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Abstract

In this paper we demonstrate (1) how a group of embodied ar-
tificial agents can learn to construct abstract conceptual rep-
resentations of body postures from their continuous senso-
rimotor interaction with the environment, (2) how they can
metaphorically extend these bodily concepts to visual expe-
riences of external objects and (3) how they can use their ac-
quired embodied meanings for self-organizing a communica-
tion system about postures and objects. For this, we endow
the agents with cognitive mechanisms and structures that are
instantiations of specific ideas in cognitive linguistics (namely
image schema theory) about how humans relate motor and vi-
sual space. We show that the agents are indeed able to perform
well in the task and thus the experiment offers a concrete oper-
ationalization of these theories and increases their explanatory
power.
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Introduction

Speakers of Germanic languages are strongly committed to
using posture verbs for describing the location of human sub-
jects whereas for example speakers of Romance languages do
not. Speakers of English for example would rather say “He
sits on the couch” than “He is on the couch”. Some of these
languages have also extended the usage of these words to the
posture of animals and even to describe the “posture” of ob-
jects. Furthermore, Dutch has an extremely productive use of
these verbs in a metaphorical sense. In Dutch one sifts in an
economical crisis.

The following example from Lemmens (2002b) highlights
the typological differences in the usage of /ie across some
example languages (* denotes unacceptable usage):

1.(a) There are clothes on the counter. (English)
(b) Ily a des vétements sur le comptoir (French)
(c) Det dr{finss klader padisken. (Swedish)

(d) * Er zijn kleren op de toonbank. (Dutch)

2.(a) The clothes are lying on the counter. (English)
(b) * Les vétements couchent sur le comptoir (French)
(c) Det ligger kldder padisken. (Swedish)
(d) Erliggen kleren op de toonbank. (Dutch)

In Dutch as a Germanic languages it is more or less obligatory
to use a posture verb for describing the location or posture
of the clothes, whereas in French it is unacceptable to use
the corresponding form coucher (’lie”). On the other hand,
Dutch speakers will feel uncomfortable about using zijn ("to
be”’) to express the position of the clothes on the table, where
in French the usage of étre (’to be”) or se trouver ("be found”)
is clearly the preferred coding strategy. English and Swedish

are less obligatory in their use of posture verbs and allow for
both coding strategies in this example.

As suggested by (Lemmens, 2002a), the use of posture
verbs can be grouped into three basic scenarios: First, pos-
tural uses (describing human postures) are permitted in most
Germanic languages and are even obligatory in some of them
(Oosten, 1984). They are grouped around the three central
meanings SIT, STAND, and LIE, which have been exten-
sively analyzed with respect to their underlying semantics.
Almost all authors have found visual features such as ‘max-
imally vertically elongated” or ‘resting on one’s feet’ to be
connected to STAND, ‘maximally horizontally elongated’ or
‘on one of the sides’ to LIE, and ‘more or less square’ or
‘on the buttocks’ to SIT (Lemmens, 2002a; Borneto, 1996;
Newman, 2002). Second, locational uses are semantic exten-
sions of these anthropocentric perceptual schemas. The vi-
sual property of vertical/horizontal elongation, for example,
has been extended to locate any entity in space (see the ex-
amples above). Another example is the use of posture verbs
for conveying orientation (see Borneto, 1996 for an analysis
of the German liegen and stehen). Third, metaphorical ex-
tensions are found in some languages for locating concrete
entities in an abstract space (Lemmens, 2002a). The previ-
ously mentioned use of SIT for being in a financial crisis is
an example of the latter.

Cognitive linguists have argued that these verbs are
metaphorically extended from the domain of bodily posture
(SIT/LIE/STAND) using notions such as image schemas (e.g.
Johnson, 1987; Croft & Cruse, 2004): Image schemas are
pieces of knowledge that are represented as patterns of re-
occurring bodily experiences. They emerge from continuous
sensorimotor activity, that is, they are developed and extended
as we move through the world, direct our attentional focus,
manipulate objects, orient ourselves spatially and temporally,
and so on. Furthermore, they are agnostic to sensory modal-
ities and structure not only bodily but also non-bodily expe-
rience via metaphors. Using image schema theory, Gibbs et
al. (1994) considered for instance BALANCE, VERTICALITY
and RESISTANCE as the key image schematic accounts for the
polysemous meanings of the English stand and showed that
“.. people tacitly believe there are significant connections
between their recurring bodily experiences and the various
meanings of the polysemous word stand. We argue that the-
ories of psychological semantics should account not only for
the organization of polysemous words in the mental lexicon,
but must also be capable of explaining why different senses
of a word make sense to people in the way they do.” Others
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Figure 1: Experiment phase I. Left: A robot performs a series of actions in the world and is observed by the other robot on
the left. Middle: Examples of the actions performed by the robot. Right: The resulting raw data stream, containing both the
proprioceptive data of the performing robot and the visual features extracted by the observing robot.

like Lemmens (2004) have stressed the productivity of ad-
ditional image schemas such as ‘resting on ones base’,
CONTAINMENT and CONTACT to explain some of the encoun-
tered extensions.

Although these explanations are often very detailed and
closely linked to questions of representation and processing,
only few have tried to operationalize the underlying mech-
anisms and to turn them into a computational model (e.g.
Amant et al., 2006) and nobody has tackled the question of
grounding in actual physical robots — which brings us to the
main topic of this paper. We will show how robotic agents
can construct image schematic categories from sensorimotor
data and extend them to other objects. In order to validate
whether the emerging representations are indeed meaning-
ful, we will give them the task to agree on a set of names
for these meanings in series of communicative interactions.
This methodology is very similar to other experiments of our
group on the emergence of linguistic communication systems
in physical robots, of which recent examples are on flexible
lexicon formation (Wellens, Loetzsch, & Steels, 2008), mark-
ing of spatial perspective (Steels & Loetzsch, 2009), learning
of case grammars (van Trijp, 2008), or the relation of visual
and motor space through language (Steels & Spranger, 2008).
Throughout the next sections we will outline the experimental
setup, perception and categorization mechanisms, the com-
munication task and finally the results.

Experimental setup

We use the ”A-series” humanoid robots developed in the Al
lab of the Humboldt University Berlin as an experimental
platform. They are equipped with pan/tilt cameras, servo mo-
tors and acceleration sensors. For onboard processing and
thus autonomous operation, the robots feature a PDA on the
back and distributed sensor and processing boards spread out
across the body, linked via a system bus. The robot’s soft-
ware architecture provides integrated mechanisms for balanc-
ing motion control, vision and behavior.

The experiment consists of two stages: In a first develop-

Figure 2: Example objects in the environment of the agents.
The objects have different verticality and horizontality fea-
tures depending on the view point of the agent. However,
some always have a strong verticality component, like the red
cone in the back.

mental phase (see Figure 1), the robots interact with their en-
vironment and form posture categories from that. For this,
one robot performs a series of actions over a time span of
10 minutes. These actions include walking and turning mo-
tions, arm gestures while the robot is standing, lying, getting
up after falling, some sitting motions and means to switch
between these actions. During that, the robot continuously
perceives proprioceptive data from its internal sensors. In or-
der for the robot to also have access to visual appearances
of the performed actions, a second robot perceives the scene
through his camera and we provide the first robot with that
data stream. Giving one robot access to what another one
sees might seem very unnatural, but it overcomes our robots’
lack of a geometric body model that would allow them to de-
termine how it looks when they perform an action (another
possibility to provide a robot with proprioceptive and visual
data would be to let the robot perform actions in front of a
mirror, as it was done in Steels & Spranger, 2008). We will
describe further below how image schemas are extracted from
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Figure 3: Extraction of visual features. First: the original image stemming from the onboard cameras of the robot. Second:
foreground/background subtracted image. Third: the connected component processing unit has identified a single connected
area, depicted by the bounding box. Fourth: the seven visual features computed for the connected region, shown as a line plot.

this combined data stream. Then, in a second communication
phase, the robots test their acquired categories in two types of
language games: first about robot postures that they perceive
and then about objects that a human experimenter presents to
them (see Figure 2).

Sensory experiences

We call the raw uncategorized proprioceptive and visual data
stream that the robots perceive as they move around in their
environment sensory experiences. The proprioceptive fea-
tures are gathered in every time step from the acceleration
sensors and the motors. The acceleration sensors report two
dimensional values that not only reflect the movement of arms
and the acceleration of limbs, but also gravitational forces,
which allows the robot to directly sense its orientation in
space. Furthermore, for each of the motors the actuated and
the actual position of the motor as well as the torque applied
to the motor is sensed. Actuated position is the value that was
requested by the behavior control programs, and it is often
different from the actual position because the motor does not
necessarily reach it. Notice that humans have very similar
proprioceptive capabilities. When we use muscles to reach
certain positions we have means to detect whether this po-
sition was reached and we have the inner ear for orienting
ourselves in space.

For the visual part of sensory experiences, we do not use
the whole image but compute a set of seven translation and
scale-invariant shape features for objects found in the image
(see Figure 3). Every 80 ms the digital camera of the robot
provides a new two dimensional image. The vision system
then first uses running average background subtraction to de-
tect robots or other objects as connected regions that suffi-
ciently differ from background. These connected areas are,
after being noise filtered with morphological operators, pro-
cessed as belonging to separate objects in the world.

Shape descriptor features are then computed from the im-
age pixels contained in a connected area using centralized
normalized moments features: The central moment of order
p+q is computed as follows (Hu, 1962):

Hpg = ZZ(X—X)p(y—)_’)ql(x,y),

Xy

with X and y following from the raw moments M,

- My _ Mo
X=———, Y= 7
Moo Moo

with M, being the raw moment of order (p + ¢) defined as

Mp, = szpyql(xy)’

Xy

where in all formulas 7 is a function equal to 1, if the pixel
x,y is part of the shape the feature is computed for (or O oth-
erwise). Given these definitions, the normalized central mo-
ment 1, of order (p +¢) is computed (Mukundan & Ra-
makrishnan, 1998)

Hpq
rtq
1+55%

Hoo

Mpq =

The shape descriptor is consequently agnostic of the exact po-
sition of the object in the image and in the visual field, due to
being centralized with respect to the center of the shape and
normalized with respect to the total number of pixels (mass of
the area). Nevertheless these features are powerful for quanti-
fying basic relationships such as the correlation between ver-
tical and horizontal elongation M>¢,MNo2.

A sensory experience s at time t is a vector s =
( fi o fn) T, where n is the dimensionality of the sensory
experience, and fi, ..., f;, are the values of the proprioceptive
sensors and the computed visual features.

Categorization

To organize the continuous flow of sensory experiences into
categories of bodily related meaning, we employ an un-
supervised machine learning clustering technique called K-
means (Lloyd, 1982). Unsupervised means that K-means au-
tonomously finds clusters in the incoming data without re-
quiring labeled sets of training data created by a human ex-
perimenter. The computed categories are hence grounded in
the preconceptual, raw stream of sensory experiences and in
nothing else.

K-means receives as input the number k of clusters that one
would like to find and m unlabeled, unclassified data points.
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Figure 4: Categorization results K-means k = 2 of the raw
sensory experience stream (see Figure 1). We focus on four
dimensions: bounding rectangle width and height (which are
not part of the centroid, Figure a), as well as two visual fea-
tures, that quantify vertical and horizontal elongation (Figure
b).

The result is a set of k categories, which are represented as
centroids (the mean/prototype of a cluster) and that can be
used to partition the data in a metric space. The algorithm
starts by first randomly selecting k seed centroids. All data
points of the same class are closest to the same centroid. In
a second phase the algorithm iterates until convergence. Un-
labeled data points are classified as belonging to the centroid
with the smallest Euclidian distance and the centroids are up-
dated by shifting the mean value given all data points of the
same class. The algorithm terminates as soon as centroids are
not moved anymore, which means that the class of every data
point in the unlabeled data is not subject to change. The out-
come of the algorithm is a set of k centroids, which cluster the
sensorimotor space into k disjoint sets of experience. In other
words, every point in the sensorimotor space, every sensory
experience belongs to exactly one category.

The computed centroids can immediately be used to cat-
egorize new incoming sensory experiences that were previ-
ously not encountered by the system (see Figures 4 and 5).
Given a set of k centroids C1, ..,Cy, a new sensory experience
can be classified using a Minimum Euclidean Distance Clas-
sifier:

class(s) = argmin||C; — s]|
1

where the C; are the k centroids computed by the K-means
algorithm and s denotes a new sensory experience. No-
tice that partial experiences/stimuli can be classified as well.
That is, given the centroids C; = (f{ .. f;), where n is
the dimensionality of the centroid and f; is the value of the
feature channel j of centroid i, we can, for instance, cate-
gorize a visual stimulus s = (f; .. f;) with 2 <n and
I1,..,0n € {1,..,n} being the index subset of visual features of
the d feature channels of the centroids, using the feature di-
mensions of the centroids relevant to that stimulus. Similarly
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Figure 5: Categorization. K-means of the raw sensory ex-
perience stream (see Figure 1) for k = 3. We center on four
dimensions: bounding rectangle width and height (which are
not part of the centroid, Figure a), as well as two visual fea-
tures, that quantify vertical and horizontal elongation (Figure
b).

to the n dimensional stimulus case, we define

class(s') = argmin||C} — 5|,
]

where C] is constructed from the i-th centroid by select-
ing the feature dimensions present in the stimulus C, =
( f;l . fl’n) . In other words, focussing only on the dimen-
sions present in the stimulus it is possible to infer the closest
centroid with respect to those dimensions. However, since
centroids are in fact central points in the complete sensori-
motor space this also activates the other features not included
in the stimulus. For example a robot perceiving another robot
performing bodily actions, can classify the visual stimulus
with respect to his inventory, thereby effectively activating
the proprioceptive part of the best matching centroid. The
perceiving robot ergo has a sense of what the other robot is
doing or what the internal proprioception of the performing
robot could be like.

Each agent of the population (for the rest of the paper we
deal with 10 agent populations) is presented with different but
similar sensorimotor streams. Consequently, the categories
constructed by agents are similar but not identical. The cat-
egorization results for K-means clustering (k = 2) of the raw
sensory data stream for a single agent are displayed in Figure
4. The graphs clearly show that the resulting categories (cen-
troids) establish a width-height correlation, linearly separable
well above the square dimension line. The blue line in Fig-
ure 4b shows an ideal rectangle in the visual field of the robot
changing its width and height while keeping its area constant,
for illustration purposes. The point in the cusp of that curve
is an ideal square. Category 2 (which we would call LYING)
ranges from strong horizontal elongation to square, to a little
vertical elongation. Category 1 covers sensory experiences
which are strongly vertically elongated, and thus visually cor-
responds to STANDING.

For k = 3 (see Figure 5, categories are further split by cat-
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Figure 6: Experimental results for a population of 10 agents.
Average communicative success and lexicon size for series of
5000 language games, averaged over 25 experimental runs. In
the first 1500 interaction agents play language games about
postures. Starting from interaction 1500 every second lan-
guage games is about objects.

egory 3 (which resembles SIT) acting as a separator between
the two basic postures LIE and STAND. Category 3, which
lends itself to the SITTING interpretation covers a narrow
margin with a little bit stronger vertical elongation than hor-
izontal elongation, which stems from the fact that indeed sit-
ting for this robot looks like a thick vertical elongated rectan-
gle. However, there are certain problems with category 3 (in
the k = 3 case) not shown here. The SIT category is almost
useless since it is cramped between the two major and clearly
separable categories LIE and STAND. Moreover, when look-
ing at the postures categorized with that category in the pro-
prioceptive space, quite a number of postures are not what we
would call SIT, but are closer to lying or even standing.

Language Games

Categorization itself is useless unless the categories provide
some benefit for the agent in its interaction with the envi-
ronment. The testbed we are going to use here is linguistic
communication: the agents learn to use words that denote
their acquired categories in a communicative scenario, which
could be for example useful for commanding each other to
perform a certain action or for drawing attention to an object
in the environment. In order to be able to do that effectively,
agents have to develop a shared lexicon, linking categories
and words in similar ways across all agents. How this can
be achieved is nowadays well known (Steels, 1995, 2001):
Populations of agents engage in series of language games,
which are local communicative interaction with a routinized
dialogue pattern. Each agent in the population maintains its
own private (initially empty) lexicon, which is learnt and up-
dated as a side effect of a game.

At the beginning of an interaction, two agents are randomly

drawn from the population and assigned the roles of speaker
and hearer. Both robots are shown either a robot in a specific
posture or another object (one out of a set of colored bricks
of different sizes and each time in a different orientation, see
Figure 2 for examples). The speaker then uses the Minimum
Euclidian Distance Classifier (as described above) to find the
category (which was learnt in the developmental phase) that
is closest the sensory experience of the robot/object and re-
trieves the name for that category with the highest score from
his lexicon and speaks it out to the hearer. When he does not
have a name yet for this meaning, he invents a new random
word for it and stores it in his lexicon. The hearer looks up
that word in his own lexicon and checks whether the category
that he associates to the word (with the highest score) is the
same as the category that is for him closest to the sensory ex-
perience. If that is the case, he signals agreement with the
description and the interaction is a communicative success,
otherwise it is a failure. When the hearer does not know the
word, he also signals a communicative failure and associates
the new word to his conceptualization of the scene. Depend-
ing on the outcome of the game, both speaker and hearer in-
crease the score of the word used by 0.1 in case of success
and decrease it by 0.2 on failure. Words with higher scores
are preferred by the agents and words with a score of 0 are re-
moved from the lexicon, which leads to a conventionalization
of names in the population because words that are success-
fully used by many agents will ‘win’ over other words with
the same meaning.

Since it would be impractical to do hundreds of language
games with real robots and in order to be able to do repeat-
able and controlled experiments, we pre-recorded data sets of
visual experiences and feed one of them to the agents in each
interaction. But in principle it is possible to do the language
games on-line on the robots — it would just take very long (in
the range of hours) before they reach convergence.

Agents first play series of 1500 language games about body
postures (see Figure 6). The graph shows that indeed the
agents can reach a consensus on how to name posture cate-
gories stemming from the categorization processes and com-
municate successfully after a period of invention and align-
ment. Depending on different categorizations (two or three
bodily posture categories), alignment in the population is
reached on different time scales. In the two posture case the
population converges much faster than in the three posture
case because in the latter the number of meanings is higher (3
instead of 2) and thus there is a longer phase of word inven-
tion. But more importantly the cramped nature of the sit”
category (category 3 in Figure 5) leads to a significant in-
crease in time to alignment. Points that lie on the border
of the category might be conceptualized differently by the
interacting robots, in turn leading to a different word used
and leading to communicative failure, which eventually de-
creases the score of that word-category link in the lexicon of
the agent. Nevertheless both in the k = 2, as well as in the
k = 3 cases the population reaches agreement and well above
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95% communicative success.

Then, after 1500 interactions, the agents are presented with
sensory experiences of objects instead of robots. None of the
agents has seen any of the objects before. As shown Figure
6 (last 3500 games), they continue to have the same com-
municative success as in the previous games and the size of
their lexicons does not change, which indicates that the agents
readily extend their previously learnt posture words to addi-
tional objects. In fact, there is no difference in performance
of the agents, when confronted with objects or postures. This
shows that the visual features used for categorization are suf-
ficient for the extensional use on objects.

Conclusion

In this paper we have presented a concrete operationaliza-
tion of image schema theory in a computational embodied
model. Processes hypothesized by cognitive linguists about
how speakers of Germanic languages extend the use of pos-
ture verbs to non-living objects have been implemented in
humanoid robots. We showed how semantics for postures
can emerge from recurrent and repeated interactions of the
agents with their environment and how these semantics can
be used in repeated interactions between intelligent agents as
the basis for successful communication. One particularly in-
teresting explanation offered by the model is the account for
the high cross-linguistic variety and vagueness in the usage of
“sit” (when compared to ’lie” and ”stand”, which also seems
to be the reason for its broad semantic extension, see Lem-
mens, 2002a).

We see this work as a support for image schema theory
and as an example of how cognitive modeling can be sub-
stantiated with formal methods and thus provide insights for
theories of cognition.
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