
Maximum st-flow in directed planar graphs via
shortest paths

Glencora Borradaile1 and Anna Harutyunyan2,?

1 Oregon State University
2 Vrije Universiteit Brussel

Abstract. In this paper, we give a correspondence between maximum
flows and shortest paths via duality in directed planar graphs with no
constraints on the source and sink.

1 Introduction

The asymptotically best algorithm for max st-flow in directed planar graphs
is the O(n log n)-time leftmost-paths algorithm due to Borradaile and Klein [4],
a generalization of the seminal uppermost-paths algorithm by Ford and Fulker-
son for the st-planar case [6]. Both algorithms augment O(n) paths, with each
augmentation implemented in O(log n) time. However, this bound is achieved
using the overly versatile dynamic-trees data structure [11] in Borradaile and
Klein’s algorithm, and only priority queues in the st-planar case [7]; priority
queues are arguably simpler and more practical than dynamic trees [13]. The
reason priority queues are sufficient for the st-planar case is due the equivalence
between flow and shortest-paths problems via duality. We conjecture that an
augmenting-paths algorithm for the more general problem can be implemented
via O(n) priority-queue operations. We make progress toward this goal by show-
ing that maximum flow in the general case is equivalent to computing shortest
paths in a covering graph, even though, algorithmically, we do not improve on
the algorithm of Johnson and Venkatesan [9].

Background For omitted proofs and full definitions and an additional shortest-
path based algorithm, please see the full version of this paper [2]. For a full
background on planarity and flow, see Refs. 1 and 10.

For a path P , left (P) (right (P)) is the maximal subset of the darts whose
head or tail (but not both) is in P , and who enter or leave P from the left (right).
We define the graph G QP as the graph cut open along P . G QP contains two
copies of P , PL and PR, so that the edges in left (P) are adjacent to PR and the
edges in right (P) are adjacent to PL. The parameter φ is the minimum number
of faces that any s-to-t curve must pass through [10].

An excess (deficit) vertex is that with more flow entering (leaving) than
leaving (entering). A flow is maximum if and only if there are no residual source-
to-sink paths [6]. A pseudoflow is maximum if and only if there are no residual

? Work done while at Oregon State University.

2 Glencora Borradaile and Anna Harutyunyan

paths from a source or excess vertex to a deficit or sink vertex [8]. The notion of
leftmost flows is essential in understanding this paper, and is covered in Ref. 1;
a flow is leftmost if it admits no clockwise residual cycles. The following lemma
follows directly from definitions of leftmost and the following theorem provides
structural insight into leftmost paths and flows.

Lemma 1. A leftmost circulation can be decomposed into a set of flow-carrying
clockwise simple cycles.

Theorem 1. Let L be the leftmost residual s-to-t-path in G w.r.t. c.w. acyclic
capacities c. Let f be any st-flow (of any value). Then no simple s-to-t flow path
crosses L from the left to right.

Infinite covers Embed G on a sphere and remove the interiors of ft and fs.
The resulting surface is a cylinder with t and s embedded on opposite ends.
The repeated drawing of G on the universal cover of this cylinder [12] defines
a covering graph3 G of G. For a subgraph X of G, we denote the subgraph of
G whose vertices and darts map to X by G[X]. We say X̄ ⊂ G[X] is a copy of
X if X̄ maps bijectively to X. We number the copies of a vertex u from left to
right: G[u] = {. . . u−1, u0, u1, . . .}, picking u0 arbitrarily. We say that X̄ is an
isomorphic copy of X if X̄ is isomorphic to X.4 For a simple s-to-t path P in G,
we denote by P i the isomorphic copy of P in G[P] that ends at ti. GiP ∪P i+1 is
the finite component of subgraph of G QP i QP i+1. Lemma 2 relates clockwise
cycles in G and G and Lemma 3 is key to bounding the size of the finite portion
of G required by our algorithm:

Lemma 2. The mapping of the following into G contains a clockwise cycle: Any
ui-to-uj path in G for ui ∈ GiP , uj ∈ GjP , and i < j and any simple clockwise
cycle in G.

Lemma 3 (Pigeonhole). Let P be a simple path in G. Then P̄ contains a dart
of at most φ+ 2 copies of G in G. If P may only use s and t as endpoints, then
P̄ contains darts in at most φ copies of G in G.

2 Maximum flow, shortest paths equivalences

Starting with c.w. acyclic capacities c, we compute the leftmost maximum
flow in a finite portion of G (containing k copies of G), Gk, via embedding
two additional vertices T (above) and S (below) the cover, and computing
the leftmost max ST -flow fST via the priority-queue implementation of Ford
and Fulkerson’s uppermost-paths algorithm (Section 2.1). Note that shortest-
paths/priority-queue based implementations always produce leftmost flows. From
fST we show how to extract the value of max st-flow |f | (Section 2.2). Using this
value we are able to modify the capacities cST in a way that allows to extract f
from fST (Section 2.3). While this method requires a factor k additional space,
we believe this can be overcome in future work (Section 2.4).

3 This is similar to a cover used by Erickson analysis [5]; we remain in the primal.
4 Note that an isomorphic copy need not exist, e.g., the boundary of fs.

Maximum st-flow in directed planar graphs via shortest paths 3

2.1 The finite cover

Let L be the leftmost residual s-to-t path in G and let f be the (acyclic) leftmost
maximum st-flow in G. Let Gk be the finite component of G QL0

QL
k, made of k

copies of G (plus an extra copy of L). We start by relating a max multi-source,
multi-sink maximum flow in Gk (f1) to a max pseudoflow f0 (Lemma 4), and, in
turn relate f0 to f (Lemma 5). This will illustrate that the flow in the central
copy of Gk is exactly f . However, f1 is not necessarily leftmost and so, we cannot
necessarily compute it. We relate f1 to the leftmost max ST -flow in GSTk (which
we can compute), in Section 2.2, from which we can compute the value of f .

Let f0 be a flow assignment for Gk given by f0[d̄] = f [d], ∀d̄ ∈ G[d]. We
overload c to represent capacities in both G and Gk, where capacities in Gk are
inherited from G in the natural way. In Gk and G, we use residual to mean w.r.t.
cf0 and cf , respectively.

Lemma 4. For k > φ+ 2, f0 is a maximum pseudoflow with excess vertices on
L0 and deficit vertices on Lk.

Proof. Since f0 is balanced for all vertices in Gk except those on L0 and Lk and it
follows from Theorem 1 that V + resp. V − belong to L0 resp. Lk, where V + resp.
V − denote the set of excess resp. deficit vertices. Since a source-to-sink path in
Gk maps to an s-to-t path in G, it remains to show that there are no V +-to-T ,
S-to-V − or V +-to-V − residual paths. By the Pigeonhole Lemma and Part 2 of
Lemma 2, the last case implies a clockwise residual cycle in G, contradicting f
being leftmost. The first two cases are similar, we only prove the first case here.

Consider the flow assignment for G: f ′[d̄] = f [d], ∀d̄ ∈ G[d]. For v+ ∈ V +

to be an excess vertex, there must be a v-to-t flow path Q in f where v is the
vertex in G that v+ maps to. There is a copy Q̄ of Q in G that starts at v+,
and by Theorem 1 is left of L0. For a contradiction, let R be a v+-to-ti residual
path, for some ti ∈ T . Then, rev (Q) ◦ R is a residual tj-to-ti path in G (w.r.t.
f ′), j ≤ i. If j = 0, Q̄ ◦ rev (L0[v+, t0]) is a clockwise cycle, which, by Part 2 of
Lemma 2, implies a clockwise cycle in G; contradicting the leftmost-ness of L.
If j < i, by Part 1 of Lemma 2, rev (Q) ◦R implies a clockwise residual cycle in
G, contradicting the leftmost-ness of f . ut

Lemma 5. There is a maximum ST -flow f1 in Gk that is obtained from f0 by
removing flow on darts in the first and last φ copies of G in Gk. Further, the
amount of flow into sink ti for i ≤ k − φ and the amount of flow out of source
sj for j ≥ φ is the same in f0 and f1.

Proof. Since f0 is an acyclic max pseudoflow, it can be converted to a max
flow by removing flow from source-to-excess flow paths and deficit-to-sink flow
paths [8]. Let P be such a flow path. P must map to a simple path in G. By
the Pigeonhole Lemma, P must be contained within φ copies of G. This proves
the first part of the lemma. Since P cannot start at sj for j ≥ φ without going
through more than φ copies (and likewise, P cannot end at ti for i ≤ k−φ), the
second part of the lemma follows. ut

4 Glencora Borradaile and Anna Harutyunyan

2.2 Value of the maximum flow

In the next lemma, we prove that from fST , the leftmost maximum ST -flow in
GSTk , we can extract |f |, the value of the maximum st-flow in G.

Lemma 6. For k ≥ 4φ, the amount of flow through s2φ in fST is |f |.

Proof. We show that the amount of flow leaving s2φ in fST is the same as in f1.
By Lemma 5, the amount of flow leaving s2φ is the same in f1 as f0 which is the
same as the amount of flow leaving s in f ; this proves the lemma.

First extend f1 into a (max) ST -flow, fST1 , in GSTk in the natural way. To
convert fST1 into a leftmost flow, we must saturate the clockwise residual cycles
with a c.w. circulation. By Lemma 1 and for a contradiction, there then must
be c.w. simple cycle C that changes the amount of flow through s2φ. C must go
through S, C is residual w.r.t. cfST

1
, and cannot visit T , therefore C must contain

a si-to-s2φ residual path P that is in Gk. Since C is c.w. , i < 2φ. Suppose P
does not use a dart in the first or last φ copies of G in Gk. Then P must map
to a set P ′ of darts in G which, by Lemma 5 are residual w.r.t. cf . By Part 1
of Lemma 2, P ′ contains a clockwise cycle, contradicting the leftmostness of f .
It follows that P must cross either from the φth copy to s2φ or from s2φ to the
3φth + 1 copy. Then, by the Pigeonhole Lemma, P contains a subpath Q that
goes from v̄ to v̄′, where v̄ is an earlier copy of a vertex v than v̄′, and neither
are in the first or last φ copies. By Part 1 of Lemma 2, the map of Q contains a
clockwise cycle in G. Since Q does not contain darts in the first or last φ copies
of G, by Lemma 5, this cycle is residual w.r.t. cf in G, again contradicting that
f is leftmost. ut

2.3 Maximum flow

Now, suppose we know |f | (as per Lemma 2.2). We change the capacities of the
arcs into T and out of S in GSTk to |f |, resulting in capacities c|f |. Now, fST1 ,
respects c|f | since, by Lemmas 4 and 5, the amount of flow leaving any source
or entering any sink in f1 is at most |f |. The proof of the following is similar to
that of Lemma 6:

Lemma 7. fST1 can be converted into a leftmost maximum ST -flow f |f | for the
capacities c|f | while not changing the flow on darts in the first or last 2φ copies
of G in Gk.

To summarize, Lemmas 5 and 7 guarantee that the maximum leftmost ST -
flow, f |f |, in GSTk given capacities c|f | has the same flow assignment on the darts
in copy 2φ+ 1 as f so long as k ≥ 4φ+ 1. Starting from scratch, we can find c.w.
acyclic capacities c via Khuller, Naor and Klein’s method (one shortest path
computation); we can find |f | (Lemma 6, a second shortest path computation)
and then f (Lemma 7, a third shortest path computation). Therefore, finding a
maximum st-flow in a directed planar graph G is equivalent to three shortest
path computations: one in G and two in a covering of G that is 4φ + 1 times
larger than G.

Maximum st-flow in directed planar graphs via shortest paths 5

2.4 Discussion

The linear bound on the number of augmentations required by Borradaile and
Klein’s leftmost augmenting-paths algorithm is given by way on an unusability
theorem which states that an arc can be augmented, and then its reverse can
be augmented, but, if this reverse-augmentation occurs, the arc cannot be aug-
mented again. In a companion paper, we show how to implement an augmenting
paths algorithm whose analysis depends on a similar unusability theorem using
only priority-queue operations [3]. In this algorithm, we also use dual shortest-
paths to illustrate the priority-queue implementation. We believe that combining
these ideas – the unusability theorem and dual-shortest paths correspondence –
could lead to a max st-flow algorithm for planar graphs that uses O(n) (instead
of O(φn) as implied by our work here) priority-queue operations. Provided the
constants are reasonable, this would certainly be more efficient in practice than
a dynamic-trees based implementation.

References

1. G. Borradaile. Exploiting Planarity for Network Flow and Connectivity Problems.
PhD thesis, Brown University, 2008.

2. G. Borradaile and A. Harutyunyan. Maximum st-flow in directed planar graphs
via shortest paths. Technical report, arXiv:1305.5823, 2013.

3. G. Borradaile and A. Harutyunyan. Boundary-to-boundary flows in planar graphs.
To appear in Proc. IWOCA, 2013.

4. G. Borradaile and P. Klein. An O(n logn) algorithm for maximum st-flow in a
directed planar graph. J. of the ACM, 56(2):1–30, 2009.

5. J. Erickson. Maximum flows and parametric shortest paths in planar graphs. In
Proc. SODA, pages 794–804, 2010.

6. C. Ford and D. Fulkerson. Maximal flow through a network. Canadian J. Math.,
8:399–404, 1956.

7. R. Hassin. Maximum flow in (s, t) planar networks. IPL, 13:107, 1981.
8. D. Hochbaum. The pseudoflow algorithm: A new algorithm for the maximum-flow

problem. Operations Research, 56(4):992–1009, 2008.
9. D. Johnson and S. Venkatesan. Partition of planar flow networks. In Proc. SFCS,

pages 259–264, 1983.
10. H. Kaplan and Y. Nussbaum. Minimum st-cut in undirected planar graphs when

the source and the sink are close. In Proc. STACS, pages 117–128, 2011.
11. D. Sleator and R. Tarjan. A data structure for dynamic trees. JCSS, 26(3):362–391,

1983.
12. E. Spanier. Algebraic Topology. Springer, 1994.
13. R. Tarjan and R. Werneck. Dynamic trees in practice. J. Exp. Algorithmics,

14:5:4.5–5:4.23, 2010.

Acknowledgements: The authors thank Jéremy Barbay for very helpful discussions.
This material is based upon work supported by the National Science Foundation
under Grant No. CCF-0963921.

