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Previous session
• What is Game Theory?	



• Why do we study it in the context of computational intelligence	



• Some history	



• Theory of rational choice	



• Defining strategic games	



• Examples	



• Symmetricalization	



• Nash equilibrium and how to detect it	



• steady state description	



• Best response, strict and weak dominance	



• Pareto optimality

© Tom Lenaerts, 2010

4
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Mixed strategies
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Is there an equilibrium when we allow players to 
randomize over their actions ?
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Mixed strategies
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Head Tail

Head

Tail

P(Head) = p and 	


P(Tail) = (1-p)

P(Head) = q and 	


P(Tail) = (1-q)

strategy profile :  {{(Head, p);(Tail,1-p)}; {(Head, q);
(Tail,1-q)}
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Mixed strategies

A mixed strategy of a player in a strategic game is a 
probability distribution over the player’s actions

Definition : 

α1(Head) = p

α1(Tail) = 1-p

α2(Head) = q

α2(Tail) = 1-q

Example:

Note the when α1(Head) =1, the mixed strategy (1,0) is a pure 
strategy

αi(ai) is the probability assigned by player i’s mixed 
strategy αi  to her action ai 

We denote a mixed strategy profile by α,

© Tom Lenaerts, 2010
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Strategic games with 
vNM preferences

von Neumann-Morgenstern (vNM) preferences are preferences 
regarding lotteries (probability distribution, mixed strategies)

They are represented by the expected value of a payoff function over the 
deterministic outcomes 

Such a payoff function is called a Bernouilli payoff function

U(p1,..., pK)) =∑  pk u(ak)   
k=1

K

© Tom Lenaerts, 2010
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Strategic games with 
vNM preferences

if and only if the decision-maker prefers the lottery (p1, ..., 
pK) over the lottery (p1’,..., pK’)

∑  pk u(ak)   > ∑  p’k u(ak)   
k=1

K

k=1

K

There is a Bernouilli payoff function u over deterministic 
outcomes such that the decision-makers preferences over 
lotteries represented by this function

U(p1,..., pK)) =∑  pk u(ak)   
k=1

K

allows one to conclude :

© Tom Lenaerts, 2010
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Example
Assume a game for which the outcomes are, A, B or C and 
naturally she prefers C over B over A 	


!
Assume also that that she prefers mixed strategy (1/2, 0, 1/2) 
over (0, 3/4, 1/4)

Then the payoff function u(A)=0, u(B)=1 and u(C)=4 makes 
these preferences consistent since

(1/2*0+1/2*4) > (3/4*1+1/4*4)
Suppose that she on the other hand prefers (0, 3/4, 1/4) 
over (1/2, 0, 1/2), then the payoff function u(A)=0, u(B)=3 
and u(C)=4 makes these preferences consistent since

(1/2*0+1/2*4) < (3/4*3+1/4*4)

© Tom Lenaerts, 2010
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Strategic games with 
vNM preferences

A strategic game consists of :	


• a set of players	


• for each player a set of actions	


• for each player, preferences regarding lotteries 

over action profiles represented by a Bernouilli 
payoff function over action profiles.

© Tom Lenaerts, 2010
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Mixed Nash Equilibrium
Assume that (αi’,α-i) is the mixed strategy profile in which every 
player j except i chooses her mixed strategy αj as specified by α, 
whereas player i deviates to αi’ 

Definition : 

The mixed strategy profile α* in a strategic game is a mixed 
strategy Nash Equilibrium if for every player i and for every 
mixed strategy αi of player i, the expected payoff to i in α* is 
at least as large as the expected payoff to i in (αi,α-i*) 
according to a payoff function that represents player i’s 
preferences over lotteries.

© Tom Lenaerts, 2010
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Mixed Nash Equilibrium

Definition : 

Equivalently,  for every player i,	


!
 Ui(α*) ≥ Ui(αi,α-i*) for every mixed strategy αi of player i	


!
where Ui(α) is the player’s i expected payoff to the mixed 
strategy profile α

© Tom Lenaerts, 2010
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Stochastic steady state
Again this NE can be interpreted as an steady state of an 
interaction between the members of several populations, one 
for each player in the game 

player 1 player 2 player 1 player 2

© Tom Lenaerts, 2010
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Best-response
To find the mixed strategy NE, we can again make use 
of the notion of a Best-response.

The mixed strategy profile α* in a strategic game is a mixed 
strategy Nash Equilibrium if and only if αi* is in Bi(α-i*) for 
every player i	



Definition : 

Bi(α-i) is the set of all player i’s best mixed strategies when the 
list  of the other players’ mixed strategy is α-i

© Tom Lenaerts, 2010
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In two-player/two-
action games

What is the set of best responses of player 1 to a 
mixed strategy of player 2?

pq p(1-q)

(1-p)q (1-p) 
(1-q)

L	


(q)

R	


(1-q)

T (p)

B (1-p)

E1(α)= p[q*u1(T,L) +(1-q)*u1(T,R)] + 
           (1-p)[q*u1(B,L) + (1-q)*u1(B,R)]     

E1(α)= p*E1(T, α-1) + (1-p)*E1(B, α-1)

the expected payoff of player 1, given 
player 2’s mixed strategy is a linear 
function of p 

© Tom Lenaerts, 2010

18

In two-player/two-
action games

The linearity implies 3 possible outcomes :

1. player 1’s unique best response is the pure strategy T 
(when E1(T, α-1) > E1(B, α-1))

2. player 1’s unique best response is the pure strategy B 
(when E1(T, α-1) < E1(B, α-1))

3. all player 1’s mixed strategies are all best responses 
(when E1(T, α-1) = E1(B, α-1))

© Tom Lenaerts, 2010
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Matching pennies
1. player 1’s expected payoff for the 
pure strategy Head (p) is
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Matching pennies
1. player 1’s expected payoff for the 
pure strategy Head (p) is
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q *1 +(1-q)*(-1) = 2q-1
2. player 1’s expected payoff for the 
pure strategy Tail (1-p) is

q *(-1) +(1-q) *1 = 1-2q

2q-1 < 1-2q when q < 1/2 for any value of p >0.0 	


Thus best response set is {Tail} or p=0
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Matching pennies
1. player 1’s expected payoff for the 
pure strategy Head (p) is
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q *1 +(1-q)*(-1) = 2q-1
2. player 1’s expected payoff for the 
pure strategy Tail (1-p) is

q *(-1) +(1-q) *1 = 1-2q

2q-1 < 1-2q when q < 1/2 for any value of p >0.0 	


Thus best response set is {Tail} or p=0

2q-1 > 1-2q  when q > 1/2 for any value of (1-p) >0.0 	


Thus best response set is {Head} or p=1

© Tom Lenaerts, 2010

20-4

Matching pennies

2q-1 = 1-2q when q = 1/2 for any mixed strategy	


Thus best response set is the set of all mixed strategies

© Tom Lenaerts, 2010
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Matching pennies
1. player 2’s expected payoff for 
the pure strategy Head (q) is

p *-1 +(1-p)*1 = 1-2p
2. player 2’s expected payoff for the 
pure strategy Tail (1-q) is

p *1 +(1-p) *(-1) = 2p-1
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Matching pennies
1. player 2’s expected payoff for 
the pure strategy Head (q) is

p *-1 +(1-p)*1 = 1-2p
2. player 2’s expected payoff for the 
pure strategy Tail (1-q) is

p *1 +(1-p) *(-1) = 2p-1

1-2p > 2p-1 when p < 1/2 thus best response set is 
{Head} or q=1

© Tom Lenaerts, 2010

And for player 2 ...

22-2

-1

+1

-1 +1

+1

+1

-1

-

Head Tail

Head

Tail

Matching pennies
1. player 2’s expected payoff for 
the pure strategy Head (q) is

p *-1 +(1-p)*1 = 1-2p
2. player 2’s expected payoff for the 
pure strategy Tail (1-q) is

p *1 +(1-p) *(-1) = 2p-1

1-2p > 2p-1 when p < 1/2 thus best response set is 
{Head} or q=1

1-2p < 2p-1 when p > 1/2 thus best response set is {Tail} 
or q=0
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2p-1 = 1-2p when p = 1/2 for any mixed strategy	
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Inspection game
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1. player 1’s expected payoff for the 
pure strategy Don’t Inspect (p) is
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q *60 +(1-q)*0 = 60q
2. player 1’s expected payoff for the 
pure strategy Inspect (1-p) is

q *52 +(1-q) *12 = 40q+12
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Inspect

q *60 +(1-q)*0 = 60q
2. player 1’s expected payoff for the 
pure strategy Inspect (1-p) is

q *52 +(1-q) *12 = 40q+12

When q > 3/5 then 60q >40q+12 for any value of p >0.0 	


Thus best response set is {Don’t Inspect} or p=1

25-2

Inspection game
© Tom Lenaerts, 2010

1. player 1’s expected payoff for the 
pure strategy Don’t Inspect (p) is
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q *52 +(1-q) *12 = 40q+12

When q > 3/5 then 60q >40q+12 for any value of p >0.0 	


Thus best response set is {Don’t Inspect} or p=1

When q < 3/5 then 60q < 40q+12 for any value of (1-p) >0.0 	


Thus best response set is {Inspect} or p=0
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Inspection game
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1. player 1’s expected payoff for the 
pure strategy Don’t Inspect (p) is

52
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25 40

25
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comply cheat

Don’t 
Inspect

Inspect

q *60 +(1-q)*0 = 60q
2. player 1’s expected payoff for the 
pure strategy Inspect (1-p) is

q *52 +(1-q) *12 = 40q+12

When q = 3/5 then 60q = 40q+12 for any mixed strategy	


Thus best response set is the set of all p values in [0 1]
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Inspection game
1. player 2’s expected payoff for 
the pure strategy Comply (q) is

p *25 +(1-p)25 = 25
2. player 2’s expected payoff for the 
pure strategy Cheat (1-q) is

p *40 +(1-p) *20 = 20p+20
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And for player 2 ...
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Inspection game
1. player 2’s expected payoff for 
the pure strategy Comply (q) is

p *25 +(1-p)25 = 25
2. player 2’s expected payoff for the 
pure strategy Cheat (1-q) is

p *40 +(1-p) *20 = 20p+20

When p < 1/4 then 25 > 20p+20 thus best response set 
is {Comply} or q=1
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Inspection game
1. player 2’s expected payoff for 
the pure strategy Comply (q) is

p *25 +(1-p)25 = 25
2. player 2’s expected payoff for the 
pure strategy Cheat (1-q) is

p *40 +(1-p) *20 = 20p+20

When p < 1/4 then 25 > 20p+20 thus best response set 
is {Comply} or q=1

When p > 1/4 then 25 < 20p+20 thus best response set 
is {Cheat} or q=0

© Tom Lenaerts, 2010

And for player 2 ...

52

60

25 40

25

12

20

0

comply cheat

Don’t 
Inspect

Inspect

27-3

Inspection game
1. player 2’s expected payoff for 
the pure strategy Comply (q) is

p *25 +(1-p)25 = 25
2. player 2’s expected payoff for the 
pure strategy Cheat (1-q) is

p *40 +(1-p) *20 = 20p+20
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And for player 2 ...
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When p = 1/4 then 25 = 20p+20 for any mixed strategy.	


Thus best response set is the set of all values for q in 
[0 .. 1]
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Inspection game
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Battle of the sexes
1. player 1’s expected payoff for the pure 
strategy Bach is

0
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Bach Strav.

Bach

Strav.

q *2 +(1-q)*0 = 2q

2. player 1’s expected payoff for the pure 
strategy Stravinsky is

q *0 +(1-q) *1 = 1-q
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Battle of the sexes
1. player 1’s expected payoff for the pure 
strategy Bach is
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1
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Bach Strav.

Bach

Strav.

q *2 +(1-q)*0 = 2q

2. player 1’s expected payoff for the pure 
strategy Stravinsky is

q *0 +(1-q) *1 = 1-q

2q < 1-q or q <1/3 then the best response set is {Strav.}
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Battle of the sexes
1. player 1’s expected payoff for the pure 
strategy Bach is

0
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1 0
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1
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Bach Strav.

Bach

Strav.

q *2 +(1-q)*0 = 2q

2. player 1’s expected payoff for the pure 
strategy Stravinsky is

q *0 +(1-q) *1 = 1-q

2q < 1-q or q <1/3 then the best response set is {Strav.}

2q > 1-q or q >1/3 then the best response set is {Bach}
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Battle of the sexes
1. player 1’s expected payoff for the pure 
strategy Bach is

0

2

1 0

0

1

2

0

Bach Strav.

Bach

Strav.

q *2 +(1-q)*0 = 2q

2. player 1’s expected payoff for the pure 
strategy Stravinsky is

q *0 +(1-q) *1 = 1-q

2q < 1-q or q <1/3 then the best response set is {Strav.}

2q > 1-q or q >1/3 then the best response set is {Bach}

2q = 1-q or q =1/3 then all the players mixed strategies 
are best responses
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Battle of the sexes
1. player 2’s expected payoff for the pure 
strategy Bach is
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Bach Strav.

Bach

Strav.

p *1 +(1-p)*0 = p

2. player 2’s expected payoff for the pure 
strategy Stravinsky is

p *0 +(1-p) *2 = 2(1-p)
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Battle of the sexes
1. player 2’s expected payoff for the pure 
strategy Bach is
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Bach Strav.

Bach

Strav.

p *1 +(1-p)*0 = p

2. player 2’s expected payoff for the pure 
strategy Stravinsky is

p *0 +(1-p) *2 = 2(1-p)

p < 2(1-p) or p <2/3 then the best response set is 
{Strav.}
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Battle of the sexes
1. player 2’s expected payoff for the pure 
strategy Bach is

0

2

1 0

0

1

2

0

Bach Strav.

Bach

Strav.

p *1 +(1-p)*0 = p

2. player 2’s expected payoff for the pure 
strategy Stravinsky is

p *0 +(1-p) *2 = 2(1-p)

p < 2(1-p) or p <2/3 then the best response set is 
{Strav.}
p > 2(1-p) or p >2/3 then the best response set is 
{Bach}
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Battle of the sexes
1. player 2’s expected payoff for the pure 
strategy Bach is

0

2

1 0
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1

2

0

Bach Strav.

Bach

Strav.

p *1 +(1-p)*0 = p

2. player 2’s expected payoff for the pure 
strategy Stravinsky is

p *0 +(1-p) *2 = 2(1-p)

p < 2(1-p) or p <2/3 then the best response set is 
{Strav.}
p > 2(1-p) or p >2/3 then the best response set is 
{Bach}

p = 2(1-p) or p =2/3 then all the players mixed strategies 
are best responses

© Tom Lenaerts, 2010
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Battle of the sexes
© Tom Lenaerts, 2010

0

2

1 0

0

1

2

0

Bach Strav.

Bach

Strav.

32

Existence
Every strategic game with vNM preferences in which each 
player has a finite number of actions has a mixed strategy 

Nash equilibrium

© Tom Lenaerts, 2010
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Equilibrium test
How can we verify in more advanced game if a mixed 
strategy profile is a mixed Nash Equilibrium?

A player’s expected payoff to the mixed strategy profile α 
is a weighted average of her expected payoffs to all mixed 
strategy profiles of the type (ai, α-i) where the weight 
attached to (ai, α-i) is the probability αi(ai) assigned to ai 
by player i’s mixed strategy αi

Ui(α) =∑  αi(ai)Ei(ai, α-1)   
ai∈Ai

© Tom Lenaerts, 2010
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Equilibrium test
The previous property leads to an equilibrium test :

A mixed strategy profile α* in a strategic game with vNM 
preferences in which each player has a finitely many 
actions is a mixed strategy Nash equilibrium if and only if 
for each player i, 

(1) the expected payoff, given α-i*, of every action ai in αi 
that has αi(ai)>0, is the same

(2) the expected payoff, given α-i*, of every action ai in αi 
that has a αi(ai)=0, is at most the payoff in of (I)

The expected payoff in equilibrium is the expected payoff of (1)

© Tom Lenaerts, 2010
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Example
Take for instance the Battle of the Sexes :	


!
We have three possible mixed strategy Nash equilibria : 
{(1,0);(1,0)}, {(0,1),(0,1)} and {(2/3,1/3);(1/3,2/3)}

expected payoff for pure strategies

0

2

1 0

0

1

2

0

Bach (1) Strav. (0)

Bach (1)

Strav. (0)

Bach, (PBach =1) → 1*2 +0*0 = 2 (1)

Strav., (PStrav =0) → 1*0 +0*1 = 0 (2)

© Tom Lenaerts, 2010
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Example
Take for instance the Battle of the Sexes :	


!
We have three possible mixed strategy Nash equilibria : 
{(1,0);(1,0)}, {(0,1),(0,1)} and {(2/3,1/3);(1/3,2/3)}

expected payoff for pure strategies

0

2

1 0

0

1

2

0

Bach (0) Strav. (1)

Bach (0)

Strav. (1)

Bach, (PBach =0) → 0*2 +1*0 = 0 (2)

Strav., (PStrav =1) → 0*0 +1*1 = 1 (1)

© Tom Lenaerts, 2010
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Example
Take for instance the Battle of the Sexes :	


!
We have three possible mixed strategy Nash equilibria : 
{(1,0);(1,0)}, {(0,1),(0,1)} and {(2/3,1/3);(1/3,2/3)}

expected payoff for pure strategies

0

2

1 0

0

1

2

0

Bach (1/3) Strav. (2/3)

Bach (2/3)

Strav. (1/3)

Bach, (PBach =2/3) → 1/3*2 +2/3*0 = 2/3 (1)

Strav., (PStrav =1/3) → 1/3*0 +2/3*1 = 2/3 (1)

© Tom Lenaerts, 2010
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Example
Take for instance the Battle of the Sexes :	


!
We have three possible mixed strategy Nash equilibria : 
{(1,0);(1,0)}, {(0,1),(0,1)} and {(2/3,1/3);(1/3,2/3)}

expected payoff for pure strategies

0

2

1 0

0

1

2

0

Bach (1/2) Strav. (1/2)

Bach (1/2)

Strav. (1/2)

Bach, (PBach =1/2) → 1/2*2 +1/2*0 = 1 (1)

Strav., (PStrav =1/2) → 1/2*0 +1/2*1 = 1/2 (1)

© Tom Lenaerts, 2010
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Example
Take for instance the Battle of the Sexes :	


!
We have three possible mixed strategy Nash equilibria : 
{(1,0);(1,0)}, {(0,1),(0,1)} and {(2/3,1/3);(1/3,2/3)}

expected payoff for pure strategies

0

2

1 0

0

1

2

0

Bach (1/2) Strav. (1/2)

Bach (1/2)

Strav. (1/2)

Bach, (PBach =1/2) → 1/2*2 +1/2*0 = 1 (1)

Strav., (PStrav =1/2) → 1/2*0 +1/2*1 = 1/2 (1)
≠

© Tom Lenaerts, 2010
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Support
Remember

A mixed strategy is a best response if and only if all pure 
strategies in its support are best responses

The mixed strategy profile α* in a strategic game is a mixed 
strategy Nash Equilibrium if and only if αi* is in Bi(α-i*) for 
every player i (it is a best-response to the rest)	



Now (Best Response Condition)

The support of a mixed strategy is the set of 
all pure strategies with non-zero probability

Thus players combine pure best response strategies (proof 
see Algorithmic Game Theory p. 55)

© Tom Lenaerts, 2010
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Support
Take for instance the following symmetric 
game:	



0 3 0

0 0 3

2 2 2

0 0 2

3 0 2

0 3 2

a

b

c

a b c

Consider the following 
equilibrium for both players

(0,1/3,2/3)

WE can verify whether it is an 
equilibrium by calculating the 
utility of each strategy (assuming that the 
opponent plays the same mixed strategy)

ua = 0*0+3*(1/3)+0*(2/3) = 1

support 	


S= {b,c}

ub = 0*0+0*(1/3)+3*(2/3) = 2
uc = 2*0+2*(1/3)+2*(2/3) = (6/3)=2

both are best responses 

© Tom Lenaerts, 2010
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Support
Take for instance the following symmetric 
game:	



0 3 0

0 0 3

2 2 2

0 0 2

3 0 2

0 3 2

a

b

c

a b c

All pure strategies in the support must 
have maximum and equal payoff

From the perspective of the row player, 
playing just b or c or some mixture of 
b and c, is equally beneficial to the 
equilibrium mixed strategy 

The only benefit of playing the NE is 
that it motivates the other player to do 
the same!

© Tom Lenaerts, 2010
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Support
Thus finding the Nash equilibrium comes down to 
finding the right support. 

Once found the precise mixed strategy can be computed by 
solving a system of algebraic equations (see Algorithmic Game Theory book p. 
31)

Hence finding the Nash equilibrium is a combinatorial 
problem

© Tom Lenaerts, 2010
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Finding the supports

3 3

2 5

0 6

3 2

2 6

3 1

a

b

c

d e

Assume the following game	



(see Equilibrium Computation for Two-Player Games in Strategic and Extensive form (Chapter 3) by B. Von Stengel in  
Algorithmic Game Theory p. 53-78)

© Tom Lenaerts, 2010
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Finding the supports

3 3

2 5

0 6

3 2

2 6

3 1

a

b

c

d e

Assume the following game	



(see Equilibrium Computation for Two-Player Games in Strategic and Extensive form (Chapter 3) by B. Von Stengel in  
Algorithmic Game Theory p. 53-78)

The game has already 1 pure NE

Best response indicates (a,d) or ((1,0,0),(1,0))

6

3

6

3

3

© Tom Lenaerts, 2010
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Finding the supports

3 3

2 5

0 6

3 2

2 6

3 1

a

b

c

d e

Assume the following game	



(see Equilibrium Computation for Two-Player Games in Strategic and Extensive form (Chapter 3) by B. Von Stengel in  
Algorithmic Game Theory p. 53-78)

The game has already 1 pure NE

Best response indicates (a,d) or ((1,0,0),(1,0))

6

3

6

3

3 Possible support are :

mixed equilibria contain at least 2 
pure strategies in their support

{{a,b}{d,e}}	


{{a,c}{d,e}}	


{{b,c}{d,e}}

© Tom Lenaerts, 2010
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Finding the supports

3 3

2 5

0 6

3 2

2 6

3 1

a

b

c

d e

Take first the support {{a,b},{d,e}}	



player 2 has to be indifferent between action d 
and e to make them a best response to the 
actions of player 1 (and vice versa)

Solve: player 1

xa +xb = 1 
3xa + 2xb = 2xa + 6xb

xa = 4/5 
xb = 1/5

yd +ye = 1 
3yd + 3ye = 2yd + 5ye

yd = 2/3 
ye = 1/3

Solve: player 2

exp. payoffs for player 2 
(14/5, 14/5)

exp. payoffs for player 1 (3,3,2)

© Tom Lenaerts, 2010
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Finding the supports

3 3

2 5

0 6

3 2

2 6

3 1

a

b

c

d e

Take another support {{b,c},{d,e}}	



player 2 has to be indifferent between action d 
and e to make them a best response to the 
actions of player 1 (and vice versa)

Solve: player 1

xb +xc = 1 
2xb + 3xc = 6xb + 1xc

xb = 1/3 
xc = 2/3

yd +ye = 1 
2yd + 5ye = 0yd + 6ye

yd = 1/3 
ye = 2/3

Solve: player 2

exp. payoffs for player 2 
(8/3, 8/3)

exp. payoffs for player 1 (3,4,4)

© Tom Lenaerts, 2010
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Finding the supports

3 3

2 5

0 6

3 2

2 6

3 1

a

b

c

d e

Take another support {{a,c},{d,e}}	



player 2 has to be indifferent between action d 
and e to make them a best response to the 
actions of player 1 (and vice versa)

Solve: player 1

xa +xc = 1 
3xa + 3xc = 2xa + 1xc

xa = 2 
xc = -1

x is no longer a vector of probabilities

© Tom Lenaerts, 2010
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Finding the supports

3 3

2 5

0 6

3 2

2 6

3 1

a

b

c

d e

What about the support {{a,b,c},{d,e}} ?	



In any mixed-strategy Nash Equilibrium α* of a 
non-degenerate game, the supports for both 
players are of equal size.

A two-player game is non-degenerate when 
no mixed strategy of support size k has more 
than k pure best responses

© Tom Lenaerts, 2010
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Finding the supports
Dickhaut-Kaplan algorithm (1991)

Input : a non-degenerate bi-matrix game, with M and N 
strategy sets for player 1 and player 2 respectively

Output : All Nash equilibria of the game

For each k = 1... min{m,n}
For each pair (I,J) a k-sized subset of M and N

1
2
3 Solve ∑ xibij=v

i∈I
for j∈J, ∑ xi=1

i∈I
and

∑ aij yj=u
j∈J

for i∈I, ∑ yj=1
j∈J

4

5 and check that  x ≥0 , y ≥0 and that no mixed

strategy of support size k has more than6

k pure best responses7

© Tom Lenaerts, 2010
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Vertex enumeration
Uses a best-response polyhedron (BRP) to identify the 
supports of the equilibrium strategies

Õ ={(y,u) ∈ RN×R | Ay≤1u, y≥0 , 1Ty=1}

Ñ ={(x,v) ∈ RM×R | BTx≤1v, x≥0 , 1Tx=1} row player

column player

3 3

2 5

0 6

3 2

2 6

3 1

a

b

c

d e The BRP Õ consists of triplets (yd, ye, u) that meet 
the following conditions:

3yd + 3ye ≤ u

yd ≥ 0, ye ≥ 0

yd +ye = 1

2yd + 5ye ≤ u

0yd + 6ye ≤ u

© Tom Lenaerts, 2010
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Vertex enumeration

3 3

2 5

0 6

3 2

2 6

3 1

a

b

c

d e

The BRP Õ consists of triplets (yd, ye, u) that meet the following conditions:

3yd + 3ye ≤ u

yd ≥ 0, ye ≥ 0
yd +ye = 1

2yd + 5ye ≤ u
0yd + 6ye ≤ u

The BRP shows 
which strategy is a 
best response for 
player 1 to a mixed 
profile of player 2 	


!
and	


!
when the strategies 
of player 2 have zero 
probability

Õ

© Tom Lenaerts, 2010
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Vertex enumeration

3 3

2 5

0 6

3 2

2 6

3 1

a

b

c

d e

The BRP Õ consists of triplets (yd, ye, u) that meet the following conditions:

3yd + 3ye ≤ u

yd ≥ 0, ye ≥ 0
yd +ye = 1

2yd + 5ye ≤ u
0yd + 6ye ≤ u

The best response for row 
player to the column player 
profile (2/3,1/3) are the actions 
a and b, which give the row 
player a payoff of 3

Õ

The polyhedron Ñ can be 
produced in a similar 
manner for the row player.

This point is said to be 
labelled by a and b

© Tom Lenaerts, 2010
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Vertex enumeration

An equilibrium is pair (x, y) of mixed strategies so that 
with the corresponding expected payoffs u and v, the 
pair ((x,v)(y,u)) in Ñ×Õ is completely labelled, meaning 
that every pure strategy k∈M×N appears as a label 
either in (x,v) or in (y,u)

This is equivalent to the best-response condition 
mentioned earlier

© Tom Lenaerts, 2010
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Vertex enumeration
The best-response polyhedron Ñ (Õ) can be simplified 
by eliminating the payoff value v (u), which can be 
achieved by dividing the inequalities in Ñ (Õ) by v (u)

O ={y ∈ RN| Ay≤1, y≥0}

N ={x ∈ RM| BTx≤1, x≥0} row player

column player

3yd + 3ye ≤ 1
yd ≥ 0, ye ≥ 02yd + 5ye ≤ 1
6ye ≤ 13 3

2 5

0 6

3 2

2 6

3 1

a

b

c

d e
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Vertex enumeration

3yd + 3ye ≤ 1

yd ≥ 0, ye ≥ 0

2yd + 5ye ≤ 1
6ye ≤ 1

3 3

2 5

0 6

3 2

2 6

3 1

a

b

c

d e

O

© Tom Lenaerts, 2010
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Vertex enumeration

vertex 0 (0,0) has labels e,d

vertex p (0,1/6) has labels c,d

vertex q (1/12,1/6) has labels b,c

vertex r (2/9,1/9) has labels a,b

vertex s (1/3,0) has labels a,e

© Tom Lenaerts, 2010
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Vertex enumeration

vertex 0 (0,0,0) has labels a,b,c
vertex a (1/3,0,0) has labels b,c,d

vertex b (2/7,1/14,0) has labels c,d,e

vertex c (0,1/6,0) has labels a,c,e
vertex d (0,1/8,1/4) has labels a,d,e

vertex e (0,0,1/3) has labels a,b,d

© Tom Lenaerts, 2010

54

Vertex enumeration

An equilibrium is pair (x, y) that is 
completely labelled

Remember :

0 (0,0) e,d

p (0,1/6) c,d

q (1/12,1/6) b,c

r (2/9,1/9) a,b

s (1/3,0) a,e

row player
0 (0,0,0) a,b,c
a (1/3,0,0) b,c,d
b (2/7,1/14,0) c,d,e
c (0,1/6,0) a,c,e
d (0,1/8,1/4) a,d,e
e (0,1/3,1/3) a,b,d

column player

© Tom Lenaerts, 2010

55

Vertex enumeration

An equilibrium is pair (x, y) that is 
completely labelled

Remember :

But first we need to normalize the values of each 
vertex to obtain the actual mixed strategies

(a,s) ((1/3,0,0),(1/3,0)) ((1,0,0),(1,0))

(b,r) ((2/7,1/14,0),(2/9,1/9)) ((4/5,1/5,0),(2/3,1/3))

(d,q) ((0,1/8,1/4),(1/12,1/6)) ((0,1/3,2/3),(1/3,2/3))

mixed strategy Nash Equilibria

© Tom Lenaerts, 2010
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Vertex enumeration
Input : a non-degenerate bi-matrix game, with M and N 
strategy sets for player 1 and player 2 respectively

Output : All Nash equilibria of the game

For each vertex x of N
For each vertex y of O

1
2
3 if(x,y) is completely labelled
4

5

store this pair as a Nash equilibrium
determine mixed strategy by normalization of (x,y)

Approach is more efficient than support enumeration

Implement using lexicographic reverse search¶

(¶Corneil, Derek G. (2004), "Lexicographic breadth first search – a survey", Graph-Theoretic Methods in Computer 
Science, Lecture Notes in Computer Science, 3353, Springer-Verlag, pp. 1–19 and Rose, D. J.; Tarjan, R. E.; Lueker, G. S. 
(1976), "Algorithmic aspects of vertex elimination on graphs", SIAM Journal on Computing 5 (2): 266–283)

© Tom Lenaerts, 2010
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Other approaches
Two-player games

Lemke-Howson algorithm (1964)

Porter-Nudelman-Shoham algorithm (2004)
Support enumeration

Sandholm-Gilpin-Conitzer algorithm (2005)
Mixed integer-programming approach

Pivoting

© Tom Lenaerts, 2010
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Lemke-Howson Algorithm
This algorithm uses the polyhedron approach discussed 
earlier by following a path (LH path) of vertex pairs starting 
at the artificial equilibrium (0,0) and ending at a Nash 
equilibrium

Each vertex in the polyhedra N and O has a number of labels 
equal to the number of actions (in case of non-degenerate 
games)

going from one vertex to the next corresponds to dropping 
one label and picking up another one

as long as there are duplicated labels, this process is continued

Once no labels are duplicated, a Nash Equilibrium is found

© Tom Lenaerts, 2010
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Lemke-Howson Algorithm
row player (RP)

column player (CP)

step drop add vertex RP labels RP vertex CP labels CP

0 - - 0 a,b,c 0 e,d

© Tom Lenaerts, 2010
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Lemke-Howson Algorithm
row player (RP)

column player (CP)

step drop add vertex RP labels RP vertex CP labels CP

0 - - 0 a,b,c 0 e,d
1 b e c a,c,e 0 e,d

initial free 
choice

© Tom Lenaerts, 2010
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Lemke-Howson Algorithm
row player (RP)

column player (CP)

step drop add vertex RP labels RP vertex CP labels CP

1 b e c a,c,e 0 e,d
2 e c c a,c,e p c,d

© Tom Lenaerts, 2010
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Lemke-Howson Algorithm
row player (RP)

column player (CP)

step drop add vertex RP labels RP vertex CP labels CP

2 e c c a,c,e p c,d
3 c d d a,d,e p c,d

© Tom Lenaerts, 2010
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Lemke-Howson Algorithm
row player (RP)

column player (CP)

step drop add vertex RP labels RP vertex CP labels CP

3 c d d a,d,e p c,d
4 d b d a,d,e q b,c

© Tom Lenaerts, 2010
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Lemke-Howson Algorithm
row player (RP)

column player (CP)

step drop add vertex RP labels RP vertex CP labels CP

3 c d d a,d,e p c,d
4 d b d a,d,e q b,c

© Tom Lenaerts, 2010
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Lemke-Howson Algorithm
Input : a non-degenerate bi-matrix game, with M and N 
strategy sets for player 1 and player 2 respectively

Output : One Nash equilibrium of the game

Choose k ∈ M ∪ N, called missing label

Loop {

1
2
3

Call the new vertex pair (x,y)

4

5

Let (x,y) = (0,0)∈ N×O
Drop label k (from x in N if k∈M, from y in M if k∈N)

l is the label that is picked up6
if (l=k), break loop7
drop l in the other polytope8

} //end loop9
report nash (x,y), once rescaled to mixed strategy10

65

Lemke-Howson Algorithm

Note that the algorithms always terminates, given that there 
are only finitely many vertex pairs

The path can start at any Nash equilibrium !!	


Hence one can use this approach to find all Nash Equilibria

An efficient implementation of this algorithm uses pivoting as 
used by the simplex algorithm for solving a linear program.

66

Pivoting
The previous polyhedron constraints are now represented as linear 
equations with non-negative slack variables (s∈RN and r∈RM) 
redefining them as follows: 

O ={y ∈ RN| r+Ay=1, y≥0, r≥0}

N ={x ∈ RM| BTx+s=1, x≥0, s≥0}

A basic solution is given by n basic columns of BTx+s=1 and m basic columns of 
r+Ay=1

A feasible solution is a basic solution that also meats x≥0, s≥0, y≥0 and r≥0, 
and defines a vertex x of N and y of O.  The labels are given by the non-basic 
columns
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Pivoting

3 3

2 5

0 6

3 2

2 6

3 1

a

b

c

d e

Visualizing basic and non-basic columns in the example

row player (RP)

column player (CP)

r 3y 3y =1
r 2y 5y =1

r 0y 6y =1

3x 2x 3x s =1

2x 6x x s =1
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Pivoting

3 3

2 5

0 6

3 2

2 6

3 1

a

b

c

d e

Visualizing basic and non-basic columns in the example

row player (RP)

column player (CP)

r 3y 3y =1
r 2y 5y =1

r 0y 6y =1

3x 2x 3x s =1

2x 6x x s =1
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Pivoting

3 3

2 5

0 6

3 2

2 6

3 1

a

b

c

d e

Visualizing basic and non-basic columns in the example

row player (RP)

column player (CP)

r 3y 3y =1
r 2y 5y =1

r 0y 6y =1

3x 2x 3x s =1

2x 6x x s =1

68-3

Pivoting

3 3

2 5

0 6

3 2

2 6

3 1

a

b

c

d e

Visualizing basic and non-basic columns in the example

row player (RP)

column player (CP)

r 3y 3y =1
r 2y 5y =1

r 0y 6y =1

3x 2x 3x s =1

2x 6x x s =1
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Pivoting

3 3

2 5

0 6

3 2

2 6

3 1

a

b

c

d e

Visualizing basic and non-basic columns in the example

row player (RP)

column player (CP)

r 3y 3y =1
r 2y 5y =1

r 0y 6y =1

3x 2x 3x s =1

2x 6x x s =1

68-5

Pivoting
Pivoting is a change of the basis, where a non-basic variable enters 
(pick-up) and a basic variables leaves (drop) the set of basic 
variables, while making sure that the solution remains feasible. 

Let’s illustrate the LH path to (d,q).  The initial variable 
we want to pick-up is xb. 

Step 1: select the pivot element in xb the column 

3x 2x 3x s =1

2x 6x x s =1

Determine the minimum ratio; xb ≤ 1/2 or xb  ≤ 1/6

pivot element leaves the basis
enters the basis

pivot column ↓

pivot?	


sd = 1-2xb 
se = 1-6xb 

we require that sd≥0, 
se≥0, xb≥0

69

Pivoting
Step 2: multiply other rows by pivot element

18x 12x 18x 6s =6

2x 6x x s =1

Step 3: subtract multiples of the pivot row from the other 
rows to obtain zero entries in the pivot column

14x 16x 6s 2s =4

2x 6x x s =1

pivot row→

pivot element leaves the basis
enters the basis

pivot row→

70

Pivoting
The process shown here corresponds to Integer Pivoting (all coefficients 
are kept integers)

The process finishes when we try to remove a non-basic column which 
was already removed before

The pivoting of N removes se from the basis so now we need to examine 
O to see which other variable leaves the basis

Step 1: select the pivot element in ye the column 

r 3y 3y =1
r 2y 5y =1

r 6y =1
pivot elementleaves the basis

enters the basis

pivot column ↓
pivot?	


ra = 1-3ye 
rb = 1-5ye 
rc = 1-6ye 

we require that ra≥0, 
rb≥0, rc≥0, ye≥0
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Pivoting
Step 2: multiply other rows by pivot element

Step 3: subtract multiples of the pivot row from the other 
rows to obtain zero entries in the pivot column

6r 18y 18y =6
6r 12y 30y =6

r 6y =1
leaves the basis enters the basis

pivot row→

6r 3r 18y =3
6r 5r 12y =1

r 6y =1pivot row→
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Pivoting
The pivoting of O removes rc (which was not removed before) from the 
basis so now we need to examine N to see which other variable leaves 
the basis

Step 1: select the pivot element in xc the column 

14x 16x 6s 2s =4

2x 6x x s =1

pivot element leaves the basis
enters the basis

pivot column ↑

Step 2: multiply other rows by pivot element

14x 16x 6s 2s =4

32x 96x 16x 16s =16

leaves the basisenters the basis

pivot row→

pivot?	


6sd = 4-16xc  
6xb = 1-xc 

we require that sd≥0, 
xb≥0, xc≥0

73

Pivoting

14x 16x 6s 2s =4

18x 96x 6s 18s =12

leaves the basisenters the basis

pivot row→

Step 3: subtract multiples of the pivot row from the other 
rows to obtain zero entries in the pivot column

Step 4: reduce coefficients, divide by previous pivot (6)

14x 16x 6s 2s =4

3x 16x s 3s =2

pivot row→

74

Pivoting
The pivoting of N removes sd (which was not removed before) from the 
basis so now we need to examine O to see which other variable leaves 
the basis

Step 1: select the pivot element in xc the column 
6r 3r 18y =3

6r 5r 12y =1
r 6y =1

pivot element

leaves the basis enters the basis

pivot column ↑

Step 2: multiply other rows by pivot element
72r 36r 216y =36

6r 5r 12y =1
12r 6y =1

pivot row→

pivot?	


6ra = 3-18yd 
6rb = 1-12yd 
6ye = 1 

we require that ra≥0, 
rb≥0, yd≥0, ye≥0
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Pivoting
Step 3: subtract multiples of the pivot row from the other 
rows to obtain zero entries in the pivot column

72r 108r 54r =18
6r 5r 12y =1

12r 6y =1
pivot row→

Step 4: reduce coefficients, divide by previous pivot (6)

12r 18r 9r =3
6r 5r 12y =1

12r 6y =1
pivot row→
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Pivoting
So rb is leaving the basis now ... but this is the column we started with!

row player (RP)

column player (CP)

12r 18r 9r =3
6r 5r 12y =1

12r 6y =1

14x 16x 6s 2s =4

3x 16x s 3s =2

so xb and xc are part of the 
equilibrium with values 
xb=1/8 and xc=1/4

the labels are a,d,e

so yd and ye are part of the 
equilibrium with values 
yd=1/12 and ye=1/6

the labels are b,c

This solution corresponds 
to vertex pair (d,q)

77

degenerate games

If the game is degenerate then the LH path is no longer 
unique, since a vertex may have more than the allowed 
number of labels (the number of actions)

3 3

2 5

0 6

3 3

2 6

3 1

a

b

c

d e

a now has four 
labels (> actions)
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Lemke-Howson Algorithm
row player (RP)

column player (CP)

step drop add vertex RP labels RP vertex CP labels CP

0 - - 0 a,b,c 0 e,d
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Lemke-Howson Algorithm
row player (RP)

column player (CP)

step drop add vertex RP labels RP vertex CP labels CP

0 - - 0 a,b,c 0 e,d
1 a d,e c b,c,d,e 0 e,d

80

Lemke-Howson Algorithm
row player (RP)

column player (CP)

step drop add vertex RP labels RP vertex CP labels CP

1 a d,e a b,c,d,e 0 e,d
2 d a a b,c,d,e s a,e

81-1

Lemke-Howson Algorithm
row player (RP)

column player (CP)

step drop add vertex RP labels RP vertex CP labels CP

1 a d,e a b,c,d,e 0 e,d
2 d a a b,c,d,e s a,e

81-2

Lemke-Howson Algorithm
row player (RP)

column player (CP)

step drop add vertex RP labels RP vertex CP labels CP

1 a d,e a b,c,d,e 0 e,d
2 e c a b,c,d,e p c,d
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Lemke-Howson Algorithm
row player (RP)

column player (CP)

step drop add vertex RP labels RP vertex CP labels CP

2 e c a b,c,d,e p c,d
3 c a e a,b,d p c,dNO e

83-1

Lemke-Howson Algorithm
row player (RP)

column player (CP)

step drop add vertex RP labels RP vertex CP labels CP

2 e c a b,c,d,e p c,d
3 c a e a,b,d p c,dNO e

83-2

Lemke-Howson Algorithm
row player (RP)

column player (CP)

step drop add vertex RP labels RP vertex CP labels CP

2 e c a b,c,d,e p c,d
3 c a d a,d,e p c,dNO b

84-1

Lemke-Howson Algorithm
row player (RP)

column player (CP)

step drop add vertex RP labels RP vertex CP labels CP

2 e c a b,c,d,e p c,d
3 c a d a,d,e p c,dNO b

84-2
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degenerate games

Degeneracy can be resolved by perturbing the system 
lexicographically

O ={y ∈ RN| Ay≤1+ε, y≥0, ε≥0}

N ={x ∈ RM| BTx≤1+ε, x≥0, ε≥0} row player

column player

see Codenotti B, De Rossi S and Pagan M (2008) An 
experimental analysis of Lemke-Howson Algorithm. (arXiv:
0811.3247v1) for an in depth description on how to 
implement the algorithm
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Game theory in popular culture

Dilbert’s prisoner dilemma	
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Game theory in popular culture

Dilbert’s prisoner dilemma	
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