
Fair-Share ILS: A Simple State-of-the-art
Iterated Local Search Hyperheuristic.

Steven Adriaensen
Vrije Universiteit Brussel
steadria@vub.ac.be

Tim Brys
Vrije Universiteit Brussel
timbrys@vub.ac.be

Ann Nowé
Vrije Universiteit Brussel

ann.nowe@vub.ac.be

ABSTRACT
In this work we present a simple state-of-the-art selection hyper-
heuristic called Fair-Share Iterated Local Search (FS-ILS). FS-ILS
is an iterated local search method using a conservative restart con-
dition. Each iteration, a perturbation heuristic is selected propor-
tionally to the acceptance rate of its previously proposed candidate
solutions (after iterative improvement) by a domain-independent
variant of the Metropolis condition. FS-ILS was developed in prior
work using a semi-automated design approach. That work focused
on how the method was found, rather than the method itself. As a
result, it lacked a detailed explanation and analysis of the method,
which will be the main contribution of this work. In our experi-
ments we analyze FS-ILS’s parameter sensitivity, accidental com-
plexity and compare it to the contestants of the CHeSC (2011) com-
petition.

Categories and Subject Descriptors
G.1.6 [Mathematics of Computing]: Numerical Analysis—Opti-
mization

General Terms
Algorithms, Experimentation, Performance

Keywords
Hyperheuristics, Combinatorial Optimization

1. INTRODUCTION
Many interesting combinatorial optimization problems cannot be

solved in polynomial time, i.e. are NP-hard. Classical examples
of such problems are MAX-SAT, the Vehicle Routing and Trav-
eling Salesman problems. Already for relatively small instances,
solving these problems can become intractable. As the problems
we are interested in solving in practice are often even magnitudes
larger, non-exact methods are required. One approach that recently
received a lot of attention is metaheuristic optimization [10, 12].
Metaheuristic optimization methods attempt to find good solutions

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
GECCO’14, July 12–16, 2014, Vancouver, BC, Canada.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2662-9/14/07 ...$15.00.
http://dx.doi.org/10.1145/2576768.2598285 .

to a problem by iteratively trying to improve a (set of) candidate so-
lution(s). In practice, these methods often manage to quickly find
approximate solutions to otherwise intractable problems.

Most research in metaheuristics is focused on problem specific
techniques. This approach is motivated by the No Free Lunch The-
orem [19], stating that on average, performance over all instances is
the same for every method, therefore advocating a made-to-measure
approach. As a consequence, metaheuristic methods are not readily
applied to newly encountered problems, or even new instances of
similar problems. Furthermore, the cost of developing and apply-
ing made-to-measure metaheuristic solutions is high, resulting in
few practical applications.

Recently, there is a renewed interest in general metaheuristic
search methods that attempt to solve a wide range of problems.
Rather than attempting to outperform made-to-measure methods,
these methods provide a cheap off-the-peg alternative. A popular
approach in this renaissance are hyperheuristics [6]. A hyperheuris-
tic combines a set of low level heuristics to solve a given problem
instance. Here, low level heuristics are initialization, perturbative
and recombination heuristics used in the problem instance domain.
In known domains, the hyperheuristic approach can therefore lever-
age efficient domain-specific components used in made-to-measure
methods. They can be applied to any domain, provided a set of low
level heuristics is defined for it first. Note that the No Free Lunch
Theorem is no argument against hyperheuristic methods as on every
problem domain, the domain-specific aspects of the method (low
level heuristics) differ, i.e. a different method is used.

Hyperheuristic methods can be divided in two classes. Genera-
tion Hyperheuristics generate (meta-)heuristics to solve a specific
problem (domain); finding the combination of low-level heuris-
tics precedes the solving of the problem (static). Selection Hy-
perheuristics iteratively select low-level heuristics to explore the
search space while solving a problem (dynamic). As such, selec-
tion hyperheuristics can be viewed as domain-independent Variable
Neighbourhood Search methods.

In this paper, we present Fair-Share Iterated Local Search (FS-
ILS), a selection hyperheuristic. FS-ILS is an Iterated Local Search
(ILS) method using a conservative restart condition. Each iteration,
a perturbation heuristic is selected proportionally to the acceptance
rate of the previously proposed candidate solutions (after iterative
improvement) by a domain-independent variant of the Metropolis
condition. One of the core design principles was simplicity and
modularity, to improve reproducibility, and to encourage re-use in
research and by practitioners. FS-ILS was obtained in [2] using a
semi-automated design approach. Because [2] focused on “how"
the method was found, rather than the method itself, it lacked a
detailed explanation and analysis of the method, which will be the
main contribution of this paper.



Figure 1: A graphical illustration of how a high-level search
strategy can be applied to multiple problems through separa-
tion of problem specific and problem independent aspects

The remainder of the paper is organized as follows. Section 2.1
introduces the HyFlex framework. In Section 2.2 we describe FS-
ILS, and motivate the design choices made. In Section 3 we per-
form experiments analysing FS-ILS’s parameter sensitivity and ac-
cidental complexity, and we compare it to the state-of-the-art. Sec-
tion 4 discusses related research. Finally, in Section 5 we conclude.

2. METHODS

2.1 HyFlex
In the implementation and analysis of FS-ILS, we decided to use

the HyFlex framework [15]. In this section, we motivate this deci-
sion and explain what the framework has to offer.

To evaluate general metaheuristic search strategies, we must test
them on multiple instances of different problem domains. In the
case of hyperheuristics, this means not only that we need bench-
mark problems, we also need low-level heuristics for all these do-
mains. To avoid implementing all problem dependent aspects our-
selves, we used the HyFlex framework. This framework offers a
modular and flexible Java class library for developing and test-
ing iterative general-purpose heuristic search algorithms. HyFlex
currently provides 6 different problem domains: MAX-SAT, Bin
Packing, Permutation Flow Shop, Personnel Scheduling, Traveling
Salesman and Vehicle Routing problems. For each of these, it pro-
vides:

• A set of 10-12 benchmark instances which can be solved.

• A set of low-level heuristics: One construction heuristic and
multiple perturbative and recombination heuristics.1

• An evaluation function, measuring the cost of a candidate
solution, to be minimized.

One of HyFlex’s core design principles is that all accesses to
these domain-specific components must occur through a problem
independent interface. Thanks to this explicit separation (i.e. the
domain barrier, see Figure 1) any method using HyFlex can readily
be applied to any instance of a problem domain implemented in
HyFlex, without alterations.
1Each perturbative and recombination heuristic in addition takes
two parameters: intensity of mutation (α) and depth of search β,
(0 ≤ α, β ≤ 1) In all our experiments we used α, β = 0.2 (default
value)

Algorithm 1 Fair-Share Iterated Local Search
function SOLVE(problem, tallowed)

SETUP()
INIT()
while time()−tstart < tallowed do

tbefore ← time()
selected← PERTURBATIONSELECTION(evaluations)
if selected < |llhspert| then

cproposed ← llhspert[selected].apply(ccurrent)
else

cproposed ← problem.generateSolution()
end if
eproposed ← problem.e(cproposed)
LOCALSEARCH(cproposed)
durations[selected]

+← time() −tbefore + 1
if cproposed �= ccurrent ∧ ACCEPT() then

news[selected]++
ccurrent ← cproposed
ecurrent ← eproposed

end if
evaluations[selected] = news[selected]

durations[selected]

if RESTART() then
INIT()

end if
end while
return cbest

end function

HyFlex has been used to support the first Cross-domain Heuristic
Search Challenge (CHeSC 2011). This challenge is analogous to
the athletics Decathlon event, where the goal is not to excel in one
event at the expense of others, but to have a good general perfor-
mance on each [15]. All 20 contestants were tested on 5 instances
from each of the 6 domains. To test generalization to new instances,
2 of the 5 instances used in the competition weren’t available before
submission, i.e. were “hidden". To test generalization to “new" do-
mains, the Traveling Salesman and Vehicle Routing domains were
hidden as well. The winner [14] was the algorithm obtaining the
highest accumulated score across these 30 instances. Scores per
instance were based on the ranking of median performances over
31 runs on that instance, using the pre 2010 Formula One scoring
system, where the top 8 algorithms score respectively 10, 8, 6, 5, 4,
3, 2 and 1 point.

In this work we not only compare FS-ILS to the CHeSC con-
testants, we also quantify the method’s performance on a problem
instance relative to the median performance of the contestants on
the same instance.

2.2 Fair-Share Iterated Local Search
In this section we give a detailed explanation and motivation of

the design decisions made in the FS-ILS method. The main pur-
pose of this section is to simplify reproduction and share the train
of thought that lead to FS-ILS. To this purpose, we also provide the
complete and unambigious pseudo-code for FS-ILS (Algorithms 1-
7). This pseudo-code was written to be language- and HyFlex-
independent, but doesn’t omit any implementation details. The
code’s entry point is the Solve function, which performs optimiza-
tion (minimization) on a given problem, for a time tallowed, after
which the best candidate solution found cbest is returned. First, it
initializes the candidate solution using the construction heuristic.
Next it iteratively selects and applies a low-level, domain-specific
perturbation heuristic, performs local search on the resulting



candidate solution, decides whether or not to accept the obtained
candidate as new incumbent solution using an acceptance condi-
tion, and restarts if necessary.

Before discussing the specifics of these different aspects of the
algorithm, we briefly discuss some naming conventions for the
variables used in the pseudo-code. Variables named cfoo, efoo rep-
resent candidate solution foo and its respective evaluation func-
tion value. E.g. ccurrent, cproposed are the variables represent-
ing the incumbent and proposed candidate solution respectively,
while ecurrent and eproposed refer to their respective evaluation
function values. Variables named t indicate some time, e.g. tstart
is the time at which the optimization process started. Some vari-
ables have two variants, one for a specific run (re-initialized ev-
ery restart) and one for the entire optimization process. To dif-
ferentiate the former from the latter we add a super-script run to
the former. E.g. erunbest is the best evaluation function value ob-
served this run (since last restart), while ebest is the best evaluation
function value observed over the entire optimization process (in-
cluding prior runs). MAX_FLOAT is the largest floating point
number (without overflow). time() returns the current wall clock
time. random.integer and random.real(a,b) draw an integer or
real number uniformly at random from [a, b). An array a is in-
dexed [0, |a| − 1], where |a| denotes the length of the array. The
expression a[0 : n] ← b is used to represent the initialization of
an array a of length n with all elements initialized to b. Finally the
assignment operator← has copy semantics.

2.2.1 Initialization

Algorithm 2 Fair-Share Iterated Local Search: Setup
procedure SETUP

llhsls ← problem.get_llhs(GREEDY )
llhspert ← problem.get_llhs(NON -GREEDY )
waitmax ← 1
tstart ← time()
tbest ← +∞
ebest ←MAX_FLOAT

end procedure

Algorithm 3 Fair-Share Iterated Local Search: Initialization
procedure INIT

news[0 : |llhspert|+ 1]← 1
durations[0 : |llhspert|+ 1]← 0
evaluations[0 : |llhspert|+ 1]← MAX_FLOAT

|llhspert|+1

nimpr ← 0
wait← 0
trunstart ← time()
ccurrent ← problem.generateSolution()
ecurrent ← problem.e(ccurrent)
erunbest ← ecurrent

end procedure

Setup (Algorithm 2) and Init (Algorithm 3) are auxiliary proce-
dures that together initialize all variables. Setup handles all vari-
ables that are initialized once at the beginning of the optimization
process, while Init deals with the variables that are re-initialized
after each restart.

2.2.2 Perturbation Heuristic Selection
In this section we explain and motivate the hyperheuristic selec-

tion procedure used to select a perturbation heuristic (option). The
relevant logic can be found in Algorithm 1 and Algorithm 4.

Algorithm 4 Fair-Share Iterated Local Search: Perturbation
Heuristic Selection

function PERTURBATIONSELECTION(evaluations)
norm← 0
for i← 0 : |evaluations| do

norm
+← evaluations[i]

end for
pivot← random.real(0,norm)
selected← 0
ac← evaluations[0]
while ac < pivot do

selected++
end while
return selected

end function

As options, we consider all non-greedy perturbative heuristics in
the domain (llhspert). In HyFlex, this corresponds to the heuris-
tics in the mutation and ruin-recreate categories. In addition, we
include the construction heuristic (problem.generateSolution()) as
a last option. We do this because some HyFlex domains, in particu-
lar the Traveling Salesman domain, lack proper explorative heuris-
tics. Either the perturbation induced is too small to escape the local
optimum, or perturbation results in a solution much worse than the
initial candidate solution.

In order to decide which option to use, we assign to each a
value (evaluations) that reflects how well it performed in the past.
Each iteration, we select an option proportional to this value (a.k.a.
roulette wheel selection). Before its first application, an option is
assumed to be of very high quality (orders of magnitudes larger
than any real quality value) to make sure every option is tried at
least once.

One of the key difficulties in hyperheuristics is how to evalu-
ate explorative heuristics, as they might only lead to improvement
many steps later. Therefore, we evaluate our options based on
the candidate solution obtained after local search, i.e. we evaluate
the perturbation heuristic combined with the iterative improvement
procedure described in Section 2.2.3.

Perturbation heuristics are the only source of diversification in
the algorithm. Without sufficiently diverse proposals (cproposed) a
method risks getting stuck in local optima. Therefore, we decide to
evaluate and thus select options in a non-greedy fashion. It is up to
the acceptance condition (see Section 2.2.4) to decide whether or
not a proposal is good, i.e. to control diversification.

Following this mindset, we started developing our hyperheuris-
tic selection procedure starting from plain uniform selection. We
found that plain uniform selection discriminates fast options. E.g.
consider two options a and b, which take 1 and 10 ms respectively
to generate a new candidate solution. Under uniform selection, the
algorithm will spend 10 times more time on option b than it does
on a. This motivated us to select options proportionally to their
speed, i.e. the rate at which they generate solutions n[i]

durations[i]

where n[i] is the number of applications and durations[i] is the
total time spent using the ith option. Using this procedure, in the
limit, an equal amount of time will be spent on every option.



When an option’s proposal does not lead to a new incumbent so-
lution (ccurrent), either because ccurrent = cproposal, or because
the proposal is not accepted, the time spent generating it is effec-
tively wasted. To encourage the selection of options that lead to
advances in the search process, the selection procedure finally in-
cluded in FS-ILS selects options proportional to the rate at which
they generate new incumbent solutions news[i]

durations[i]
where news[i]

is the number of applications of the ith option that resulted in a new
incumbent solution.

2.2.3 Iterative Improvement Procedure

Algorithm 5 Fair-Share Iterated Local Search: Local Search
function LOCALSEARCH(c)

llhsactive ← llhsls
ec ← problem.e(c)
while ¬llhsactive.isEmpty() do

index← random.integer(0,|llhsactive|)
c← llhsactive.apply(c)
etemp ← problem.e(c)
if etemp < ec then

ec ← etemp

llhsactive ← llhsls
else

active.remove(index)
end if

end while
return c

end function

In our iterative improvement procedure (Algorithm 5), we con-
sider all greedy perturbative heuristics in the domain (llhsls) as
options. In HyFlex, this corresponds to the heuristics in the lo-
cal search category. Applying these heuristics can never lead to a
worse candidate solution.

Each iteration of the iterative improvement procedure we select
an option uniform at random. When an application of an option
does not lead to improvement, it is excluded (tabu) from the selec-
tion (active), until some other heuristic finds improvement.

If we assume that each application of an option leads to improve-
ment, unless we are in a local optimum for that heuristic, our iter-
ative improvement procedure returns a candidate solution that is a
local optimum for each of the options. Even though this condition
is not met for all heuristics in the local search categories, it leads
to an elegant termination point.

2.2.4 Acceptance Condition

Algorithm 6 Fair-Share Iterated Local Search: Acceptance
function ACCEPT

impr ← ecurrent − eproposed
if impr > 0 then

nimpr++
μimpr

+← impr−μimpr

nimpr

end if
return random.real(0,1)< e

impr
T∗μimpr

end function

As mentioned in Section 2.2.2 the role of the acceptance con-
dition is to control the diversification in the search process, i.e.

1e−7 1e−6 1e−5 1e−4 1e−3 1e−2 0.1 1 10 1e2 1e3 1e4 1e5 1e6 1e7
0

1

2

3

4

5

6

7

8

9

10

T

f

 

 
sat
bp

Figure 2: Performance of FS-ILS using the basic Metropolis
acceptance condition with different T values.

whether or to accept a worsening proposal.2 Never accepting wors-
ening solutions typically results in the method getting stuck in a
local optimum. While it is rare for an ILS scheme (given proper
perturbation) to get stuck in a local optimum, we still risk losing a
lot of time in a poor area of the search space.

The Metropolis acceptance condition accepts a worsening pro-

posal with a probability e
ecurrent−eproposed

T , where T is a positive
parameter called the temperature. Under the Metropolis acceptance
condition, the greater the worsening proposed, the smaller the like-
lihood the proposal will be accepted. Furthermore, the likelihood
of accepting n times a worsening of a is equal to that of accept-
ing a worsening of n ∗ a once. The higher the temperature, the
higher the likelihood a worsening is accepted. More involved ac-
ceptance conditions vary this temperature over time (often referred
to as simulated annealing [1]).

The main difficulty is choosing the temperature parameter T .
Whether or not a worsening x is large is extremely domain (or
even instance) dependent. E.g. in the MAX-SAT and Bin Pack-
ing domains, all evaluation function values lie in [0, v] and [0, 1]
respectively (where v is the # variables in the formula). A worsen-
ing of 1 is the smallest possible worsening in MAX-SAT and the
largest possible worsening in Bin Packing. As a consequence, any
fixed temperature parameter T will either cause (nearly) all wors-
enings to be accepted in Bin Packing, or (nearly) no worsenings at
all in MAX-SAT. Figure 2 illustrates the problem, showing the per-
formance (f , as defined in Section 3.1.1) of FS-ILS using the plain
Metropolis condition on the MAX-SAT and Bin Packing domains
for a wide range of temperature values.

In FS-ILS, we use a rather crude, yet effective way to make
the choice of T less domain dependent by expressing worsening

in terms of mean improvement, i.e. e
ecurrent−eproposed

T∗μimpr (Algo-
rithm 6). Here μimpr is the (moving) mean improvement in im-
proving iterations. Thus, we normalize the amount of worsening by
dividing it by a metric that is equally domain-dependent. Whereas a
worsening of x in MAX-SAT can hardly be compared to the same
worsening in Bin Packing, x

μimpr
will be less domain dependent

and more indicative of general quality. We do keep T as the only
FS-ILS parameter, and will perform an extensive parameter sensi-
tivity analysis in the experimental section.

2Most acceptance conditions accept all improving candidate solu-
tions. Candidate solutions of equal quality are sometimes selec-
tively refused (e.g. tabu-search) to effectively explore plateaus in
the search space.



Algorithm 7 Fair-Share Iterated Local Search: Restart
function RESTART

telapsed ← time()− tstart
trunelapsed ← time()− trunstart

if ecurrent < erunbest then
erunbest ← ecurrent

waitmax ←max(wait,waitmax)
wait← 0
if ecurrent < ebest then

cbest ← ccurrent

ebest ← ecurrent

tbest ← trunelapsed

else if ecurrent = ebest then
tbest ←min(trunelapsed,tbest)

end if
else

wait++
end if
patience← tallowed

telapsed
∗ waitmax

return wait > patience ∧ (tallowed − telapsed) ≥ tbest
end function

2.2.5 Restart Condition
FS-ILS is restarted after it failed to find a new best candidate

solution (i.e. improve erunbest) for a certain amount of time (Algo-
rithm 7). This method is inspired by the fact that a lot of methods
find new best solutions rather regularly. When they stop doing so
we possibly have to wait a very long time for further improvement,
if any (the method may be stuck). While restarting in such situa-
tion is not guaranteed to result in finding better solutions, it is often
better than remaining stuck.

The hard part is how to detect that the algorithm is stuck. We pro-
pose the following heuristic, which was inspired by a method used
in CHeSC contestant VNS-TW [11] to detect a local optimum in the
ILS process. FS-ILS is restarted if it hasn’t found improvement for
a ∗ waitmax iterations where waitmax is the greatest number of
iterations we had to wait for a new, best solution so far. The idea is
that over time, waitmax will approximate the longest time needed
to still improve.

The choice of a is crucial. On the one hand to allow waitmax

to grow it is important that a is sufficiently large (at least > 1). On
the other hand however, to prevent wasting too much time later on
in the search (when waitmax is somewhat accurate) a should be as
small as possible. We therefore decided to lower a hyperbolically
over time: a = tallowed

telapsed
, where tallowed is the time we are allowed

to optimize and telapsed the time we have already spent since the
beginning of the optimization. Initially, a will be extremely large,
avoiding preliminary restarts; half way it is only 2, and at the end
a = 1.

As an exception, the algorithm is not restarted when the time re-
maining is less than the shortest time it took to find a candidate so-
lution as good as the best candidate solution obtained so far (tbest).
This prevents restarts on instances on which a lot of time is re-
quired to obtain a high quality solution. E.g. given a tallowed of
10 minutes, when the best solution was obtained 9 minutes after
initialization (trunelapsed), it is highly unlikely that a better solution is
found after re-initialization.

Note that this restart condition is rather conservative and its core
design concern was to prevent restarts as much as possible, and
only restart when a method is obviously stuck and enough time is
available to attain a solution of similar quality.

3. EXPERIMENTS
In this section, we experimentally analyze the performance of

FL-ILS, concentrating first on its robustness to changes in its only
numerical parameter. Then we analyze the accidental complexity
of the method, comparing it with various simpler variants. Finally,
we compare the method with the winner of the CheSC competition.

3.1 Parameter Sensitivity Analysis

3.1.1 Setup
The objective of the experiment described in this section is to

analyze the choice of FS-ILS’s single (numerical) parameter T , i.e.
the temperature used in its acceptance condition (see Section 2.2.4).
To this purpose, we analyze FS-ILS’s performance using 15 differ-
ent temperature values, ranging from 0.001 to 1000. In [2], T was
intuitively chosen to be 0.5. To analyze the stability of this choice,
10 temperature values are chosen equidistantly in [0.1, 1.0]. For
the sake of comparison we consider 3 further variants of FS-ILS

• A variant accepting all proposals (aa)

• A variant accepting no worsening proposals. (anw)

• A variant using the basic Metropolis acceptance condition
with the temperature ti = 10i−7, 0 ≤ i ≤ 14 that maxi-
mizes performance (oracle).

To simplify the comparison of different configurations of FS-ILS
we want to quantify the performance of a certain configuration x.
As in [2] we use the following evaluation function:

f(x) =
1

|P |
∑

π∈P

1

nx,π

∑

r∈Rx,π

s(r, π)

Here P is the set of benchmark instances on which x is tested. Rx,π

is the set of results obtained by method x over nx,π independent
runs on the benchmark instance π. The scoring function s assigns
points to the result of method x on an instance π as follows: A
method is assigned 10, 8, 6, 5, 4, 3, 2 or 10(8−r) points, based on
the rank of its result r among the median results obtained by a set
of benchmark algorithms A on π.3 In case of ties, s returns the
average of the scores for the tied ranks.

In this experiment we choose the 30 instances used in CHeSC
(2011) as benchmark instances P and the 20 contestants as bench-
mark algorithms A. 900 tests for each configuration were per-
formed, 30 for each instance (nπ). For each run tallowed is cho-
sen such that tallowed time on our machine (Intel Xeon E5320
1.86GHz) corresponds to 10 minutes on the machine used during
the competition.4

3.1.2 Results
Figure 3 shows the performance of FS-ILS with different tem-

perature values T on all problem domains (fs-ils), as well as for
the MAX-SAT (fs-ilssat) and Bin Packing (fs-ilsbp) domains sepa-
rately. In addition the performances of aa, anw, and the oracle are
shown. Note that the scale of the x-axis is linear in [0.1, 1.0], but
logarithmic beyond.

We first have a look at the behavior of FS-ILS for extreme tem-
perature values. For high temperature values FS-ILS accepts nearly
all worsening proposals and we observe a performance similar to
3Ordered according to increasing cost, as determined by the
domain-specific evaluation function.
4Using the benchmark program provided on the CHeSC(2011)
website



1e−3 1e−2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 10.0 1e2 1e3
0

1

2

3

4

5

6

7

8

9

10

T

f

 

 
fs−ils
fs−ils

sat

fs−ils
bp

aa
anw
oracle

Figure 3: Performance of FS-ILS with different T values

that of aa. For low temperature values FS-ILS accepts nearly no
worsening proposals and we observe a performance similar to that
of anw.

The intuitive choice of T = 0.5 made in [2] seems like a good
choice. Not only is it evaluated to be one of the best configu-
rations (only 0.4 scored slightly better), this parameter choice is
furthermore stable as FS-ILS performs similarly for similar tem-
perature choices. Note that Figure 3 over-dramatizes the drop in
performance for temperature choices beyond [0.1, 1.0] because of
the change in scale.

In comparing Figures 2 and 3 we find that our normalization of
the Metropolis condition effectively solves the problem described
in Section 2.2.2. Make no mistake, picking the best value for T
is still about finding the best compromise. Some instances prefer
more diversification and some less. E.g. On the MAX-SAT do-
main higher temperatures are preferred (10),while on the Bin Pack-
ing domain, lower temperatures are better (0.1). Furthermore, the
oracle performs extremely well, illustrating that FS-ILS can be im-
proved by making the choice of T more adaptive.

3.2 Accidental Complexity Analysis

3.2.1 Setup
The objective of the experiment described in this section is to an-

alyze the presence of accidental complexity in FS-ILS, i.e. whether
it can be simplified without loss of performance. To this purpose,
we compare FS-ILS to simpler variants. We consider simpler alter-
natives for 4 design choices:

• The heuristic selection rule used (SpeedNew). Here we con-
sider simpler variants selecting alternatives proportional to
the rate at which they generate proposals (Speed) and variants
using plain uniform selection (Uniform), see Section 2.2.2.

• The use of local search. Here we consider variants that do
not perform local search, but use all perturbative heuristics
(including the greedy) as options instead.

• The acceptance condition used (APW). Here we consider vari-
ants accepting only non-worsening proposals (ANW) and vari-
ants accepting all proposals (AA).

• The use of a restart condition. Here we consider variants that
never restart.

Combining these simplifications gives rise to 35 simpler vari-
ants of FS-ILS. For each variant we perform 300 tests, 10 on each

r select ls accept restart f p
1 SpeedNew yes APW yes 5.77 1.0
2 SpeedNew yes APW no 5.54 0.0048
3 Speed yes APW yes 5.2 4.6E-5
4 Speed yes APW no 4.85 2.0E-8
5 SpeedNew yes ANW no 4.58 1.6E-6
6 SpeedNew yes ANW yes 4.57 8.3E-7
7 Speed yes ANW no 4.16 1.0E-9
8 Speed yes ANW yes 3.87 4.2E-12
9 SpeedNew no APW yes 3.23 3.4E-15
10 SpeedNew no APW no 3.09 0.0
11 Uniform yes APW no 2.99 0.0
12 Uniform yes APW yes 2.96 0.0
13 Uniform yes ANW yes 2.64 0.0
14 Uniform yes ANW no 2.52 0.0
15 Speed no APW yes 2.46 0.0
16 Speed no APW no 2.42 0.0
17 Uniform no APW no 2.18 0.0
18 Uniform no APW yes 2.15 0.0
19 Speed no ANW yes 1.84 0.0
20 Speed no ANW no 1.74 0.0
21 SpeedNew no ANW no 1.53 0.0
22 SpeedNew no ANW yes 1.41 0.0
23 Uniform no ANW yes 1.36 0.0
24 Uniform no ANW no 1.35 0.0
25 SpeedNew yes AA no 0.67 0.0
26 Speed yes AA no 0.6 0.0
27 SpeedNew yes AA yes 0.48 0.0
28 Speed yes AA yes 0.48 0.0
29 Uniform yes AA yes 0.41 0.0
30 Uniform yes AA no 0.4 0.0
31 Uniform no AA yes 0.16 0.0
32 Uniform no AA no 0.12 0.0
33 SpeedNew no AA yes 0.02 0.0
34 Speed no AA yes 0.01 0.0
35 SpeedNew no AA no 0.0 0.0
36 Speed no AA no 0.0 0.0

Table 1: Comparison of FS-ILS to simpler variants

CHeSC (2011) benchmark instance to evaluate its performance.
We test the significance of the differences in performance compared
to FS-ILS using the Wilcoxon Signed-Rank test.

3.2.2 Results
Table 1 shows for each of the 36 configurations the design

choices made, their performance (f , as defined in Section 3.1.1)
and the p-value for the Wilcoxon Signed-Rank test in a pair-wise
comparison with FS-ILS.

We find that FS-ILS (the best, in bold) is evaluated significantly
better than its simpler variants, i.e. every design choice has a signif-
icant contribution. We note that some simplifications have a greater
impact on performance than others. This allows us to measure the
contribution of a certain design choice to the performance of FS-
ILS.

The choice for speed proportional selection (Speed, SpeedNew)
adds great value as the best configuration using uniform selection
is only ranked 11th and in 20 out of 24 cases configurations us-
ing a speed proportional selection scheme outperform their version
using plain uniform selection. In the 4 remaining cases the configu-
ration has no control of diversification (AA), and therefore performs



r algorithm stotal ssat sbp sps sfs stsp svrp
1 FS-ILS 182.1 39.6 20 10.5 47 34 31
2 AdapHH 162.18 28.93 45 9 31 35.25 13
3 VNS-TW 115.68 28.93 2 39.5 26 15.25 4
4 ML 110 10.5 8 30 31.5 10.0 20
5 PHUNTER 80.25 7.5 3 11.5 6 22.25 30
6 EPH 74.75 0 8 9.5 16 30.25 11
7 NAHH 65 11.5 19 1 18.5 10.0 5
8 HAHA 64.27 26.93 0 25.5 0.83 0.0 11
9 ISEA 59.5 3.5 28 14.5 1.5 9 3
10 KSATS-HH 53.85 19.85 8 8 0 0 18
11 HAEA 39.33 0 2 1 5.33 9 22
12 ACO-HH 32.33 0 19 0 6.33 6 1
13 GenHive 30.5 0 12 6.5 5 2 5
14 SA-ILS 21.75 0.25 0 17.5 0 0 4
15 DynILS 20 0.0 11 0 0 9 0
16 XCJ 18.5 3.5 10 0 0 0 5
17 AVEG-Nep 16.5 10.5 0 0 0 0 6
18 GISS 16.25 0.25 0 10 0 0 6
19 SelfSearch 4 0 0 1 0 3 0
20 MCHH-S 3.25 3.25 0 0 0 0 0
21 Ant-Q 0 0 0 0 0 0 0

Table 2: The results of the CHeSC 2011 competition with FS-
ILS as competitor

poorly with non-greedy selection schemes. Plain uniform selection
tends to be greedier than speed proportional selection as applying
non-greedy heuristics tends to take less time than applying greedy
ones. Configurations using SpeedNew outperform the version using
Speed in 10 out of 12 cases. In the cases it does not, no local search
is performed and all worsening proposals are rejected. SpeedNew
selection becomes too greedy and fails to explore.

The use of local search is clearly important as the best configu-
ration without is only ranked 9th. Furthermore, all variants using
local search outperform their version not using local search.

Also, the chosen acceptance condition is important. The top 4
configurations use the (normalized) Metropolis acceptance condi-
tion. Furthermore, variants using this acceptance condition outper-
form their version accepting no worsening proposals, which in turn
outperforms the version accepting all worsening proposals.

The choice for the restart condition is clearly the most contro-
versial. On the one hand using the restart condition does (signifi-
cantly) improve the performance of the 2 top configurations. There-
fore, we decided to describe it in this paper. On the other hand, not
using the restart condition is the simplification with the smallest
impact and using the restart condition is in no way consistently
beneficial. Therefore, one might consider omitting the restart con-
dition, which would further simplify implementation and analysis,
as there is no need for re-initialization or run-specific variables.

3.3 Comparison to State of the Art

3.3.1 Setup
The objective of the experiment described in this section is to

compare the performance of FS-ILS to the state of the art in selec-
tion hyperheuristics. To a large extent, this has already been done
in [2]. It was shown that FS-ILS would have won the CheSC (2011)
competition if it were a contestant5 and performs best on 3 of the
6 domains (see Table 2). To verify FS-ILS’s generalization to other

5Please note that this comparison is not entirely fair. To design
FS-ILS information was used that was not available to the other
contestants, i.e. the benchmark instances used during the competi-
tion and the performance of the other contestants.

algorithm chesc other total
FS-ILS 19 (11) 20 (13) 39 (24)

= 1 4 5
AdapHH 10 (8) 14 (8) 24 (16)

Table 3: Comparison of FS-ILS to AdapHH

problems, it was tested on 28 new instances (not used during its de-
sign/CHeSC). Its performance was compared to that of a publicly
available implementation of AdapHH (the competition’s winner)
and was shown to be on par if not slightly better.

Currently, FS-ILS remains untested on 10 HyFlex instances,6

which were excluded from [2] since no benchmark algorithms were
available to evaluate its performance.7 In this experiment we test
FS-ILS and AdapHH 31 times on all 68 instances currently avail-
able in HyFlex. Rather than using some summary statistic, the com-
parison is done per instance, based on the median solution quality
obtained. In addition we use a Mann-Whitney U test to determine
whether the observed differences are significant (5% confidence).

3.3.2 Results
Table 3 shows on how many of the HyFlex instances FS-ILS per-

forms better than (or tied with) AdapHH (total), 30 of which were
used during the CHeSC (2011) competition (chesc) and 38 that
weren’t (other). The number of significant differences are shown
in brackets.

We see that neither of the methods performs best on all instances.
FS-ILS performs better than AdapHH on 39 out of the 68 instances
and ties for 5 instances. Furthermore, not only does it perform
better for the majority (19) of the 30 chesc instances (on which FS-
ILS was tested during design) it also performs better on the majority
(20) of the 38 other instances. We find 40 of the 63 observed
differences to be significant. FS-ILS performs significantly better
than AdapHH on more instances than vice versa, for both chesc
and other instance sets. These results provide further evidence of
FS-ILS’s competitiveness.

4. RELATED RESEARCH
The term hyperheuristic was first used to denote a (meta-)heuristic

iteratively selecting and applying heuristics from a given set of low-
level heuristics in [8]. Since then a lot of research has been per-
formed on hyperheuristics. [6] provides an extensive discussion of
the origin and recent developments within the domain.

While the potential of hyperheuristics in more general problem-
independent search was recognized early on [4], due to practical
difficulties most methods focused on a single domain. The creation
of the HyFlex framework [15] in 2010 has greatly simplified cross-
domain benchmarking and has been used in the implementation of
many selection hyperheuristics ever since. Most notably, HyFlex
was used to support the CHeSC 2011 competition, and its win-
ner AdapHH [14] can be considered state-of-the-art. Contempo-
rary work [18] reviews 16 of the 20 CHeSC contestants and draws
conclusions supporting the choices made in FS-ILS’s design. A
downside of the HyFlex framework is that it is rather restrictive. In
particular, too little information is available about candidate solu-
tions/heuristics to properly apply reinforcement learning [9]. Var-
ious extensions to Hyflex [16, 17] have been proposed and imple-
mented.

65 for both TSP and VRP domains
7For the 28 instances results for 8 benchmark algorithms were
made available before the competition



Hyperheuristics follow a wide variety of designs. Traditionally
they are iterative search strategies with a heuristic selection and so-
lution acceptance stage ([3, 14]). However, other high-level search
strategies have been developed recently. Iterated Local Search meth-
ods [3, 5, 7, 9] have been shown to outperform traditional search
strategies in a similar setting on multiple occassions [3, 18]. Also
evolutionary approaches [16], evolving a population of candidate
solutions (vs. a single incumbent solution), and even (co-)evolving
a population of hyperheuristics have been explored [13]. While
evolutionary approaches present many interesting ideas, they tend
to be complex and little evidence is provided to show they perform
significantly better than simpler alternatives.

5. CONCLUSION
In this paper, we presented FS-ILS, a simple state-of-the-art Iter-

ated Local Search selection hyperheuristic discovered using a semi-
automated design approach [2]. We provide a detailed explanation
and motivation of the design choices. In our experimental section,
we first performed a parameter sensitivity analysis, showing that
FL-ILS is largely robust to changes in its sole parameter. Subse-
quently we analyzed the presence of accidental complexity, show-
ing that FS-ILS performs significantly better than simpler variants,
motivating every design decision. Finally, we compared the perfor-
mance of FS-ILS to that of the winner of the CHeSC competition
on all HyFlex instances, providing further evidence of its competi-
tiveness on this benchmark.

There are a vast number of metaheuristic methods. What is the
value of yet another method? As a selection hyperheuristic, FL-
ILS is an off-the-peg solution, and therefore readily applicable to
new domains. Unlike other state-of-the-art methods, it is rather
simple and therefore understandable and reproducible. E.g. using
the information provided in this paper, FS-ILS can be reproduced
in only a few hours, using about 200 lines of code.8 In comparison,
the publicly available implementation of AdapHH counts over 3000
lines of code.9 These properties make FS-ILS an interesting starting
point for future hyperheuristic research.

6. ACKNOWLEDGMENTS
The FS-ILS method was developed during Steven Adriaensen’s

master thesis, wherein Prof. Ann Nowé was promotor and Tim
Brys supervisor. Currently, Steven Adriaensen and Tim Brys are
funded by a Ph.D grant of the Research Foundation Flanders (FWO).

7. REFERENCES
[1] E. H. Aarts, J. H. Korst, and P. J. Van Laarhoven. Simulated

annealing. Local search in combinatorial optimization, pages
91–120, 1997.

[2] S. Adriaensen, T. Brys, and A. Nowé. Designing reusable
metaheuristic methods: A semi-automated approach. In
Evolutionary Computation (CEC), 2014 IEEE Congress on.
IEEE, 2014.

[3] E. Burke, T. Curtois, M. Hyde, G. Kendall, G. Ochoa,
S. Petrovic, J. Vazquez-Rodriguez, and M. Gendreau.
Iterated local search vs. hyper-heuristics: Towards
general-purpose search algorithms. In Evolutionary
Computation (CEC), 2010 IEEE Congress on, pages 1–8.
IEEE, 2010.

8Code can be found at:
https://github.com/Steven-Adriaensen/FS-ILS.
9To be fair, this does include some code non-essential to the opti-
mization process. E.g. logging.

[4] E. Burke, G. Kendall, J. Newall, E. Hart, P. Ross, and
S. Schulenburg. Hyper-heuristics: An emerging direction in
modern search technology. International series in operations
research and management science, pages 457–474, 2003.

[5] E. K. Burke, M. Gendreau, G. Ochoa, and J. D. Walker.
Adaptive iterated local search for cross-domain optimisation.
In Proceedings of the 13th annual conference on Genetic and
evolutionary computation, pages 1987–1994. ACM, 2011.

[6] E. K. Burke, M. Hyde, G. Kendall, G. Ochoa, E. Ozcan, and
R. Qu. Hyper-heuristics: A survey of the state of the art.
Journal of the Operational Research Society,
64(12):1695–1724, 2013.

[7] C.-Y. Chan, F. Xue, W. Ip, and C. Cheung. A hyper-heuristic
inspired by pearl hunting. In Learning and Intelligent
Optimization, pages 349–353. Springer, 2012.

[8] P. Cowling, G. Kendall, and E. Soubeiga. A hyperheuristic
approach to scheduling a sales summit. In Practice and
Theory of Automated Timetabling III, pages 176–190.
Springer, 2001.

[9] L. Di Gaspero and T. Urli. A reinforcement learning
approach for the cross-domain heuristic search challenge. In
Proceedings of the 9th Metaheuristics International
Conference (MIC 2011), Udine, Italy, 2011.

[10] H. H. Hoos and T. Stützle. Stochastic local search:
Foundations & applications. Morgan Kaufmann, 2004.

[11] P.-C. Hsiao, T.-C. Chiang, and L.-C. Fu. A variable
neighborhood search-based hyperheuristic for cross-domain
optimization problems in chesc 2011 competition. In
Fifty-Third Conference of OR Society (OR53), Nottingham,
UK, 2011.

[12] G. A. Kochenberger et al. Handbook in Metaheuristics.
Springer, 2003.

[13] D. Meignan. An evolutionary programming hyper-heuristic
with coevolution for chesc’11. In CHeSC 2011.

[14] M. Misir, K. Verbeeck, P. De Causmaecker, and
G. Vanden Berghe. An intelligent hyper-heuristic framework
for chesc 2011. In Learning and Intelligent OptimizatioN,
2012.

[15] G. Ochoa, M. Hyde, T. Curtois, J. Vazquez-Rodriguez,
J. Walker, M. Gendreau, G. Kendall, B. McCollum,
A. Parkes, S. Petrovic, et al. Hyflex: a benchmark framework
for cross-domain heuristic search. Evolutionary Computation
in Combinatorial Optimization, pages 136–147, 2012.

[16] G. Ochoa, J. Walker, M. Hyde, and T. Curtois. Adaptive
evolutionary algorithms and extensions to the hyflex
hyper-heuristic framework. In Parallel Problem Solving from
Nature-PPSN XII, pages 418–427. Springer, 2012.

[17] W. Van Onsem and B. Demoen. Parhyflex: A framework for
parallel hyper-heuristics.

[18] W. Van Onsem, B. Demoen, and P. De Causmaecker.
Hyper-criticism: A critical reflection on todays
hyper-heuristics. In Proceedings of the 28th Anual
Conference of the Operational Research Society, volume 28,
2014.

[19] D. H. Wolpert and W. G. Macready. No free lunch theorems
for optimization. Evolutionary Computation, IEEE
Transactions on, 1(1):67–82, 1997.


