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Abstract

Although substantial progress has been made on the question of the origin
of life, less progress can be seen concerning the origins of intelligence. There
is not even general agreement of what intelligence is. The paper proposes a
definition of intelligence grounded in biology, which makes the question of the
origins of intelligence seem more approachable. It then identifies two major
transitions that must have been crucial in the development of intelligence:
the origins of ‘general purpose’ neural networks and the origins of language.
Some experimental work is reported that tries to recapitulate these major
transitions using an artificial life perspective.

1 Introduction

Where does intelligence come from? How can we explain that in a physi-
cal world populated by living systems, the capacity that we call intelligence



developed? Astonishingly enough, we have hardly any theory about this.
Science has developed reasonable, although still debated, theories of the ori-
gin of the universe, such as the Big Bang theory. There are also theories of
the origins of galaxies, of the earth and the moon, and of geological struc-
tures. There are theories of the origin of life, the diversity of species, and the
origin of Man. So, why don’t we have a theory of the origin of intelligence.

The reason is partly that for many people no such theory is needed. Mind
is eternal, they say, belonging to a Platonic universe. Seeking an explanation
for its origins is therefore absurd. Such a Platonic view is still common
today with mathematicians like Penrose [15]. However it is not a scientific
explanation. It is similar to the earlier view that the origin of the universe
needs no explanation because it has always been there and will always be
there, or that all the different species, including Man, were created in a few
days by an omniscient being. If we want a scientific theory of the origins
of intelligence, we must close the gap between the basic laws of physics and
biology and theories of intelligence. Right now the gap is enormous and it
can only be closed by working from both sides.

This paper raises a few issues and provides some directions and experi-
mental approaches for addressing the question of the origins of intelligence.
No clear definite answer can be given yet, although a way can be pointed out.
The first section defines intelligence as a continuum with current biological
views of living systems. It is only by having such a definition that we can
hope to pinpoint precisely where intelligent systems outgrow living system:s.

2 Defining Intelligence

Traditional definitions of intelligence involve a strong subjective component.
For example, Turing has defined intelligence operationally by an experiment
in which a human tries to identify whether he is interacting with a computer
program or a real human being. If this distinction is not possible, the program
is assumed to be intelligent. Newell [14] has defined a system to be intelligent
if knowledge-level descriptions, beliefs, and intensions can be ascribed to
it. Both definitions are not only subjective because they rely on human
judgement but also ignore the embodied nature of human intelligence and
the function of intelligence in survival.

This section proposes an alternative definition of intelligence which seeks



to establish a continuum with life. It first identifies the class of evolving com-
plex adaptive systems, then identifies progressively more complex instances
from chemical systems to living systems, and then to intelligent systems.

2.1 Evolving Complex Adaptive Systems

Let us delineate a class of systems with four defining characteristics: self-
maintenance, adaptivity, information preservation, and spontaneous increase
of complexity. I propose to call such systems evolving complex adaptive sys-
tems. Living systems are an obvious subset but there are already autocat-
alytic chemical reactions with the same properties and intelligent or cultural
systems could be seen as other examples.

o Self-maintenance: Self-maintenance means that the system is actively
establishing itself. To avoid annihilation due to increased entropy, the
system needs to constantly rebuild itself by drawing materials from the
environment and establish a boundary between itself and the rest of the
environment. Maturana and Varela have called this process autopoiesis
[11]

o Adaptivity: The system is not only capable to maintain its own internal
equilibrium for a constant environment, but also adapts when there are
(small scale) changes to the environment in order to enhance its chances
of further existence.

e Information preservation: The information defining the system is capa-
ble to be perserved so that the system does not depend on the continued
existence of its components to survive. It is the role of the components
that keeps the whole system together and if the various roles and their
interrelations are preserved the whole system is preserved.

e Spontaneous increase in complexrity: The most remarkable aspect is
that the system is able to increase its own internal complexity. This
could mean that there are increasingly more parts, more complex rela-
tions between parts, more complex behaviors of the parts, etc. More-
over often instances of the same system come together to form a larger
whole that operates as a single system evolving complex adaptive sys-
tem at a higher level.



We can identify different instantiations of this basic class of evolving complex
adaptive systems, where each instantiation builds further upon the previous
instantiations but adds more powerful machinery so that self-maintenance
and adaptivity is more successful, information is better preserved and the
growth of complexity becomes faster. Each time a major transition has been
responsible for shifting to the next level of complexity, but the new level then
‘slaves’ the level below, or we can at least see a kind of co-evolution towards
greater complexity of both. The major instantiations are (1) autocatalytic
chemical reactions, (2) living systems, (3) intelligent systems, and (4) cultural
systems. Conglomerations of these systems (groups of co-evolving reactions,
species, colonies, societies) form in themselves evolving complex adaptive
systems with their own dynamics.

1. Autocatalytic chemical reactions (uncoded life)

The various properties of evolving complex adaptive systems can already
be seen in certain types of chemical reactions which are known as pre-life or
uncoded life systems [8]:

e The reactions achieve self-maintenance by being autocatalytic. The
substances to start the beginning of the reaction are regenerated, often
after a long cycle and in larger quantities, so that the whole reaction
chain can start again and proliferate. In some cases it is possible to
show that boundaries form themselves [9].

e These reactions can be shown to be adaptive to changes in the en-
vironment. For example, the rate may slow down when temperature
conditions change or when materials are less abundantly present. In
some cases there are conditional pathways depending on the conditions
in the environment.

e Autocatalytic reaction networks preserve information by making copies
of themselves (with potential errors). Such copying has been synthe-
sised in the laboratory.

e Autocatalytic reactions have recently been shown to be able to undergo
evolution by natural selection, known in this case as molecular evolu-
tion. It is enough that there is a reaction that is autocatalytic and that
variations occur in replication. When the environment (in this case the
other chemicals present) provide selectionist pressures, then there is an



evolution towards more complex molecules or reaction pathways that
are capable to cope better with the selection pressures.

2. Living systems

Living systems clearly have all the properties of evolving complex adap-
tive systems. They most probably originated out of autocatalytic chemical
reaction networks but achieve the characteristics of evolving complex adap-
tive systems differently:

e The simplest living systems (such as unicellular organisms) use metabolic
pathways enclosed in cell membranes to maintain themselves while
drawing materials from the environment. More complex living systems
exhibit a much wider behavioral repertoire because groups of cells form
organs with complex coordinated functions.

e Adaptivity is now not only achieved using chemical means but by
changes in behavior, such as heavier breathing when oxygen content
is lower or slower movement when it is very hot. Behavior is controlled
using special-purpose neural networks.

e The most important innovation is however the preservation of infor-
mation by coding the system in terms of genes. This requires the
‘discovery’ that proteins can function as interpreters of a code [5]. The
code itself, in the form of DNA is now copied as opposed to the whole
organism. Additional proofreading while copying assures that much
more complex information can be preserved, not only for creating the
next generation of an individual but also for regenerating constantly
parts of a single individual.

e The genetic mechanism provides also a much more powerful way to
generate more complexity. The code is mutated or combined via cross-
over operations and then subjected to naturally occurring selection. A
larger search space of possible life forms can thus be explored and it be-
comes easier to build further upon existing complex forms. Other ways
are used to increase complexity as well, they include level formation and
self-organisation. Based on these principles living systems have shown
several transitions towards ever greater complexity. Recent overviews
of the important transitions have been given by Maynard-Smith and
Szathmary [12] and de Duve [3].



3. Intelligent systems

Intelligent systems can be defined as systems that have the same four
properties (self-maintenance, adaptivity, information preservation, and in-
crease in complexity) but use other means to achieve them. It is not yet
completely obvious where the key lies, but two things are surely important:

e Neural networks, which initially were completely specific, have become
general purpose structures which can store a large number of com-
plex behavioral patterns, sustain processes for interpreting signals from
the world and controlling at a fine grained level complex action pat-
terns. Most importantly these networks and processes develop and
adapt themselves continuously and very fast (compared to genetic evo-
lution).

e At some point a symbolic capacity has developed: This is the ability
to interpret the world in terms of concepts, to represent states of the
world using these concepts, and to perform symbolic reasoning by ma-
nipulating these representations. This symbolic capacity also sustains
symbolic learning.

These features result in superior capacity for all the four properties of evolv-
ing complex adaptive systems. Self-maintenance is enhanced by the ability
to handle much more complex behavior, be responsive to much more en-
vironmental influences and control much more complex actuators (such as
hands). Adaptivity is enhanced by the capacities of neural networks to ac-
quire new knowledge and by symbolic learning. There is a vast increase in
the amount of information that can be preserved compared with the genes.
Finally there is a steady and fast build up of complexity, particularly during
the developmental stages of the organism.

4. Cultural systems

It is useful to define yet another type of instance of the general class of
evolving complex adaptive systems, namely cultural systems of which lan-
guage is one of the main examples. Other examples are religious systems
and social systems. These cultural systems appear to have their own in-
ternal dynamics which cause them to maintain themselves, adapt, preserve
information and become more complex. Thus languages originate, develop,
and sometimes die, like organisms. They are formed by the joined distributed
action of millions of individuals that speak a language. Languages constantly
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adapt to changes in the meanings that users want to express and have become
more complex to cope with the pressure of reducing cognitive overload for
speaker and hearer as well as pressure to say more in a shorter time frame.

Interrelationships

There are complex interrelations between these different types of systems
because one system is built on top of another one: living systems embody a
multitude of autocatalytic reaction networks, intelligent systems have grown
out of living systems, and cultural systems have evolved through intelligent
systems. Often a ‘slaving’ relation can be observed between the different
layers. For example, once living systems come into existence, they enslave
autocatalytic reaction networks to become metabolic pathways under the
control of the genes. Similarly, the vocal apparatus necessary for speech is
an adaptation from the earlier vocal apparatus, observed in chimpanzees,
which could not make so many distinctive sounds. The development of the
vocal apparatus in Homo Sapiens results however in a high risk of choking,
which was non-existent before, and a dislocation of certain teeth (wisdom
teeth) which often have to be removed surgically. These two features are
disadvantageous from a purely biological survival point of view but developed
nevertheless to support the complexification of language.

The complex self-enforcing relations between levels is probably crucial for
understanding intelligence. On the one hand, intelligent systems have grown
out of living systems. On the other hand, intelligent systems are the substrate
on which cultural systems have evolved. Language is a cultural system that
clearly seems to have played a primordial role in pushing intelligent systems
towards the extreme plasticity that is known today. Cultural systems have
their own dynamics which sometimes (as in the case of wars due to religious
or nationalistic tendencies) enslaves the individuals to act against their own
self-interest or the interest of others.

3 Steps towards intelligent systems

The problem of the origins of intelligence can now be posed with much greater
precision. First of all we need to understand how neural networks, which ini-
tially were completely specific, could have become general purpose dynamical
systems. Second we need to understand how an independent symbolic level
could have emerged. For none of these questions is there a plausible answer



today. This section provides some more discussion and then sketches possible
technical and experimental approaches.

3.1 The plasticity of the neural substrate

We need to find the major transitions through which neural networks, which
were initially special-purpose and hence the subject of genetic evolution by
natural selection, have become general-purpose and moldable by developmen-
tal and learning processes. There is so far no theory to explain this, partly
because there is not yet an adequate theory that explains the plasticity of
neural networks as such.

Two approaches have domininated research on plasticity so far. The first
approach focuses on mechanisms that perform induction based on a large
number of example behaviors, either supervised or unsupervised. Various
neural network techniques have been proposed and applied with varying de-
grees of success [23]. This approach relies however on the prior availability
of enough examples and assumes enough time to perform the inductive pro-
cess. These conditions are seldom satisfied for agents having to stay viable in
an unknown environment. The second approach performs a kind of genetic
evolution. The behavioral networks are subjected to random variation by
mutation and crossover and consequent selection [7]. This approach cannot
work on a single agent that has to stay viable as it acquires new behavior,
because it relies on the exploration of a population of agents of which most
members will fail to survive and genetic evolution is in general too slow to
be responsive to changes to the environment fast enough. When studying
intelligent systems we seek precisely mechanisms which are not genetic.

Our own approach is selectionist in the sense that behavioral networks
are generated independently of the environment in which they have to op-
erate and then subjected to selectionist pressures. But the selectionist pro-
cess takes place during the lifetime of the individual. Different variations are
tested after each other. The exploration strategy must be such that the agent
remains viable. The proposed mechanism has some strong relations between
the ‘neural darwinism’ hypothesis of Edelman [4] which focuses however on
the acquisition of categorisation competence as opposed to behavioral regu-
lation for remaining viable in a challenging ecosystem.

In our laboratory we have set up a robotic ecosystem to experimentally
investigate this selectionist development process. The ecosystem includes a



Figure 1: Robotic ecosystem as physically realised at the VUB Al laboratory.
There are a number of robots which can recharge themselves in a charging
station. There is competition for the energy flowing in the charging station
in the form of lamps which can be put out by the robots by pushing against
the boxes in which they are housed.

set of small robots which have about 20 sensors, a series of actuators includ-
ing two motors driving left and right wheels, and their own computational
capacity and batteries. The ecosystem is generic for situations where a devel-
oping agent is confronted with a growing population p of competitors for its
energy resources. There is a steady inflow of these resources in the ecosystem
to reach a level g. The developing robot has an internal energy level e which
decreases due to normal bodily operation and active behavior. Internal en-
ergy can be replenished by recharging at a certain location. The resource
availability at this location b is replenished from the globally available re-
sources. The competitors which take the form of lamps, grow by consuming
as well from the globally available resources. So the more competitors there
are, the less resources will be available for the robot. But the robot can
combat the competitors and thus maintain an adequate supply of resources
for itself. The situation is moreover such that one robot cannot survive on
its own. It needs to cooperate with other robots so that they take turns to
work and recharge.

Given this ecosystem, a cyclic series of activities is observed in which
the robot seeks the charging station where resources are available, consumes
resources to replenish its battery, moves out of the area to seek out the
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Figure 2: The different combinations of the forward movement motivation
and the contact sensor are tried for 100 time steps each. Actual energy
level and forward movement are shown. Only b9 (the first one) produces a
significant improvement in performance.

competitors, and looks for the charging station again when its energy level is
getting low. A developing robot should be able to learn these behaviors while
interacting with the environment. At the start of the experiment, the robot
performs a default random walk behavior which, due to the benign initial
conditions, nevertheless results in viable behavior. The robot is assumed to
have a variety of basic behavior systems in the spirit of the behavior-oriented
approach [17]. Each behavior system is a goal-seeking feedback control sys-
tem modulated by a motivational quantity. For example, for alignment to
visible light, the goal is to have a zero difference between the left and right
photosensors. The motivation is linked to energy deficit.

Figure 2. shows a snapshot of the learning process which takes the form of
the successive exploration of different alternative behaviors by instantiating
certain couplings between sensor or motivational quantities and motor quan-
tities. In this example, the robot is trying a connection between a contact
sensor which detects that the robot is in the charging station and forward
movement. The robot ‘discovers’ that it should stop in the charging station.
More details of these experiments can be found in [21], [22].

Although we have managed to get some build up of behavioral complexity,
it is still too early to say that this kind of selectionist process gives the desired
flexibility and plasticity that we see in intelligent behavior and then there
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still remains the problem how the dynamics implied by this scheme could
have evolved out of special-purpose dynamical networks.

3.2 Language as the key of a symbolic layer

Classical symbolic Al systems exhibit great complexity for particular func-
tionalities such as expert problem solving, chess playing, etc. But this func-
tionality is typically completely programmed by hand based on an analysis
of human competence. These systems are therefore frozen instances of intel-
ligence as opposed to evolving adaptive intelligent systems. Moreover they
mostly do not have any direct relationship to reality but need a human
to interpret reality and supply the symbolic descriptions that are needed.
Unfortunately not much progress can be seen yet on how the gap between
subsymbolic and symbolic capacities should be bridged, nor on the question
of the origin of the symbolic layer.

Most of the present work assumes that there are abstraction facilities in
neural networks or a new higher level dynamics that may emerge. In our
own work, we take a quite different approach. We assume that language has
played a key role in the formation of a symbolic layer in human intelligence
and therefore focus on experiments in which the origin of language could take
place. We are exploring two hypotheses:

[1] Language is an autonomous adaptive system which forms itself in a
self-organizing process. Language is therefore similar to other self-organizing
phenomena observed in biosystems, such as paths in an ant society, clouds
of birds, etc. A language is viewed as an adaptive system in the sense that it
has to allow its users to express an open-ended, ever growing or changing set
of meanings with an open-ended but finite set of building blocks and combi-
nations of building blocks. The speakers and hearers are distributed agents
that through their localised linguistic behavior (namely the carrying out of
conversations) shape and reshape the language. No agent has a complete
view of the language and no agent can control the linguistic behavior of the
whole group. Moreover no separate mechanism for language acquisition is
necessary because the mechanisms that explain the origin of language also
explain how it is acquired by new agents entering the community.

[2] Language spontaneously becomes more complex based on the same
mechanisms that give rise to complexity in biosystems in general. The devel-
opment and evolution of language is primarily driven by the need to optimize
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communicative success and handle the very strong constraints which hold
for open-ended real world languages, namely limited time to communicate,
limited time to process the utterance, weak and error-prone acoustic trans-
mission, limited feedback about success, constraints of the vocal apparatus,
etc.

Self-organization is a common phenomenon in certain evolving complex
adaptive systems. To support self-organization a system must exhibit a series
of spontaneous fluctuations and a feedback process that enforces a particular
fluctuation so that it eventually forms a (dissipative) structure [16]. The
feedback process is related to a particular condition in the environment, for
example an influx of materials that keeps the system in a non-equilibrium
state. As long as the condition is present, the dissipative structure will be
maintained. Some standard applications of self-organization can be seen in
morphogenetic processes, or the formation of a path in an ant society or a
termite nest [2].

A language can be viewed as a dissipative structure similar to a path in an
ant society. Each agent is assumed to create and continuously change his own
language in a random fashion, resulting in a fluctuating linguistic commu-
nity. Language must be shared in order to obtain the benefit of cooperating
through communication. Hence the changes are coupled to communicative
success: the higher the success the less probable a change. This results in
a feedback process. When more agents use the same word for the same
meaning, communicative success increases and therefore the word-meaning
association becomes more stable. It has been shown that coherence indeed
emerges [18].

In one experiment (reported in [19]), agents developed spontaneously and
autonomously a vocabulary to talk about themselves and identify spatial re-
lations among themselves. Here is an example dialog where the object is
introduced by a-25 using a spatial description (straight in front of me) ex-
pressed as ’bu v aja’ and confirmed by a-23 using another spatial description
(behind me to the left) expressed as ‘batulo’.

Dialog 1142 with a-25 a-23

=> a-25: (a-25)
a-25: a-256 -> (B U) <- a-23: a-25
a-25: FRONT -> (V A) <- a-23: FRONT
a-25: STRAIGHT -> (J A) <- a-23: STRAIGHT
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Figure 3: The results of a typical experiment with 10 agents, 5 possible words,
and 1 meaning. It plots the communicative success of each word (y-axis) over
time (x-axis). We see a search period in which different words compete until
one gains complete dominance.

=> a-23: (a-25)
a-23: a-23 -> (B A) <- a-25: a-23
a-23: BEHIND -> (T U) <- a-25: BEHIND
a-23: LEFT -> (L 0) <- a-25: LEFT

=> a-25: (a-25)
a-25: confirm -> ‘yes’ <- confirm

Additional experiments are currently being performed to explore issues like
ambiguity and semantic indeterminacy [20], the formation of morphological
and syntactic structures, the indirect mapping of meanings to words (where
one word may capture many different meanings), the emergence and han-
dling of ambiguity, the grounding of language in robotic agents, the creation
of new meaning, etc. Through such experiments we expect to understand
better how complex symbolic representations form themselves. Similar pro-
cesses must be going on internally in the brain to form and shape the mental
language in which knowledge is expressed, although we have not yet carried
our experiments in this area.
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4 Conclusions

Much remains to be discovered before a theory of the origins of intelligence
can begin to take shape. We need to understand how the brain is capable to
exhibit its remarkable behavioral plasticity and how a symbolic layer might
have emerged. Experiments using software agents and robotic agents appear
to be a very difficult but at the same time rewarding way to pose questions,
imagine possible answers, and experimentally test them.
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