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Summary

What? Why!?
Rational choice
Strategic games
Nash Equilibrium
Best

Dominance
Mixed strategies

Mixed-strategy Nash
Equilibria

Support finding

Lemke-Howson algorithm
Extensive-form games
sub-game perfect equilibrium
Simultaneous moves

Chance moves

Bayesian games

Assignment |
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The formation of agents’

beliefs
Now that we can determine the Nash and sub-
game perfect equilibria ... ‘(_ D

How can we reach them?

Which equilibrium is ST
% DYNAMICSLy/
preferred ? Y i g

\ ’
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The formation of agents’
beliefs

Can we expect that the equilibrium will be reached ?

Players could chose their action from an introspective
analysis of the game : removing dominated strategies

Learning the beliefs about the other player in
response of the information she receives :
|. Best response dynamics
2. Fictitious play
3. Stimulus-response or reinforcement learning
4. Evolutionary or cultural dynamics
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Levels of learning

Innate :
reflex actions

learned
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Conditioning

Scene from the Big Bang Theory (SO3E03,The
Gothowitz Deviation)
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Best-response dynamics

In the first period, choose a best
response to an arbitrary deterministic
belief about the other players’ actions

In every period after the first, choose the best response to
the action the other players’ actions in the previous round

An action profile that remains the same from period to period is
a pure Nash equilibrium of the game
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Best-response dynamics

Bach Strav. . .
I 0 Depending on the prior beliefs
Bach these dynamics may not
2 0 converge
0 ) Take for instance the Battle of the sexes,
Strav. which has 3 equilibria ((1,0),(1,0)), ((0,1),(0, 1
q
0 | and ((2/3,1/3),(1/3, 2/3)
BELIEF BELIEF BELIEF
A plays B plays A plays B plays A plays B plays
prior B B prior S S prior S B
I B B I S S I B S

2 B B 2 S S 2 S B
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Fictitious play
Every agent starts with an arbitrary probabilistic belief about the other

players actions.

In the first round she chooses a BR to this prior probabilistic belief and
observes the other player’s actions, say A.

she changes here belief so that A gets probability |

In the second round, she produces a best response to this belief and
observes the other player’s action, say B

she changes here belief to one that assigns 1/2 to action A and 1/2 to
action B

In the third round ...
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Fictitious play

Consider again the Battle of the sexes:

prior

N O O A WDN

wmw O uUvL UuvU Ou Om

BELIEF

A plays
(1,0)
(L))

(1,2)
(2,2)

(2,3)
(24)
(2,5)

wmw n»mu 0 u u O

0.1)
(L)
(12)
(1.3)
(2.3)
(2.4)
(2.5)

TOTAL =2
TOTAL =3
TOTAL=4
TOTAL =5

TOTAL =6
TOTAL =7

Bach

Strav.

Bach Strav.

0
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Fictitious play

So in any period, the agent adopts the belief that her opponent
is using a mixed strategy in which the probability of each action
is proportional to the frequency with which her opponent has
chosen that action in the previous rounds

The process converges to a mixed strategy Nash equilibrium
from initial beliefs
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Stimulus-response
learning

internal state “Sreward

” \.

environment

o) 5 il
action I\J\’
X

learning rate a
inverse temperature

discount rate v

observation

More details on reinforcement learning by prof. De Hauwere



Culture and evolution

“Culture is the integrated pattern of human
knowledge, belief, and behavior that depends upon
the capacity for learning and transmitting knowledge
to succeeding generations”

Link between biological evolution and
cultural learning

A trait is adaptive if

biology — it provides an increase in an
individual’s chance of survival and
reproductive success

culture — it provides an advantage in the
interactions with other players
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Biological analog

This transmission can imply copying (reproduction),
with the possibility of errors (mutation)

evolutionary dynamics




Biological analog

The thing that evolves is the population




Biological analog

Individuals reproduce in the population

Individuals imitate other players in the population
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Biological analog

Individuals may mutate during the reproductive process

Individuals may make errors when imitating



Biological analog

Selection may cause the new individuals to replace
the others

Selection may cause certain behaviors to be
imitated more often than the others



Biological analog

Selection is the outcome of a competition between
the different types of population members




© Tom Lenaerts, 2013

Social dilemmas

THE QUESTION OF COOPERATION

Social dilem

Social dilemmas are situations in which individual rationality leads to collec-
a group has (§ tive irrationality. That is, individually reasonable behavior leads to a situation
choice that-§ 1nwhich everyone is worse off than they might have been otherwise. Many of

PSS ITTITIS WU v e L IO T CT SO T e

poorer outc
.. P. Kollock (1998) Social Dilemmas: the anatomy of cooperation Ann. Rev.
if none had 1| ERPLAEESIY

individually
doing less well than they would have done if they had
acted unreasonably or irrationally. This paradoxical pos-

o RN T I anks A N TraYrer T rmmn 1T Ny AT=t=0a

R.M. Dawes and D.M. Messick (2000) Social Dilemmas. International Journal of Psychology
352):111-116
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The Tragedy of the Commons

The population problem has no technical solution;
it requires a fundamental extension in morality.

At the end of a thoughtful article on
future of nuclear war, Wiesner and
'k (1) concluded that: “Both sides in
irms race are . . . confronted by the

ama of steadily increasing military
er and steadily decreasing national
xity. It is our considered profes-
al judgment that this dilemma has
technical so
continue
area of ‘ ‘
result °
1.7
I would
t on the
nal secu
( the kin¢

nely tha

n to the

l1ost uni

ns publ

aipopula

proble

1nical s

y be de

inge onl

Garrett Hardin

sional judgment. . . .” Whether they
were right or not is not the concern of
the present article. Rather, the concern
here is with the important concept of a
class of human problems which can be
called “no technical solution problems,”
and, more specifically, with the identifi-
cation and discussion of one of these.
ow that the class is not

11 the game of tick-

he problem, “How

. of tick-tack-toe?”

t I cannot, if I as-

th the conventions

 my opponent un-

perfectly. Put an-

no “technical solu-

n. I can win only

eaning to the word

opponent over the

im; or I can falsify

1y in which I “win”

ense, an abandon-

3 we intuitively un-

also, of course,

: game—refuse to

G. Hardin
(1915-2003)

Tragedy of the commons

Population, as Malthus said, naturx
tends to grow “geometrically,” or, as
would now say, exponentially. Ip
finite world this means that the
capita share of the world’s goods mr
steadily decrease. Is ours a finite wo

A fair defense can be put forwar¢
the view that the world is infinite
that we do not know that it is not.
in terms of the practical problems
we must face in the next few ger
tions with the foreseeable technolog
is clear that we will greatly incr
human misery if we do not, during
immediate future, assume that the wi
available to the terrestrial human p
ulation is finite. “Space” is no esc
@).

A finite world can support onl
finite population; therefore, populai
growth must eventually equal zero. (1
case of perpetual wide fluctuati
above and below zero is a trivial vari
that need not be discussed.) When
condition is met, what will be the sit
tion of mankind? Specifically, can B.
tham’s goal of “the greatest good |
the greatest number” be realized?

No—for two reasons, each sufficic
by itself. The first is a theoretical or
It is not mathematically possible
maximize for two (or more) variables
the same time. This was clearly stat,
by von Neumann and Morgenstern (.
but the principle is implicit in the thec
of partial differential equations, dati
back at least to D’Alembert (171
1783).

The second reason springs direc
from biological facts. To live, a

organism must have a source of ener
(for pwcim Y Eand) Thjg ane» -~y

What!

G. Hardin (1968) The tragedy of the commons.
Science 168:1243-1248

“commons” originated in medieval
England, a piece of land to which
people had access for free

Discusses the disastrous effects that
individual selfish choice may have on
common resources and global
welfare.

Highlights the issue of unlimited
population growth and the limited
size of our world
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Tragedy of the commons

Assumption |;a number of herdsman N Assumption 2; Each herdsman is
who have access to a commons, which is expected to keep as many cattle as
used for grazing by their cattle. possible as this provides him with profit.

Positive: he receives additional

What is the utility to one - profit from the sale (+1/)

herdsman of adding one
more animal to his herd?
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Tragedy of the commons

Assumption |;a number of herdsman N Assumption 2; Each herdsman is

who have access to a commons, which is expected to keep as many cattle as

used for grazing by their cattle. possible as this provides him with profit.
What is the utility to one Since the benefit outweighs (+1) the

——

herdsman of adding one
more animal to his herd?

cost (-1/N); add another animal
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Tragedy of the commons

Assumption |;a number of herdsman N Assumption 2; Each herdsman is
who have access to a commons, which is expected to keep as many cattle as
used for grazing by their cattle. possible as this provides him with profit.

“Ruin is the destination towards which all

men rush, each pursuing his own best
ﬁ . . . . .

interest in a society that beliefs in the

freedom of the commons” (G. Hardin,
1968)
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Tragedy of the commons

Our commons
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e 1 cooperation between management and workers:

COLLABORATION, JoInt action, combined effort, teamwork,
partnership. coordination, liaison, association, synergy.

synergism,
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and take, compromise.
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2 thank vou for your cooperation: ASSISTANCE, helpfulness, help.
helnine hand . aid.
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Cooperation?

.
pays a cost ¢ receives a benefit b >c¢

HELLO? NO., MY DADS WILL T TAKE A MESSAGL ? PEOPLE ALWAYS ASSUME
NOT HERE RIGHT Now 1 DONT XKNOW ~ WHAT'S YOURE SOME KIND OF

N T FOR ME ? -
\o /

—_—

Wy

)
3

.
=)

&
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©
1 S 7

receives a benefit b >c

pays a cost ¢

©
4 — =

Cooperation?
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Cooperation?

pays a cost ¢ receives a benefit b >c¢
It’s better to play D, when the

‘ O opponent plays C

b-c| | -c It’s better to play D, when the

opponent plays D

O But CC is better than DD
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T

Prisoners dilemma

I'>R>P>S§

greed=T>R
fear = P >S§

P

Fear AND Greed

T'=b> R=b-c > P=0>5=-

R = reward

S = suckers payoff

T' = temptation to defect
P = punishment

C.H. Coombs (1973) A reparameterization of the prisoner’s dilemma

game. Behavioral Science 18:424-428
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Fear AND Greed

- @0

—-— O], |
0,

00

Prisoners dilemma

I'>R>P>S§

greed=T7T>R

Best response
determines

fear = P >§

C.H. Coombs (1973) A reparameterization of the prisoner’s dilemma
game. Behavioral Science 18:424-428

Nash equilibrium
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Fear OR Greed

)
& S
(%)
o0
=
C
K= P
0.0
S
) > P> S

, only fear
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Fear OR Greed

. O,

(0]
2
R g
ol
=
T A
3
()
T>R >

no fear,




Evolutionary stable strategies

Can a C player invade a population of D
players?

The fraction of C (D) players is ¢ (/-¢)

S(1-¢)+Re > P(l-¢)+T¢

C can invade when:

i) $>P or
i) S=Pand R >T

©
©
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Can D imvardke @Y7

©,
O,
‘ no since P>§ no since P>§ ‘yes since P<§
O,

yes since R<T no since R>T @ yes since R<T
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Evolutionary dynamics

Replicator equation ...

Evolutbonury Cames wnd
Population Dynambes

= X(1-9)[fe(9)-fo()] e

= x(1-x)[(b-ct+c-b+0)x-c-0]

SEVOLUTIONARY

= -cx(1-x) “*DYNAMICS}
PRI
x= ] X= 0 | MARTIN A. N‘éw,;x ';\,A,:

P.D.Taylor and L.B. Jonker (1978) Evolutionary stable strategies and game dynamics. Mathematical biosciences
40(1-2):145-156
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Dynamics of social dilemmas

AX — (1 -x)[(R-S-T+P)x+S-P]

dt
@ fear and greed
D and C are bistable

‘ «— O —)@ only fear o p

D dominates C

k—
YT R.S.THP

D and C coexist

‘ —_— ‘ 4—@ only greed
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Equilibria Summary
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How to evolve cooperation

Direct reciprocity kin selection
Indirect reciprocity group selection
L - ) Ay,
Y R
) =4
M. Nowak (2006) Five rules for the evolution of C.Taylor and M.. Nowak (2007) Transforming the

cooperation. Science 314:1560-1563 dilemma. Evolution 61-10:2281-2292
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Direct reciprocity

How would the dynamics change when interactions
between the same two individuals can be repeated!?

What kind of strategies could we make that take into
account the actions from previous encounters!?

R.Trivers(1971) The evolution of reciprocal altruism
Q Rev Biol 46:35-37
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Direct reciprocity

In 1978 R.Axelrod organised a
tournament between strategies that play
against each other in a Prisoner’s

dilemma (14 contestants) . 'ﬁ;g.' '
T\ Evolution
TFT - Tit For Tat (A. Rapoport) = Cooperation

ROBERT AXELROD

For cooperation to emerge :
|) individuals should be involved in ongoing relationship

2) individuals should be able to identify each other

3) posses information about how individuals behaved in the

past—enormous strategy space

P. Kollock (1998) Social Dilemmas: the anatomy of
cooperation Ann. Rev. Sociol. 24:183-214
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Direct reciprocity

Thus TFT plays C in the first round and then plays the same
strategy as the opponents previous one

With probability w there is another round of interactions
On average there are //(1-w) interactions between two players

Vo= 1/(1-w) TFT  ALLD

WR S+ (#-1)P TFT is an ESS when wR>T+(w-1)P

. I-P

R-P
ALLD |FESAEN) R
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Lets take for example a Prisoner’s dilemma :

Direct reciprocity

I>R>P>§

w=1/(1-w)

TFT  ALLD

TFT

ALLD

WR  S+(-1)P

T+(i-DP WP

AllID is an ESS

TFT is an ESS when

C D

yf/>—T'P =2

R-P

w>(0.5
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Direct reciprocity

Yet TFT has problems with errors %
since it cannot correct them: TFT:CCCDCDCDDD...
TFT:CCCCDCDDDD...
As a consequence, the TFT payoff is *
decreased
E(TFT.TFT) - R+P+T+S
’ 4 o= 1yiow| TFT AlC

TFT can be invaded by AlIC by
random drift

TFT @——@ AIC AlC

TFT
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Indirect reciprocity

Indirect reciprocity takes your reputation into account

f:t E‘?‘
ﬂ; :

’

v 9,

Were Not
Gossiping.
Were Networking.

£
- |

“Indirect reciprocity arises out of direct reciprocity in

the presence of an interested audience”

R.Alexander (1987) The Biology of Moral Systems.
Aldine de Gruyter, NY
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Indirect reciprocity

Interactions are not repeated in this context

Receiver

Each individual has a reputation which
initialised to 0

Every time the individual helps
someone, the reputation increases

Whenever the individual refuses to help,
the reputation decreases

Conditional strategies could take
advantage of this information: Help is
only provided to another individual
when the reputation exceeds a certain
value
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Indirect reciprocity

Assume a strategy DISC that will cooperate unless it
knows that the other strategy is a defector

The probability of knowing the strategy is g,so (/-g) is
the probability that DISC will cooperate with a defector

DISC - ALLD DISC is an ESS when R>(1-q)T+qP
DISC
. IR
T rp
ALLD




Indirect reciprocity
Take for instance the values for the prisoner’s dilemma

DISC  ALLD AlID is an ESS

DISC R (1-q)S+qP

DISC is an ESS when

ALLD |REEFET TN &

C D q>ﬂ_1/2

1-P
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Small summary

So in case of direct and indirect reciprocity one obtains
very similar results in the prisonners dilemma

DR IDR
Defectors and Cooperators are ESS
D o> 1-P S I-R
CO®+—0Q—©9 e Trp
Defectors dominate

. I-P 1-R

<—— <—

cQ @0 " rp  1Trp

The prisoner’s dilemma is transformed into a stag-hunt game !



The well-mixed assumption

O O

OO
OOO
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heterogeneity !

49,
OO0 ©

F.C. Santos, J.M. Pacheco and T. Lenaerts (2006) Evolutionary dynamics in social dilemmas in structured
heterogeneous populations. Proc Natl Acad Sci USA 103:3490-3494
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Evolutionary dynamics

Stochastic replicator equation ...

Vertex x plays &, times and
payoff fx

Choose a random
neighbor y (payoff 1)

Replace strategy Sy by
Sy with probability

p=max[0, (f,-f)/k=(1-S)]
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Simulation |

The EGT
assumption:

Everyone
interacts with
everyone

N=10/
|00 runs
50% C,50% D

R=1, P=0

Complete
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Which networks?

Which models have people
been using?

What does data tell us about real M}
networks? ¥




© Tom Lenaerts, 2010

Regular graphs

Every node has exactly the
same degree <jf>=4

regular and
democratic
networ’k 048 12 16 20
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Simulation |l

There is a limit
to the number of
interactions but
its democratic

N=10¢ <k>=4
100 runs

50% C, 50% D
R=1, P=0

1

S

>

Regular

SH

PD
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Random graphs

Connect with probability p

‘ p=1/6, N=10

‘ \ ‘ —=<)>=].5

P. ErdGs ‘ ‘
(1913-1996)

0‘ ~
random and ®
democratic ()

(U

network ‘
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Simulation I

There is a limit 5

]
Fo the n.umber of SRR
interactions but random graphs
its democratic
and random 0

N=10¢ <k>=4
|00 runs ! _
50% C,50% D

SH

RZI,PZO _2-.1.111...

PD -
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Which networks?

Which models have people
been using?

What does data tell us about real M}
networks? ¥
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Small world experiment

What is the average number of connections
between any two people!

S. Milgram
(1933-1984)

“Six degrees of separation” (J. Guare, 1990)

J-Travers and S. Milgram (1969) An experimental study of the small-world problem. Sociometry 32(4):425-443
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Average path length

0

1 L=1§

N(N—] ) &min(t])

The average path length (L) is a measure of proximity
between nodes
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Cluster coefficient

C=0 C=1
 —

O ]Z ZCZ'

N Ttk D)

The cluster coefficient (C) is a measure for cliquishness
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Small world networks

Regular Small-world electrical power grid of South
California, network of world
airports, movie-actor network, the
neuronal network of the worm
C.elegans

Increasing randomness

D.Watts and S. Strogatz (1998) Collective dynamics of ‘small-world’
networks. Nature 393:440-442

0.001

1 Mechanism:

0.8

gos | .take a regular graph

0.4

02 2.randomly rewire every edge with probability p

%4 8 12 16 20

3.avoid loops and double edges
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Network classes

Classes of small-world networks

L. A. N. Amaral*, A. Scala, M. Barthelemy', and H. E. Stanley
Center for Polymer Studies and Department of Physics, Boston University, Boston, MA 02215
Communicated by Herman Z. Cummins, City College of the City University of New York, New York, NY, July 13, 2000 (received for review April 20, 2000)

We study the statistical properties of a variety of diverse real-world these networks, there are constraints limiting the addition of new
networks. We present evidence of the occurrence of three classes  links. Our results suggest that such constraints may be the
of small-world networks: (a) scale-free networks, characterized by controlling factor for the emergence of scale-free networks.

a vertex connectivity distribution that decays as a power law; (b)

broad-scale networks, characterized by a connectivity distribution Empirical Results

that has a power law regime followed by a sharp cutoff; and (c)
single-scale networks, characterized by a connectivity distribution
with a fast decaying tail. Moreover, we note for the classes of
broad-scale and single-scale networks that there are constraints
limiting the addition of new links. Our results suggest that the

_ _ network of world airports (24), the vertices being the airports and
nature of such constraints may be the controlling factor for the B S e _ . o
L ere . the links being nonstop connections For the case of the airport

:\morro"_“ -~ n‘ - po - '\‘ w‘\f\a'hvl/r S -

bl e ) - U UL AL L - TTITEeTERR R aata On number ot passengers 1n

First, we consider two examples of technological and economic
networks: (7) the electric power grid of Southern California (2),
the vertices being generators, transformers, and substations and
the links being high-voltage transmission lines; and (i) the

L.A.N.Amaral,A. Scala, M. Barthelemy and H.E. Stanley (2000) Classes of small-world networks. Proc Natl Acad
Sci USA 97(21): 11149-11152

electrical power grid of South California, network of world airports, movie-actor network, acquintance
network of mormons, friendship network of 417 Madison Junior High school students, the neuronal network
of the worm C.elegans, the conformational space of a lattice polymer chain
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Network classes

Aging of vertices as in the
movie-actor network

No aging
+ Slow aging
« Fast aging

Cumulative distribution

cost of adding links or the

| limited capacity of vertices as
No cost 1 . .
‘Lowcost + % Wy, in the airport network

* High cost

A r— b

=
)
g
S
-
3
S
O
>
=
=
=
=
=
O

10 100 1000
# of links

—

L.A.N.Amaral,A. Scala, M. Barthelemy and H.E. Stanley (2000) Classes of small-world networks. Proc Natl Acad
Sci USA 97(21): 11149-11152
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Configuration model

create random networks
with a particular degree
distribution

1
0.8
< 0.6

S04

0.2

%4 8 12 16 20

k

M. Molloy and B. Reed (1995) A critical point for random graphs with a given degree sequence. Random
Struct. Algorithms 6:161-180
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Simulation IV

low heterogeneity
assumption

N=10¢ <k>=4
|00 runs
50% C,50% D

R=1, P=0

1

S

A

SH

SG

PD -
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Scale-free Networks

1
0.8

20.6
S04
0.2

% 4 8712 16 20

k

A.-L. Barabasi and R.Albert ergence of Scaling in Random Networks. Science 286:509-512
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SimulationV

high heterogeneity
assumption

N=10¢ <k>=4
|00 runs
50% C,50% D

R=1, P=0

1

A

Scale-free
Barabasi-Albert
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Simulation VI

the rich are no
longer friends

N=10¢ <k>=4
|00 runs
50% C,50% D

R=1, P=0

Scale-free
random




Inturtion

Defectors are victims of their own success ...




social versus individual
learning




social versus individual
learning

Stimulus-response learning ...

Vertex x plays with a
random neighbor y and

Jx (and /)

update strategy using the
following model i E{x,y/:

pi(t +1) = pi(t) +ALi(t) *(1-pi(t))

when i played C at time ¢

pi(t +1) = pi(t) - ABi(1) *pi(t)

when i played D at time ¢

k=2



social versus individual

Cooperation

learning
A
1.0 ﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂ:
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Presentation next week!
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Networks are dynamic
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Networks are dynamic

Agent-based simulations
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rewiring strategy
© p=[1+ePUATB)]-I

C likes C

D dislikes D
=rewire

D likes C and
C dislikes D Q

=rewire
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two timescales

2 N=10*
0 <k>=30)
B B=0.005
= 50% C,50% D
Z P=R-1 P=0
T
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Fast linking promotes C

Simulation

A

PD: R=1,P=0, S=-1 and 7T=2

For each average
degree there exists
a critical W

0.5 |§




© Tom Lenaerts, 2010

Effects on topology

N=10¢

<k>=3()

B=0.005 S0
50% C, 50% D
P=R-I

P=0 1.

Simulations
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Effects on topology

2 N=10*

0 <k>=30

& | p=0.005

= | 50% C,50% D
» | T=2 R=],

P=0, §=1
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Everyone reacts differently

MORAL VALUE and
HUMAN DIVERSITY

ROBERT AUDI
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Evolution of rewiring

Some individuals don’t like
change!
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Evolution of rewiring

What rewiring strategy will

evolve!

eager

n

reluctant

0
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Fast versus slow

Simulation |

Assume fixed # for
Cand D

PD game
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Recent experiments

100 T ® Dynamic network
. 22 —_

90 4 Static network B CC-link
o2 o7 CD-link (DC-link)
C 80 T 18 +
= 5 ® DD-link
F>) 70 1 é 164 In
Q S
(- 60 T -|- c 14
2 2 124
® 50 + =
9 2 10T
407 5 87

©
(% 30 T 5 j--
S 20+ T
< 51
10+
O_
0 .

Fehl, K.,Van Der Post, D.]., & Semmann, D. (201 ). Co-evolution of behaviour and social network structure
promotes human cooperation. Ecology Letters, 14(6), 546-551.
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Summary

Heterogeneity

\
3

2
Rewiring /
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