No-for two reasons, each sufficient

by itself. The first is a theoretical one.
It is not mathematically possible to
maximize for two (or more) variables at
the same time. This was clearly stated
by von Neumann and Morgenstern (3),
but the principle is implicit in the theory
of partial differential equations, dating
back at least to D'Alembert (1717-
1783).
The second reason springs directly

from biological facts. To live, any
organism must have a source of energy
(for example, food). This energy is
utilized for two puposes: mere main-
tenance and work. For man, mainte-
nance of life requires about 1600 kilo-
calories a day ("maintenance calories').
Anything that he does over and above
merely staying alive will be defined as
work, and is supported by "work cal-
ories" which he takes in. Work calories
are used not only for what we call work
in common speech; they are also re-
quired for all forms of enjoyment, from
swimming and automobile racing to
playing music and writing poetry. If
our goal is to maximize population it is
obvious what we must do: We must
make the work calories per person ap-
proach as close to zero as possible. No
gourmet meals, no vacations, no sports,
no music, no literature, no art. . . . I
think that everyone will grant, without
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G. Hardin 	

(1915-2003)

Tragedy of the commons

G. Hardin (1968) The tragedy of the commons.  
Science 168:1243-1248
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What?

Discusses the disastrous effects that 
individual selfish choice may have on 

common resources and global 
welfare.

Highlights the issue of unlimited 
population growth and the limited 

size of our world

“commons” originated in medieval 
England, a piece of land to which 

people had access for free



Tragedy of the commons
Assumption 1; a number of herdsman N 
who have access to a commons, which is 
used for grazing by their cattle.

Assumption 2; Each herdsman is 
expected to keep as many cattle as 
possible as this provides him with profit.

What is the utility to one 
herdsman of adding one 
more animal to his herd?

Positive: he receives additional 
profit from the sale (+1)

Negative: additional grazing, for which 
the cost is shared with the other 
herdsman (-1/N) 
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Tragedy of the commons
Assumption 1; a number of herdsman N 
who have access to a commons, which is 
used for grazing by their cattle.

Assumption 2; Each herdsman is 
expected to keep as many cattle as 
possible as this provides him with profit.

What is the utility to one 
herdsman of adding one 
more animal to his herd?

Since the benefit outweighs (+1) the 
cost (-1/N); add another animal
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Tragedy of the commons
Assumption 1; a number of herdsman N 
who have access to a commons, which is 
used for grazing by their cattle.

Assumption 2; Each herdsman is 
expected to keep as many cattle as 
possible as this provides him with profit.

When all N herdsman reach 
the same conclusion  !

“Ruin is the destination towards which all 
men rush, each pursuing his own best 
interest in a society that beliefs in the 
freedom of the commons” (G. Hardin, 
1968)
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Tragedy of the commons

Our commons
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pays a cost c receives a benefit b

C

>c

C D

-c b

Cooperation?
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C C

b-c b-c

Cooperation?

pays a cost c receives a benefit b

C

>c
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b-cC

C

-c

0b
?

It’s better to play D, when the 
opponent plays C

It’s better to play D, when the 
opponent plays D

But CC is better than DD

Cooperation?

pays a cost c receives a benefit b

C

>c
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R = reward	

S = suckers payoff	

T = temptation to defect	

P = punishment fear = P >S

 greed = T > R

R

D

C

C

D

S

PT

T > R > P > S

Fear AND Greed
Pr

is
on

er
s 

di
le

m
m

a T =b > R=b-c > P=0 >S = -c

C.H. Coombs (1973) A reparameterization of the prisoner’s dilemma 
game. Behavioral Science 18:424-428
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C.H. Coombs (1973) A reparameterization of the prisoner’s dilemma 
game. Behavioral Science 18:424-428

Fear AND Greed

7

3

3 7

0

1

1
0

C

D

C D

Best response 
determines

Nash equilibrium

7

1

1

7
R

D

C

C

D

S

PT

T > R > P > SPr
is

on
er

s 
di

le
m

m
a

 fear = P >S

 greed = T > R
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R

D

C

C

D

S

PT

R > T > P > S

Fear OR Greed

no greed, only fear

St
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3

7

7 3
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1

1
0

C

D

C D

7

1

1
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Fear OR Greed

R

D

C

C

D

S

PT

T > R > S > P

no fear, only greed

Snow
-drift gam

e

7

3

3 7

2

1

1
2

C

D

C D

7

7

2

2
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D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

C

D

Can a C player invade a population of D 
players? 

R

D

C

C

D

S

PT

Evolutionary stable strategies

The fraction of C (D) players is ε (1-ε)

i) S>P or 
ii) S=P and R >T

S(1-ε)+Rε > P(1-ε)+Tε

C can invade when:
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Can C  invade D?

7

3

3 7

0

1

1
0

C

DC

D 3

7

7 3

0

1

1
0

C

DC

D
7

3

3 7

2

1

1
2

C

DC

D

Can D invade C?

no since P>SC

yes since R<TD

no since P>SC yes since P<SC

no since R>TD yes since R<TD
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C

CC

C

C

C

D

D

D

D

D

D

D

D

D

D

D
D

D

C

C

C

 = x(1-x)[fC(x)-fD(x)]dx
dt

 = x(1-x)[(b-c+c-b+0)x-c-0]

 = -cx(1-x)

x

y=1-x

C D

x=1 x=0

Replicator equation ...

Evolutionary dynamics

P.D. Taylor and L.B. Jonker (1978) Evolutionary stable strategies and game dynamics.  Mathematical biosciences 
40(1-2):145-156
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Dynamics of social dilemmas

 = x(1-x)[(R-S-T+P)x+S-P]dx
dt

fear and greed

only fear

only greed

C D

C D

D dominates C

D and C are bistable

C D

D and C coexist

S-P
R-S-T+Px*=
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Equilibria Summary 
S

T
R+1RR-1

P-1

P+1

P

C

D

C/D

D
C
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How to evolve cooperation

C. Taylor and M.. Nowak (2007) Transforming the 
dilemma.  Evolution 61-10:2281-2292

M. Nowak (2006) Five rules for the evolution of 
cooperation.  Science 314:1560-1563

Direct reciprocity

Indirect reciprocity

kin selection

group selection
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Direct reciprocity
How would the dynamics change when interactions 
between the same two individuals can be repeated?

What kind of strategies could we make that take into 
account the actions from previous encounters?

© Tom Lenaerts, 2010

R. Trivers(1971) The evolution of reciprocal altruism 	

Q Rev Biol  46:35-37



Direct reciprocity
In 1978 R. Axelrod organised a 
tournament between strategies that play 
against each other in a Prisoner’s 
dilemma (14 contestants) 

P. Kollock (1998) Social Dilemmas: the anatomy of 
cooperation Ann. Rev. Sociol.  24:183-214

For cooperation to emerge :	

1) individuals should be involved in ongoing relationship	

2) individuals should be able to identify each other	

3) posses information about how individuals behaved in the 
past→enormous strategy space

TFT - Tit For Tat (A. Rapoport)
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Direct reciprocity
Thus TFT plays C in the first round and then plays the same 
strategy as the opponents previous one 

TFT is an ESS when ŵR>T+(ŵ-1)P

ŵ> T-P
R-P

With probability w there is another round of interactions	

On average there are 1/(1-w) interactions between two players
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Direct reciprocity

Lets take for example a Prisoner’s dilemma : 
T>R>P>S

TFT is an ESS when 

AllD is an ESS

ŵ> T-P
R-P

= 2 w>0.5
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Direct reciprocity

Yet TFT has problems with errors 
since it cannot correct them: TFT:CCCDCDCDDD...	


TFT:CCCCDCDDDD...
*

*

As a consequence, the TFT payoff is 
decreased

TFT can be invaded by AllC by 
random drift

E(TFT,TFT) =
R+P+T+S

4
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Indirect reciprocity
Indirect reciprocity takes your reputation into account

“Indirect reciprocity arises out of direct reciprocity in 
the presence of an interested audience”

R. Alexander (1987) The Biology of Moral Systems. 
Aldine de Gruyter, NY
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Indirect reciprocity

Interactions are not repeated in this context

Each individual has a reputation which 
initialised to 0	

!
Every time the individual helps 
someone, the reputation increases	

!
Whenever the individual refuses to help, 
the reputation decreases	

!
Conditional strategies could take 
advantage of this information: Help is 
only provided to another individual 
when the reputation exceeds a certain 
value

Donor

Receiver
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Indirect reciprocity
Assume a strategy DISC that will cooperate unless it 
knows that the other strategy is a defector	

!
The probability of knowing the strategy is q, so (1-q) is 
the probability that DISC will cooperate with a defector

DISC is an ESS when R>(1-q)T+qP

q> T-R
T-P
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Indirect reciprocity

DISC is an ESS when 

AllD is an ESS

q> T-R
T-P

= 1/2

Take for instance the values for the prisoner’s dilemma

© Tom Lenaerts, 2010



Small summary
So in case of direct and indirect reciprocity one obtains 
very similar results in the prisonners dilemma

q> T-R
T-P

ŵ> T-P
R-P

q <T-R
T-P

ŵ < T-P
R-P

The prisoner’s dilemma is transformed into a stag-hunt game !

DR IDR

© Tom Lenaerts, 2010



The well-mixed assumption

C

D

C

C

D

D

DD

D

D

C

C

D

C

C

C

CD

D

D

C

D

DD

D

D

D

C
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heterogeneity !

C

C

C

C

D

D

D

D

D

D

F.C. Santos, J.M. Pacheco and T. Lenaerts (2006) Evolutionary dynamics in social dilemmas in structured 
heterogeneous populations.  Proc Natl Acad Sci USA 103:3490-3494

C

C

D

C

C

C

?
?
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C

C

C

C

D

D

D

D

D

D

Evolutionary dynamics

Stochastic replicator equation ...

k1=1

k3=2

k2=4 k4=5

k5=2

k6=2

k7=3

k8=5

k9=1

k10=1

p=max[0, (fy-fx)/k>(T-S)]

Vertex x plays kx times and 
accumulates payoff fx

Choose a random 
neighbor y (payoff fy)

Replace strategy Sx by 
Sy with probability

© Tom Lenaerts, 2010



Simulation 1

The EGT 
assumption:	

!
Everyone 
interacts with 
everyone

N=104

100 runs 
50% C, 50% D

R=1, P=0

S

T
210

-1

1

0
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Which networks?

Which models have people 
been using?

What does data tell us about real 
networks?

© Tom Lenaerts, 2010



Regular graphs
Every node has exactly the 
same degree

regular and 
democratic 
network

<k>=4
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Simulation II

There is a limit 
to the number of 
interactions but 
its democratic

S

T
210

-2

1

0

N=104

100 runs 
50% C, 50% D

R=1, P=0

-1
<k>=4
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P. Erdős	

(1913-1996)

Random graphs

Connect with probability p

p=1/6, N=10 
⇒<k>≈1.5

random and 
democratic 
network
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Simulation III

There is a limit 
to the number of 
interactions but 
its democratic 
and random

S

T
210

-2

1

0

N=104

100 runs 
50% C, 50% D

R=1, P=0

-1
<k>=4
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Which networks?

Which models have people 
been using?

What does data tell us about real 
networks?

© Tom Lenaerts, 2010



Small world experiment

S. Milgram	

(1933-1984)

“Six degrees of separation“ (J. Guare, 1990)

J. Travers and S. Milgram (1969) An experimental study of the small-world problem.  Sociometry 32(4):425-443

What is the average number of connections 
between any two people?

© Tom Lenaerts, 2010



Average path length

The average path length (L) is a measure of proximity 
between nodes

L=1 L=1.8L=1.4

L= 1
N(N-1) ∑dmin(i,j)

i≠j

© Tom Lenaerts, 2010



Cluster coefficient

The cluster coefficient (C) is a measure for cliquishness

C=0 C=1

C= 1
N
∑
i

2ci

ki(ki-1)

C≈0.5
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Small world networks

D. Watts and S. Strogatz (1998) Collective dynamics of ‘small-world’ 
networks.  Nature 393:440-442

Mechanism: 	

1.take a regular graph	

2.randomly rewire every edge with probability p	

3.avoid loops and double edges

electrical power grid of South 
California, network of world 
airports, movie-actor network,  the 
neuronal network of the worm 
C.elegans

© Tom Lenaerts, 2010



L.A.N. Amaral, A. Scala, M. Barthelemy and H.E. Stanley (2000) Classes of small-world networks. Proc Natl Acad 
Sci USA 97(21): 11149-11152

Network classes 

electrical power grid of South California, network of world airports, movie-actor network, acquintance 
network of mormons, friendship network of 417 Madison Junior High school students, the neuronal network 
of the worm C.elegans, the conformational space of a lattice polymer chain
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L.A.N. Amaral, A. Scala, M. Barthelemy and H.E. Stanley (2000) Classes of small-world networks. Proc Natl Acad 
Sci USA 97(21): 11149-11152

Network classes 

Aging of vertices as in the 
movie-actor network

cost of adding links or the 
limited capacity of vertices as 
in the airport network

© Tom Lenaerts, 2010



Configuration model

M. Molloy and B. Reed (1995) A critical point for random graphs with a given degree sequence. Random 
Struct. Algorithms 6:161-180

create random networks 
with a particular degree 
distribution

k1=3 k3=3

k2=4

k4=2

k5=5

k6=4
k7=4

k8=4
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Simulation IV

low heterogeneity	

assumption

S

T
210

-1

1

0
N=104

100 runs 
50% C, 50% D

R=1, P=0

<k>=4
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Scale-free Networks 

A.-L. Barabási and R. Albert (1999) Emergence of Scaling in Random Networks. Science 286:509-512
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social versus individual 
learning

pi(t +1) = pi(t) +λβi(t)*(1-pi(t))   
when i played C at time t  
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when i played D at time t  
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Presentation next week!
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treatment, we removed the effect of the network by shuffling the
neighbors of each subject in every round. Therefore, in this phase,
the players were always connected to the same number of neigh-
bors, but these neighbors changed from round to round. On the
screen, subjects saw the actions and normalized payoffs of their
neighbors from the previous round, who in the control treatment,
were different from their current neighbors with high probability
(SI Materials and Methods and SI Results and Discussion). All
treatments of the experiment were carried out in sequence with
the same subjects. Players were also fully informed of the dif-
ferent setups that they were going to run. The number of rounds
in each treatment was randomly chosen between 50 and 70 to

avoid subjects knowing in advance when it was going to finish,
resulting in 51 and 59 rounds for the experimental and control
treatments, respectively. Full details are provided in SI Materials
and Methods and SI Results and Discussion.

Results and Discussion
Fig. 2 A and B shows the fraction of cooperative actions, c, in
each round for the two networks and both treatments. The first
feature worth noticing in Fig. 2 is that, in the experiment phase,
the level of cooperation in either network quickly drops from
initial values around 60% to values around 40% and finally settles
at a slower pace around 30%, much lower than theoretical models

A B C

Fig. 1. Players in the experiment were sitting in different physical locations but played in two virtual networks. A is a snapshot at round 10 of a graphic
animation illustrating the activity during the experiment (SI Results and Discussion). On a map of Aragón, the image displays small buildings representing the
schools. Arrows (green for cooperate and red for defect) represent actual actions taken by players. They travel to the school, where their randomly assigned
neighbors were sitting. Buildings are colored green and red, proportional to the respective number of cooperative and defective actions taken by the subjects
in that school. The height of the yellow column on top of each building is proportional to the school’s accumulated payoffs. B and C show snapshots of the
two networks at that same round along with their degree distributions (in the case of the heterogeneous network, both the theoretical distribution and the
actual realization corresponding to the network of the experiment are represented). Colors indicate the corresponding player’s action (green, cooperate; red,
defect). The size of a node is proportional to its degree.

A C

B D

Fig. 2. The level of cooperation declines and is independent of the network of contacts. Fraction of cooperative actions (level of cooperation) per round
during the experiment (A) and the control (B) for both networks and histograms of cooperative actions in the lattice (C) and the heterogeneous network (D).
The histograms (C and D) show the number of subjects ranked according to the fraction of cooperative actions that they perform along the experiment in the
two networks. A Kolmogorov–Smirnov test shows that the distributions are statistically indistinguishable (SI Results and Discussion). They illustrate the high
heterogeneity in subjects’ behavior—their levels of cooperation ranging from nearly zero to almost one in a practically continuous distribution. The cor-
responding histograms for the control (Fig. S4) show that a sizable group of subjects lowered their levels of cooperation, hence becoming mostly defectors.
Actually, the decline in the level of cooperation observed in the experiment (A and B) can be explained as a constant flow of subjects to more defective
strategies (evidence supporting this hypothesis in Figs. S5 and S6).
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consisting of performing a thousand random shufflings of the
positions of the players while keeping their sequences of actions
during the experiments, and computing the corresponding
fractions of imitation. This provides the empirical probability
distributions of the null hypothesis ‘‘imitation is due to chance’’.
The mean values of these distributions are 0:7145+0:0014 for
experiment 1 and 0:7678+0:0013 for experiment 2, and values
larger than the one we find can be obtained with probability
p~0:425 in experiment 1 and p~0:282 in experiment 2. This
proves that the observed imitation is not significantly different
from the apparent imitation yielded by pure chance. This result,
which is consistent with the low level of cooperation observed
(players using imitate-the-best should lead the system to higher
cooperation) and with the responses to the questionnaires at the
end of the experiment (no one claimed to have imitated the best
neighbor), makes it plausible to conclude that imitate-the-best is
not an appropriate explanation of players’ behavior (although
strictly speaking, this statistical analysis does not allow us to
definitely rule out this strategy).

Analysis of players’ strategies during the experiment
To make further progress towards clarifying the question of the

dynamics of strategies, we considered as an alternative strategy
update rule the possibility that players react to the number of
cooperative neighbors (k~0,1, . . . ,8) they observed in the
previous round (henceforth a context), i.e., we assume that they
have one-step memory. This is a reasonable assumption in view
that questionnaires suggest that players take into account what
their neighbors do. Furthermore, Traulsen et al. [15] briefly report
that cooperative actions are more frequent in more cooperative
environments. Therefore, we specifically computed from the
experimental data the average frequency with which players

cooperated, conditioned to both their previous action and their
context, and made linear fits to these frequencies [Figures 2(a) and
(b) and Table 1]. The first observation is that players’ reactions to
the context depend strongly on the past action of the focus player,
something that to our knowledge has never been reported. The
significance of this result can be assessed by comparing with the
result obtained averaging over a thousand shufflings of the players
in the lattice [Figures 2(g) and (h)], which show no dependence on
the context. On the other hand, the differences observed in the fits
of the two experiments provide another hint that players are using
a better defined strategy in experiment 2, after having ‘‘learnt’’ in
the two previous phases of the experiment. Using these fits as a
model (henceforth homogeneous model), we made simulations in a
13|13 lattice in which all players react according to these rules,
with an initial condition similar to the one found in the
experiments. This model is able to reproduce the observed
asymptotic level of cooperation in both experiments, predicting an
asymptotic value of 28% for experiment 1 and of 22% for
experiment 2, but fails to reproduce other features. For instance, it
leads to a histogram of total earnings much narrower than the
experimental one, and the distribution of fractions of cooperative
actions among players reveals that it does not capture a significant
fraction of stubborn defectors and cooperators that appear in the
experiment (see Figure 3).
We then tried to distinguish different kinds of behavior shown

by players. First we found a sizeable number of pure defectors, as well
as a few pure cooperators, in all three stages of the experiments —i.e.,
players who always defected/cooperated irrespective of the actions
of their neighbors. Taking these individuals out, we still were able
to classify the remaining players into three groups: Mostly defectors
(people who defected more than 2/3 of the times in any context),
mostly cooperators (cooperated more than 2/3 of the times in any

Figure 1. The cooperation level declines to a low but non-zero level. Fraction of cooperators in every round of the three parts of the
experiment (in the first and the last ones players remain in the same node of the lattice along the whole experiment, whereas in the control part
players are shuffled every round). Players are arranged in a 13|13 lattice with periodic boundary conditions, and play a PD game with each of its 8
surrounding neighbors in the lattice. With the notation C for cooperation, D for defection, and p(X,Y) for the payoff obtained by a player who plays
X against an opponent who plays Y, the payoff matrix of each of these PD games is p(C,C)~7 cents of a euro, p(C,D)~0 cents, p(D,C)~10 cents,
and p(D,D)~0 cents. These payoffs conform a weak PD game—the most favorable to promote cooperation— because p(C,D)~p(D,D). This setup
is entirely similar to that of Nowak and May’s simulations [5] except for the size of the lattice (simulations are performed on n|n lattices, with nw20)
and the lack of self-interactions (see [17] for further comments).
doi:10.1371/journal.pone.0013749.g001

Humans Playing a Spatial PD

PLoS ONE | www.plosone.org 3 November 2010 | Volume 5 | Issue 11 | e13749

choice parameters to the experiment. To be consistent with
random strategy choice, we assume that only a fraction of 1–2 ν is
correct imitation. A fraction ν is random strategy choice leading
to the “correct” strategy that is consistent with imitation, and a
fraction ν is strategy changes not expected from imitation. Fig. 2
reveals that this approach can capture the average cooperation
level in the behavioral experiment. Comparing 15 simulations
with 15 experimental treatments reveals no significant difference
between the simulations and the experiments after Bonferroni
correction, which takes into account multiple comparisons. We
can summarize this approach by the following equation govern-
ing strategy choice:

PA→B ¼ ν0Γ t− 1 þ
!
1‒2 ν0 Γ t− 1"Θ

!
πB − πA

"
; [3]

where B is the best-performing neighbor of A; t is the round of
the game; πA and πB are the payoffs of A and B, respectively; and
Θ(α) is the Heaviside function [Θ(α) = 0 for α ≤ 0 and Θ(α) = 1
for α > 0]. In our experiment, we find ν0 = 0.380 ± 0.013 and
Γ = 0.962 ± 0.003 (see Fig. 1).
Next, let us abstract from the fact that strategy adoption

changes over time and analyze the way in which individuals
imitate their coplayers in more detail. First, we analyze all sit-
uations in which players do the same as their four neighbors.
How likely are they to switch strategies? It turns out that coop-
erators switch to defection in such a homogeneous environment
with a probability of μC = 0.28 ± 0.07 (averaged over 45 such
situations). Defectors switch to cooperation with s probability of
μD = 0.25 ± 0.01 (averaged over 1,400 such situations). These
probabilities correspond to spontaneous mutations or strategy
exploration of the players. To analyze imitation is less straight-
forward, because it is impossible to say if people changed to a
different strategy imitating a particular neighbor, several at the
same time, at random, or based on some more sophisticated

argumentation. For example, human players who find themselves
in a neighborhood of cooperators may be tempted to defect,
anticipating to win the highest possible payoff, before another
neighbor defects. They may also expect others to take advantage
of a cooperative neighborhood sooner or later. However, we can
at least quantify the average behavior. We take all decisions into
account in which a focal cooperator had at least one defecting
neighbor (1,524 decisions) or in which a focal defector had a
least one cooperating neighbor (2,791 decisions). Again, some of
these strategy changes will correspond to random strategy
exploration, but we can assume that this occurs with a probability
that is independent of the payoff difference.
Depending on the payoff difference to the neighbor who per-

forms best by using a different strategy than the focal player, what is
the probability that the focal player switches to that other strategy?
Fig. 3 shows that the probability increases with the success of the
neighbor, as expected. A cooperator is typically confronted with a
defector performing better, whereas a defector can typically only
choose to imitate a cooperator performing worse. Moreover,
defectors are more resilient to change than cooperators. To model
strategy changes, we assume that the probability of switching strat-
egy is given by ð1þ exp½− βΔπ%Þ− 1.Note that forβ→∞, we recover
the unconditional imitation from above. Fitting this function to the
data shown in Fig. 3 leads to β=1.20± 0.25. The error corresponds
to the SD in a binomial distribution,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pð1−PÞ=n

p
, where n is the

number of samples. If we want to take the difference in strategy
adoption of cooperating players and defecting players into account,
we can also fit two different functions to the data (Fig. 3). If we
instead use the average payoff difference to players using a different
strategy, we obtain β = 1.15 ± 0.23. Also in this case, defecting
players seem to be more resilient to change.
Fig. 3 also shows how the probability of cooperating depends

on the number of cooperating neighbors. This does not take any
payoffs into account and addresses whether players imitate the
common rather than the more successful. It turns out that the
probability of cooperating is below 50% even when all neighbors
are cooperating. Thus, in our experiment, players not only imi-
tate the most common strategy but decide for cooperation or
defection in more complex ways.
The intensity of selection measured in our experiments reveals

that humans do not simply accept any strategy that is performing
better than their strategy, as assumed by imitation dynamics.
However, β is also so high that analytical results obtained under
weak selection may not always apply. Again, we can summarize
our approach by means of a simple equation. If we neglect
temporal dependence but take the differences between cooper-
ators and defectors into account, we find the following:

PC→D ¼ μC þ 1− μC
1þ e− βCðπD − πCÞþαC

[4]

PD→C ¼ μD þ 1− μD
1þ e− βDðπC − πDÞþαD

: [5]

Our analysis leads to μC = 0.28 ± 0.07, βC = 0.67 ± 0.28, and
αC = −0.11 ± 0.23 for cooperating players and μD = 0.25 ± 0.01,
βD = 0.99 ± 0.23, and αD = 0.79 ± 0.14 for defecting players.

Discussion
As expected, players imitate others with the probability increasing
with the payoff difference. In evolutionary game dynamics, this
corresponds to selection. Sometimes, players switch sponta-
neously to a new strategy at random, however, which corresponds
to a mutation. Our approach reveals that the probability of
such random changes is much higher than typically assumed in
theoretical models.
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Fig. 2. The average level of cooperation tends to decrease over time. Sym-
bols show a behavioral experiment with humans, and lines correspond to
simulations. In the experiment, the treatment with fixed neighbors on a 4 × 4
lattice with periodical boundary conditions (▪) is not significantly different
from the dynamics in a system with random neighbors (▲). Full lines show a
computer simulation in which players either imitate their best-performing
neighbor or choose a random strategy with a probability of 2ν·Γt−1, where ν =
0.38 and Γ = 0.96 (fitted to the behavioral experiment; see the text). For such a
high probability of random strategy choice, the simulation results for fixed
and random neighbors are almost indistinguishable and the level of cooper-
ation is driven by random strategy choice rather than by spatial structure. For
comparison, dotted lines show computer simulations with no mutations
(experimental average over 15 repeats for fixed neighbors and 10 repeats for
random neighbors, each with 16 players; simulations starting from the
cooperation level of the experiment and averaged over 104 realizations).
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Networks are dynamic

J.M Pacheco, A. Traulsen and M. Nowak (2006) Coevolution of strategy and structure in complex networks with 
dynamical linking. Phys Rev Lett 97:258103

F.C. Santos, J.M. Pacheco and T. Lenaerts (2006) Cooperation previals when individuals adjust their social ties.  
PLoS Comp Biol 2(12):e178

Agent-based simulations

Analytics and numerical approximations

S. Van Segbroeck, F.C. Santos, A. Nowé, J.M. Pacheco and T. Lenaerts (2008) The evolution of prompt reactions to 
adverse ties.  BMC Evol Biol 8:287

S.Van Segbroeck, F.C. Santos, T. Lenaerts and J.M. Pacheco (2009) Reacting differently to adverse ties promotes 
the evolution of cooperation.  Phys Rev Lett 102:058105
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Everyone reacts differently
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Recent experiments

Fehl, K., Van Der Post, D. J., & Semmann, D. (2011). Co-evolution of behaviour and social network structure 
promotes human cooperation. Ecology Letters, 14(6), 546–551.round of a new link than if either of them defected in that round (see

Fig. 3; sign test, CC link vs. CD link: n = 10, P < 0.01; CC link vs.
DD link: n = 10, P < 0.01). The link duration did not differ
significantly when one of them defected from when both defected
(sign test: n = 10, P = 0.11).

Assortment on the dynamic networks

To reveal network assortment on top of behavioural assortment
within links (cf. the static network treatment with an average
cooperation level of 48%), we needed to show assortment into

clusters that are beyond the pair level (i.e. we cannot distinguish
between behavioural and network assortment at the pair level).
Moreover, we needed to use a clustering measure that is independent
of cooperative behaviour measures. In this way we could relate
cooperation and clustering and reveal assortment of cooperators into
clusters.

Clustering in the dynamic networks
We find a greater degree of clustering in the dynamic networks than
would be expected at random. To determine this, we devised a
clustering score to capture the degree to which individuals were
clustered into !cliques" (i.e. clusters, where !your friends are each
others friends"; from here on !Friends of Friends" or FoF) and how
stable this is over time (see Appendix S3 for details). Next, we
compared whether the average FoF score achieved in the experimen-
tal sessions (11.01 ± 4.24) differed from the FoF score under random
link breaking. To generate an expectation for !random" network
clustering, we developed an agent-based model in which links where
broken randomly (i.e. not conditional on the partner"s decision in the
PD). We ran agent-based simulations based on our experimental
sessions (where we used round specific breaking rates measured in the
experiment, which accounted for the effect that breaking rates
decreased over time; see Appendix S3). We then compared the FoF
mean from the experiment to the distribution of FoF scores from the
simulations. The FoF mean from the experiment was beyond the top
5% of the distribution of FoF-means obtained from random link
breaking (11.01 > 5% threshold of 7.92), demonstrating that the
dynamic networks in the experiment indeed became significantly more
clustered than would be expected for random link breaking.

Interrelation between game behaviour and network topology
When analysing participants" behaviour in the PD in relation to the
cluster formation, we found that it was cooperative participants in
particular, who ended up in clusters (for details on the cluster score
see Appendix S3). We assigned participants !cooperation" scores by
giving them one positive point for every cooperative move towards
any partner and one negative point for every defection (theoretically
taking values from )90 to 90). Participants" average !cooperation"
score was 39.36 ± 43.46 (range: )78–90). We used a generalized linear
mix effect model, in which we included sessions as random factors
and assumed Poisson-distributed errors, to model cluster scores as a
function of the participants" !cooperation" scores. We find that the
higher the participants" !cooperation" scores the higher their cluster
scores were (intercept = 1.96, SE = 0.16, P < 0.001; b = 0.0076,
SE = 0.0008, P < 0.001).

DISCUSSION

In this study we show that for human participants cooperating on
social networks, the interrelatedness of behaviour and network
structure matters. The level of cooperation in the iterated prisoner"s
dilemma was significantly increased on dynamic networks relative to
static networks. Thus, relative to reciprocity in static relationships, the
ability to change partners enhances cooperation.
Theory predicts two possible link-breaking behaviours: (i) keeping

links to defectors to keep track of them in a model with conditional
PD strategies (Pacheco et al. 2008), and (ii) breaking links to defectors,
mainly for models with unconditional PD strategies (Fu et al. 2009;
Wu et al. 2010). We find that although our experiment allows
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round of a new link than if either of them defected in that round (see
Fig. 3; sign test, CC link vs. CD link: n = 10, P < 0.01; CC link vs.
DD link: n = 10, P < 0.01). The link duration did not differ
significantly when one of them defected from when both defected
(sign test: n = 10, P = 0.11).

Assortment on the dynamic networks

To reveal network assortment on top of behavioural assortment
within links (cf. the static network treatment with an average
cooperation level of 48%), we needed to show assortment into

clusters that are beyond the pair level (i.e. we cannot distinguish
between behavioural and network assortment at the pair level).
Moreover, we needed to use a clustering measure that is independent
of cooperative behaviour measures. In this way we could relate
cooperation and clustering and reveal assortment of cooperators into
clusters.

Clustering in the dynamic networks
We find a greater degree of clustering in the dynamic networks than
would be expected at random. To determine this, we devised a
clustering score to capture the degree to which individuals were
clustered into !cliques" (i.e. clusters, where !your friends are each
others friends"; from here on !Friends of Friends" or FoF) and how
stable this is over time (see Appendix S3 for details). Next, we
compared whether the average FoF score achieved in the experimen-
tal sessions (11.01 ± 4.24) differed from the FoF score under random
link breaking. To generate an expectation for !random" network
clustering, we developed an agent-based model in which links where
broken randomly (i.e. not conditional on the partner"s decision in the
PD). We ran agent-based simulations based on our experimental
sessions (where we used round specific breaking rates measured in the
experiment, which accounted for the effect that breaking rates
decreased over time; see Appendix S3). We then compared the FoF
mean from the experiment to the distribution of FoF scores from the
simulations. The FoF mean from the experiment was beyond the top
5% of the distribution of FoF-means obtained from random link
breaking (11.01 > 5% threshold of 7.92), demonstrating that the
dynamic networks in the experiment indeed became significantly more
clustered than would be expected for random link breaking.

Interrelation between game behaviour and network topology
When analysing participants" behaviour in the PD in relation to the
cluster formation, we found that it was cooperative participants in
particular, who ended up in clusters (for details on the cluster score
see Appendix S3). We assigned participants !cooperation" scores by
giving them one positive point for every cooperative move towards
any partner and one negative point for every defection (theoretically
taking values from )90 to 90). Participants" average !cooperation"
score was 39.36 ± 43.46 (range: )78–90). We used a generalized linear
mix effect model, in which we included sessions as random factors
and assumed Poisson-distributed errors, to model cluster scores as a
function of the participants" !cooperation" scores. We find that the
higher the participants" !cooperation" scores the higher their cluster
scores were (intercept = 1.96, SE = 0.16, P < 0.001; b = 0.0076,
SE = 0.0008, P < 0.001).

DISCUSSION

In this study we show that for human participants cooperating on
social networks, the interrelatedness of behaviour and network
structure matters. The level of cooperation in the iterated prisoner"s
dilemma was significantly increased on dynamic networks relative to
static networks. Thus, relative to reciprocity in static relationships, the
ability to change partners enhances cooperation.
Theory predicts two possible link-breaking behaviours: (i) keeping

links to defectors to keep track of them in a model with conditional
PD strategies (Pacheco et al. 2008), and (ii) breaking links to defectors,
mainly for models with unconditional PD strategies (Fu et al. 2009;
Wu et al. 2010). We find that although our experiment allows
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Figure 2 Average cooperation levels (± SD) of 30 rounds of prisoner"s dilemmas

played either with fixed partners on a static network or with possibly changing

partners through an active-linking-breaking mechanism on a dynamic network

(Mann–Whitney U-test: U = 4, n1,2 = 10, P < 0.001).
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Figure 3 Duration of links in the dynamic network treatment. Bars represent

average duration of links (± SD) when paired participants could decide to

cooperate, C, or defect, D, in their first prisoner"s dilemma round. Accordingly,

they either form a CC link, a CD link (DC link, respectively), or a DD link (Sign

test; CC link vs. CD link: n = 10, P < 0.01; CC link vs. DD link: n = 10, P < 0.01;
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