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Abstract—Devices, like Smartphones, tablets, notebooks, desk-
top computers, smart televisions are all connected to our home
network. Analyzing the traffic on a network has already been
widely studied in order to be able to detect anomalies in the
network such as broken hardware, bad routing schemes or
intrusions. We claim that network traffic analysis however can
also bring forward valuable information about the users of
that network. In this paper we demonstrate with a practical
applications how we can save energy by analysing the usage on
the network, as network activity informs us about the activity of
the user.

I. INTRODUCTION

Networks have been around since the late 1950s and
were mostly used for military applications such as automated
air defense. Later, networks were being researched in large
universities and standard communication protocols such as
TCP/IP were developed. Today, it is hard to imagine a world
without computer networks. Many devices we interact with
every day even have multiple network connections, such as
3G, WiFi, Bluetooth, which are all used to communicate with
other devices.

Researchers in the field of Artificial Intelligence (AI) have
been interested in networks for about as long as thosenetworks
have been around. Thanks to the advances in data and pattern
mining it is possible to have automatic load balancing on
networks, self-adaptive routers and anomaly-detection. The
latter rely on data mining techniques in order to distinguish
normal usage from possible break-ins.

But the mere presence of packets can already provide
valuable information for a wide range of applications besides
the traditional network optimisation. Imagine the following
scenario (which will be used throughout the remainder of this
paper): Alice and Bob work in the same office in which they
share a espresso machine. Both of them have smartphones
with WiFi that connects automatically with the office network.
This triggers network activity and allows the smart building to
know when the workers are present, without expensive sensing
equipment or badging systems. From this presence, the system
can learn patterns about the workers’ behaviour, such that when
Bob arrives in the office in the morning, the coffee machine
is already preheated for his morning cup of coffee which he
drinks as soon as he arrives. On friday’s however, Bob always
works at home and Alice is the first one in the office. Alice is
not such a heavy coffee drinker as Bob and it can take a couple
of hours befors Alice takes her first coffee, so the coffee maker

is saving energy by not pre-heating coffee in the morning as
the probability that coffee will be taken is relatively low and
since Alice is less addicted to coffee than Bob, she does not
mind waiting a couple of minutes for the coffee to be ready.

In this paper we present an AI approach for the problem
described above where the user comfort is leveraged against
the energy consumption. In this paper we describe an approach
that aims at automatically configure product and systems to
user demand patterns and to their preferences. This means
tailoring the performance of devices to the specific circum-
stances imposed on them by their everyday users. By taking
into account patterns in user behavior and expectations, the
system usage optimization is twofold. On the one hand, the
quality of service provided by the system to the end user, and
on the other hand the resources needed to maintain the system
running. Limiting the maintenance cost is achieved by using
the network traffic to gather sufficiently detailed information
about user presences without requiring the user to have to,
for example, scan his badge every morning nor requiring
expensive monitoring equipment. A system as described in
this paper can be incorporated in any existing home or office
without requiring the purchase of additional hardware or heavy
configuration to detect user presences.

The remainder of this paper is structured as follows. In
Section II we elaborate on the approach we use to extract
user presence from network data, followed by the analysis of
usage data in Section III. Section IV contains the background
information related to the learning approach. Next, we present
the problem setting and the corresponding experiments in
Section V and finally we present our conclusions in Section VI.

II. EXTRACTING INFORMATION FROM NETWORK
ACTIVITY

We recorded the presences of the employees in a small firm
together with the usage of a particular small-office device, in
this case an espresso machine. As in most companies, there
is nobody responsible for turning off equipment at moments
when it is not being used and as nobody likes to wait during
boot times of devices, the most commonly used policy consists
of a 24/7 operational time.

We extracted the presence and usage of six individual users
of the espresso. The presence probabilities for each of the
six users are collected using a software tool that analyzes
network activity in the firm. The tool used, was arping,



which operates at the link layer of the OSI model, using the
Address Resolution Protocol (ARP) to probe hosts. Since we
need to match computers to actual users, we are using the
implementation of Thomas Habets1, because this tools allows
to ping MAC addresses, so network presence can be mapped
to users. This avoids requiring to use static IPs or static DHCP
leases. Moreover, MAC addresses allow to make even bigger
distinctions than just user presence. For instance, the central
heating system will be heated by the time Alice comes home
in the evening. Alice wants to relax for some time, so she
turns on her smart television. Since this means Alice will be
seated for some time she prefers the central heating system to
be turned up a degree. The system can automatically configure
the thermostat based on the presence of network activity from
her smart television.

As most employees actually turn their computer off during
absence or use a laptop, this technique was adequate to monitor
their presences without requiring direct, manual interaction of
the employees with a specific authentication system, such as a
system with badge recognition. The probability distribution,
extracted from this data was collected for a period of one
month and is depicted in Figure 1. From these distributions,
we notice that users 2 and 3 regularly leave their computer
on for the entire day. This behavior introduces noise into the
system, but does not cause any additional problems for our
learning technique to come up with an appropriate schedule
for the espresso maker. At around 11h to 12h, most people
tend to leave for lunch and thus less activity is spotted on the
network. In the afternoon, at around 17h on average, most of
the employees leave the office and shut down their computer.
Occasionally, some employees seem to be working late.
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Fig. 1. The probability distribution for each of the six individual users on
their presence.

III. EXTRACTING USAGE INFORMATION

The other type of information needed is the usage of
the device. The usage of the espresso maker is measured
by the number of cups being drank at the office. Similar to
the manner presence was being monitored, we opted for a
measuring technique that did not require manual input from the
user. To obtain usage information, we relied on an appliance
monitoring device2 that records the power consumption of the
coffee maker every six seconds. By analyzing this data, the
timestamps at which a user actually requested coffee could
be retrieved. It is important to notice that no information is

1http://www.habets.pp.se/synscan/programs.php?prog=arping
2We conducted our experiments with the EnviR appliance monitor

collected on who is actually requesting coffee, i.e. only the
time-dependent information is recorded. This data is collected
for the same period of time as the presence information and is
presented in Figure 2. Given the fact that the espresso maker
can only be operated when employees are actually present at
the office, there is a peak in morning, from 8h to 10h, when
most of the beverages are being consumed. In this time period,
around 1.3 to 1.4 cups of coffee are being requested, which
is in fact quite minimal. While in the afternoon, the usage is
lower with a small peak at 14h and starting from 18h, there
were no recordings of people consuming any beverages. Note
that these low figures are also caused by the fact that we do
not distinguish between weekdays and weekends.
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Fig. 2. The distribution of the company’s drinking behavior based on
historical data.

IV. BACKGROUND ON LEARNING APPROACH

In this section, we elaborate on the necessary background
needed for our approach.

A. MDPs and Reinforcement Learning

A Markov Decision Process (MDP) can be described
as follows. Let S = {s1, . . . , sN} be the state space of
a finite Markov chain {xl}l≥0 and A = {a1, . . . , ar} the
action set available to the agent. Each combination of starting
state si, action choice ai ∈ Ai and next state sj has an
associated transition probability T (sj |, si, ai) and immediate
reward R(si, ai). The goal is to learn a policy π, which maps
each state to an action so that the the expected discounted
reward Jπ is maximized:

Jπ ≡ E

[ ∞∑
t=0

γtR(s(t), π(s(t)))

]
(1)

where γ ∈ [0, 1) is the discount factor and expectations are
taken over stochastic rewards and transitions. This goal can
also be expressed using Q-values which explicitly store the
expected discounted reward for every state-action pair:

Q∗(s, a) = R(s, a) + γ
∑
s′

T (s′|s, a)max
a′

Q(s′, a′) (2)

So in order to find the optimal policy, one can learn this Q-
function and then use greedy action selection over these values
in every state. Watkins described an algorithm to iteratively
approximate Q∗. In the Q-learning algorithm [?] a large table
consisting of state-action pairs is stored. Each entry contains



the value for Q̂(s, a) which is the learner’s current hypothesis
about the actual value of Q(s, a). The Q̂-values are updated
accordingly to following update rule:

Q̂(s, a)← (1− αt)Q̂(s, a) + αt[r + γmax
a′

Q̂(s′, a′)] (3)

where αt is the learning rate at time step t and r is the reward
received for performing action a in state s.

Provided that all state-action pairs are visited infinitely
often and a suitable evolution for the learning rate is chosen,
the estimates, Q̂, will converge to the optimal values Q∗ [?].

Fitted Q-iteration (FQI) is a model-free, batch-mode re-
inforcement learning algorithm that learns an approximation
of the optimal Q-function [?]. The algorithm requires a set
of input MDP transition samples (s, a, s′, r), where s is the
transition start state, a is the selected action and s′, r are
the state and immediate reward resulting from the transition,
respectively. Given these samples, fitted Q-iteration trains
a number of successive approximations to the optimal Q-
function in an off-line fashion. The complete algorithm is
listed in Algorithm 1. Each iteration of the algorithm consists
of a single application of the standard Q-learning update
from Equation 3 for each input sample, followed by the
execution of a supervised learning method in order to train
the next Q-function approximation. In the literature, the fitted
Q-iteration framework is most commonly used with tree-based
regression methods or with multi-layer perceptrons, resulting
in algorithms known as Tree-based Fitted Q-iteration [?] and
Neural Fitted-Q iteration [?]. The FQI algorithm is particularly
suited for problems with large input spaces and large amounts
of data, but where direct experimentation with the system is
difficult or costly.

Algorithm 1 Fitted Q-iteration

Q̂(s, a)← 0 ∀s, a . Initialize approximations
repeat

T,I ← ∅
for all samples i do . Build training set

I ← I ∪(si, ai) . Input values
T ← T ∪ ri +maxaQ̂(s′i, a) . Target output value

end for
Q̂← Regress(I,T) . Train supervised learning method

until Termination
return Q̂ . Return final Q-values

V. EXPERIMENTS

A. A general device model

An important part of our experimental setting is the model
used to represent the device, being controlled. This model
should be both general and specific enough to capture all as-
pects of any household device. A Markov Decision Process, as
introduced in Section IV, is specifically suited for representing
the behavior of a particular household or office device. In total,
two possible actions and three states are presented in an MDP
that would cover most, if not all household equipment. The
three states or modes of the MDP are ’on’, ’off ’ or ’booting’,
where the latter represents the time needed before the actual
operational mode is reached. The action space A of our MDP

is limited to two distinct, deterministic actions, i.e. the agent
can either decide to press a switch or relay that alters the
mode of the machine or it can decide to leave the mode of the
machine unchanged and do nothing. The former action is a
simplification to two separate actions ‘turn on’ and ‘turn off ’.

An aspect of the MDP that we did not cover yet is the
immediate reward Ra(s, s′) received after transitioning to state
s′ from state s by action a. These rewards are a combination
of two objectives, i.e.. an energy consumption penalty and a
reward given by the user.

The former reward signal is a measure indicating quality
of a certain action a in terms of power consumption. These
rewards are device-dependent and allow the learning algorithm
on top to learn over time whether leaving the device in
idle mode is energy reducing enough for the current state
s of S or if a shutdown is needed. By specifying a certain
cost for cold-starting the device, in according to the real-
life cost, the algorithm could also learn to power the device
on x minutes before a timeslot where a lot of consumption
is expected. In general, the learning algorithm will have to
deduct which future timeslots are expected to have a positive
difference between the consumption reward signal and the user
satisfaction feedback signal.

The latter is a predefined constant for different situations
that can occur. For instance, when the machine is turned off
but a user wanted coffee, the current policy does not meet that
specific user’s profile and the policy is manually overruled.
Although, for a general audience this is not necessary a
bad policy when the algorithm has deducted that in fact the
probability of somebody wanting a beverage was very low
and from an energy-consumption point of view, it was not
interesting to have the device turned on. In such a case, the
system is provided with a negative feedback signal indicating
the user’s inconvenience. On the other hand, when the device
is turned on at the same time that a user requested a beverage,
then the policy actually suits the current user and the system
anticipated well on the expected usage. In those cases, positive
rewards are provided to the system.

In this paper we combined these two reward signals using
linear scalarization. This simple approach allows to transform
the two (conflicting) reward signals in one reward signal that
represents a trade-off between the objectives.

To conclude, our MDP is graphically represented in Fig-
ure 3 and is mathematically formalized as follows: M=
< S,A, P,R >, where S = {On, Off, Booting} and A =
{Do nothing, press switch}. The transitions between the dif-
ferent states are deterministic, resulting in a function P , shown
in Figure 3. The reward function R is device-specific and we
will elaborate this function in the next sections.

B. Learning approach

At each of the data points, representing a point in time,
the FQI algorithm, described in Section IV, will decide which
action to take from the action space given the current hour
with intervals of 10 minutes and presence set. This results in
a state space of 9,216 possible states. In our setting, the FQI
algorithm was first trained with data of one single simulated
day and the control policy was tested for one new day after
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Fig. 3. A general model for almost every household device.

every training step, whereafter this test sample was also added
to the list of training samples to increase the training set’s size.
In our experiments, we opted for the Tree-Based FQI algorithm
with a classification and regression tree (CART) and averaged
our results over 10 individual trials.

For the reward signals in our MDP M , we mimicked the
properties of a real-life espresso maker into our simulation
framework. Using the same appliance monitoring equipment,
we have tried to capture the real-life power consumption of
the device under different circumstances. After measuring the
power consumption of the machine for a few weeks, we came
to the following conclusions:

• The used espresso machine has a very fast start-up.
In just over one minute, the device heated the water
up to the boiling temperature and the beverage could
be served. The power consumption of actually making
coffee is around 940 Watts per minute.

• When the machine was running in idle mode, the
device only uses around 2 Watts most of the time.
However, every ten minutes, the coffee maker reheats
its water automatically. On average, this results in an
energy consumption of 5 Watts per minute in idle
mode.

• The device does not consume any power when turned
off.

C. A user-oriented schedule

In the first experiment, we defined a positive for the user
satisfaction reward (+0.5) and a negative value for the the
user inconvenience cost (−0.4). With these rewards in place,
we ran the FQI algorithm for 50 simulation days. Although the
learning curve in Figure 4 is still fluctuating slighthy during the
final learning days, we observe that good performance is being
reached from day 20 onwards. This observation is confirmed
in Figure 5, where we plotted the number of manual overrides
that occur every day. Initially, the number of manual overrides
per day is around 10, where in the final iterations, less than
2 overrides are needed. In the initial learning phases, the
algorithm tries out a series of different start-up and shutdown
times for the coffee maker. Upon observing the state of the
machine and the feedback from the users, it tries to refine
its schedule by improving and adjusting the schedule to their
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Fig. 4. The learning curve for learning a schedule that focusses on satisfying
the convenience of the users.

needs. So our approach manages to learn a policy from scratch.
It is of course possible to start from a predefined schedule and
refine this in order to minimize user discomfort.
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Fig. 5. The number of human interventions needed that involve a manual
start-up of the coffee maker diminishes as learning proceeds.

Currently a setting is created that focuses heavily on the
keeping an accepted level of user-friendliness compared to
energy-efficiency, the system proposes the schedule of Figure
6. Although some people tend to be present before 8h, the
algorithm decides to have the coffee maker turned on at 8h
to be prepared for the peak in usage shown in Figure 2.
Although not that many beverages are being consumed in the
afternoon, a lot of employees are still present at the office,
which increases the chance of somebody using the machine.
This makes the suggested schedule result in a very user-
friendly schedule taking the gains of keeping an accepted level
of user-friendliness over the potential economical benefits of
turning the device off for a small period of time.
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Fig. 6. The user-friendly policy decides to have the coffee maker turned on
at 8h and turned off at 16h.

D. An energy-oriented schedule

Rather than to focus on the users of the actual system, one
could prefer to find a policy that is concerned with keeping the



energy consumption down. A radical schedule that takes into
consideration only the power consumption could be to have
the device turned off all the time and let the users themselves
have the task of starting-up the system according to their needs.
However, such a schedule would be of little to no value in any
real-life situation. Therefore, we conduct the same experiment
as before, but decreased the user’s influence on the learned
policy. The new rewards are 0.35 and −0.35 to define user
convenience and inconvenience, respectively.
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Fig. 7. The learning curve for an energy-oriented schedule.

After approximately the same number of training days,
a stable performance is obtained (Figure 7). The number of
manual overrides (Figure 8) stays acceptably low because the
final policy in Figure 9 focuses on leaving the device turned
on at the most critical time of the day, i.e. the morning when
at the same time most people tend to be present and most of
the beverages are being consumed.
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Fig. 8. The number of manual overrides decrease as learning proceeds.
Although this metric is currently not being focussed on too much, the number
of manual overrides stays low.
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Fig. 9. The final policy obtained turns the device on from 8h to 10h50, while
leaving it off during the less occupied afternoon.

E. Energy consumption

The three schedules, i.e. the original always-on, the user-
oriented and the energy-oriented policy, can also be compared

in terms of economical gains. Given the actual cost of 0.22
e per Kilowatt hour (kWh) and an average consumption of
the espresso machine in stand-by mode of around 300 Watts
per hour, the results are listed in Table I. From these figures,
we deduct an annual saving of around 66.6% and 88.2%
for the user-oriented and energy-oriented profiles, respectively,
compared to the initial setting of always leaving the device on.

Always-on User-oriented Energy-oriented
Operational hours per day 24h 8h 2h50
Cost per month (e) 48.22 16.08 5.68
Cost per year (e) 578.56 192.86 68.25

TABLE I. THE ECONOMICAL PROPERTIES OF THE THREE SCHEDULES.

F. Discussion

In the first experiment we showed how the FQI algorithm
quite easily managed to generalize from the large state-space.
The proposed schedule is a significant money saver in most
offices. On the other hand, the second experiment, in which
the emphasis on the objective indicating the convenience of the
user was decreased, the obtained schedule is more interesting.
Although most people tend to be present from 8h to 17h, it
has analyzed the combination of the presence and the usage
information on the long run to conclude that the timespan from
8h to little before 11h is the most crit- ical one. As the most
critical timeslot of the general working day is covered, also
the number of manual overrides remains acceptably low, i.e.
only two man- ual interventions are needed during the entire
day. Thus, when the device is being used at later times that
day, the user is still free to manual overrule the sched- ule,
but the algorithm will not suggest such an action itself. The
economical savings one can accomplish by implementing these
schedules are compared to the companys initial schedule which
was to leave the de- vice always on as nobody took respon-
sibility, are of course significant. A potential cost saving of
385.7e and 510.3e for the user-oriented and energy-oriented
profile, respectively, could be obtained if an automatic control
device applied one of these proposed schedules. Besides the
economical cost, there is also the wear and tear of device
itself that should be taken into consideration. It is obvious
that an always-on profile is not beneficial for the lifetime and
durability of the device and neither is a profile that rapidly
switches between operational modes.

VI. SUMMARY

In this paper, we have presented a novel way of using
network information to save energy while keeping up general
user comfort in buildings. Our approach analyses network
activity in order to detect which devices are present and active.
These devices are mapped to users, resulting in a presence
probability distribution. In the same way, usage data was
gathered for an espresso machine: timestamps where collected
for manual overrides of the control policy and when a coffee
was being asked for. As more distinctions are made between
user activity based on the devices that are in use, more specific
control policies can be learnt for a wide variety of devices
in order to improve the comfort for the user during these
activities.

All this information was used to train a Reinforcement
Learning (RL) algorithm in order to improve the policy in



such a way that it satisfies the users’ needs but also min-
imises energy consumption. We have presented our results
on applying Reinforcement Learning (RL) techniques on real-
life data to come-up with appropriate start-up and shutdown
decisions for multi-criteria environments. These two criteria
are user convenience and energy. We have seen that the FQI
algorithm integrates very well into such a multi-objective
environment and by specifying the emphasis on each of the
different objectives, one can obtain schedules for everyone’s
needs.
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