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Abstract. Learning automata (LA) are policy iteration reinforcement learners
that exhibit nice convergence properties in discrete action settingsnfReae
novel formulation for continuous action reinforcement learning autamas
proposed (CARLA), featuring an interesting exploration strategy, wisiahell
suited for learning from sparse reward signals. In this paper, weopeogn im-
provement of the algorithm, and evaluate its impact on performanceamdmg
with the original version, as well as with another continuous LA. The éxpser-

tal evaluation is carried out both in simulation and on a real control sdiopjisg

a clear advantage of our method, which also performs well in distributetia
settings.

1 Introduction

Learning automata are reinforcement learners, belongiribe category of policy it-
erators. Their built-in exploration strategy makes themy weell suited for distributed
and multi-agent settings. In a discrete action settingag heen proven that a team
of independent learners using a LA with reward-inactionatpcconverges to a Nash
Equilibrium [5]. This applies to both common interest as Iveed conflicting interest
n-player, m-action games. Here, we use independent lesameaning that the agents
select actions independently and only observe their owtfeek, and not the actions
taken by other agents, nor their feedback.

Despite the interesting convergence properties for thiseeaede action LAs, many
applications require the ability to deal with continuousats. This has lead to the in-
troduction of continuous action LA (CALA) [4] and continup@action reinforcement
learning automata (CARLA) [2]. In these continuous schertiespolicy is represented
as a probability distribution over actions, which is updaéer each epoch. In CARLA,
the policy is represented as a non-parametric distribptiotially uniform over action
space. After each epoch, the probability of the executeidract reinforced, mixing
the current density function with a Gaussian bell centerethé action itself, whose
amplitude is proportional to the observed reward. More igaly, CARLA is a state-
less learner capable of optimizing over a compact set givepossibly nose corrupted
observations of certain function.

A mayor drawback of the technique, however, is its compoitai complexity. Re-
cently, Rodrguez et al. [3], analyzed the CARLA approach, and propossgraficant



improvement in terms of computation time and convergencieaoglobal optimum.
The improved automaton performs better on easy-to-leanntifons, still it does not
perform very well in noisy or even noiseless scenarios wétywsmall variance in the
resulting feedback for the learner.

In this paper, we present a further improvement to the CARppraach, analyzing
its positive impact on performance in both single and mdiltrensional settings. We
introduce new ideas for making the learner more sensitivantall changes near the
optimum, but still absorbing noise in order to converge tubglly optimal actions.

The formulation of CARLA used in this paper is described irct®e 2. Section
3 introduces our modifications to the CARLA scheme. Sectioepbrts experimental
results, and Section 5 concludes the paper.

2 Learning Automata

The learning automaton is a simple model for adaptive daeisiaking in unknown
random environments. Engineering research on LA starteithénearly 1960's [6].
Tsetlin and his colleagues formulated the objective ofrizay as an optimization of
some mathematical performance index [5]:

IN) = /A R(aA)dP(a) L)

whereR(a,A\) is the (possibly stochastic) reward functignijs a parametric represen-
tation of the distribution over actiori®(a), a is the action, and\ is the set of possible
actions, assumed to be compact. The performance ihdethe expectation dR with
respect to the distributioR, and it therefore includes randomnessiand randomness
in R. The problem of maximizing is analogous to the well-knownulti-armed bandit
problem, with discrete or continuous arm set [1].

In this section we recall two alternative versions of comtins action LA. In both
cases, the current policy of the automata is representegrabability distribution over
the action set, from which actions are drawn sequentialg [Earning process consists
of updating this distribution, based on the observed rewaitth the aim of increasing
the probability of actions which achieve the highest reward

The first algorithm, which we will use as a comparison in oysegiments, is the
Continuous Action Learning Automata (CALA) algorithm, riatluced in [4]. The au-
thors implemenP as a normal probability distribution with meg@nand standard de-
viation ;. At every time step, an action is selected according to a normal distribution
N (W, 0t). Then, after exploring actioa and observing reward sign{ (&) , the up-
date rules (2) and (3) are applied, resulting in new valuegfq andoy ;.
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whereA is the learning parameter controlling the step size @< 1),K is a large
positive constant, ang_ is a lower bound of the standard deviatimn The authors also
derived a convergence proof for this automaton, and testedjames among multiple
learners.

Rodiiguez et al. [3] remarked the poor applicability of this nogthin practical
problems. Note that the update rule needs two evaluatiotiseofeward functiorf,
one at the selected acti@p, one at the mean of the probability distributipn Sam-
pling both actions is not practical, especially in scersxidere the evaluation of the
reward function is costly, or takes a relatively long tims,itis often the case with
electro-mechanical systems. The convergence can alsmberbd by the noisiness of
the reward functiorfs;.

We now describe an alternative LA implementation, the CGardus Action Re-
inforcement Learning Automaton (CARLA) [2], on which our thed is based. In
CARLA, P is implemented as a nonparametric distribution, initialhiform over the
action spacé\, assumed to be a compact set. After exploring acion A in time step
t, the probability density function (pdf} is updated as in (4), where parameteis the
spreading rate, determining the size of the neighborhoagwhich will be reinforced,
anda is a learning rate. Notice that sampling the mgais no longer necessary.
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fira(a) = (4)

At each iteratiort, an action is drawn from the current pdf. To achieve this gbal
cumulative density function (CDF) is required. Since théyskd in CARLA is non-
parametric, it is expensive to re-evaluate the CDF everg tine function changes. In
order to significantly reduce the computational compleX&jintroduced an alternative
update rule which operates directly on the CDF. This versio@ARLA, which will
be used in our experiments, is described in (5), wherg again the learning ratég
is the initial spreading raté is the reward function, i.e., the objective that the learner
has to maximizeg; is the action selected in time-stepo; is the standard deviation of
the actions selected recently, afgo 1) is the standardized normal cumulative density
function.
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Both CALA and CARLA are policy iterators: in practice, the imdifference among
these two algorithms resides in the way the action spacepismd. In CALA, which



employ a Gaussian distribution over actions, the explondti locally distributed around
the mean of the current distribution; in CARLA, exploratisrbased instead on an ini-
tially uniform, nonparametric distribution. The expldoat can cover different areas of
the action space, and, depending on the reward functioanitonverge to an arbitrary,
possibly multimodal, distribution. The CARLA update scheeaxhibits interesting ex-
ploration characteristics in environments with sparsearevgignals. This is on the one
hand due to the action probabilities being initially unifgrand on the other hand to the
fact that the sampling of action that leads to zero rewandt®s a reduction of the se-
lection probabilities in the neighborhood of such actiohisTforces the exploration of
actions outside the penalized area. If the next selectéohaagain leads to no reward,
the area around that action will again be penalized, andxpem®tion driven towards
areas that have not been sampled yet. When dealing with spmvaed signals, pol-
icy iteration methods typically get “stuck”, as there is madjent information to guide
further search. As soon as a CARLA learner picks up a rewastead, the probability
density around the corresponding action is increased, ameecgence towards the op-
timum can start, analogous to policy gradient methods. hcksion, CARLA methods
allow exploratory sampling in the beginning of the searabcpss in a similar way as
value iteration approaches, with a reward scheme wherewaticcessful action, i.e.
not making a direct transition into the goal state, results@gative immediate reward
and guides the exploration towards different regions. Fghows illustrative examples
of the exploration strategies of the CALA and CARLA algonit.

Fig. 1: Sketches of LA action space exploration, for CALA (above) @ARLA (below).
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3 CARLA OnlineReward Transfor mation

In this section we introduce our modification of the CARLA@lighm. The basic idea
is to improve the algorithm’s convergence, by rescalingéweard signal to amplify dif-
ferences in the feedbacks. From the analysis introduceddolyigriez et al. [3], it can



be seen that larger differences in the feedbacks for diffexetions, lead to faster con-
vergence to the optimum. If the reward function varies vétielaround the optimum,
many time-steps may be required to detect the differenceddidack, and converge to
the optimum. If a learner memorizes the last few rewardsart @nalyze their range,

in order to linearly transform newly received rewards, \irggvthem as a high or low
signals relative to recently observed rewards. Since eafm is still possiblez-score
standardizationis very useful to deal with this rescaling, avoiding semgitito outlier
observations. Letyg andong be the mean and standard deviation of the rewards col-
lected, then every reward can be transformed as shown iegsipn (7). We stress that
Wwd @andopwg should be calculated from untransformed rewards.

Bl (a) = max(O, 0.5+ Ma”‘“““’) 7)

20mwd

Note that negative values are not allowed, in order to pretherprobability density
function from becoming negative. Using this transfornatiiv is easier for the learner
to differentiate rewards, no matter how close to the optinituisiexploring. Also ob-
serve that this is not a way to introduce extra informatiofust modifies the reward
function increasing the amplitude of the difference betwiee extreme values of this
function. Scaling this amplitude does not imply changingltication of the maximum
(or minimum) values.

Fig. 2: Transformation of rewards. Both charts plots the reward funsti® axis represents the
action and Y axis the value of the function. We can see the original, untramsél reward func-
tion on the left. The black curve shows the reward function. On the rightietéoth the original
and transformed reward function in gray and black, respectively.
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Figure 2 shows an illustrative example of our method. A leaexploring around
the local maximum on the left will have difficulty detectiniget slightly better action
to the right. The figure on the right shows the effect of ounsfarmation. The black
curve represent® while the gray curve corresponds to the original functiooté\that
the only change is in the amplitude of the function, the maxare still located at the
same points. Since the exploration was concentrated omda¢ hhaximum to the left,
this is the zone that has been “zoomed in”. Nonetheless ther maximum situated to
the right has also been amplified. Any exploratory actionthéoright will now clearly
detect the better feedback. Of course, in a real learninghngetre could not simply
transform the entire reward function offline, and we woulstéad need to calculate the
transformation online, based on the current sample meastandard deviation.



4 Experimental Results

In this section, we validate the two proposed modificatiarsGARLA with several
experiments, also comparing with the performance of CALA.fikét consider several
single-automaton function optimization scenarios, bailseless (Sec. 4.1) and noisy
(Sec. 4.2). We then demonstrate the performance of ourigdgoon a simple yet chal-
lenging control problem. Finally, we show that the algaritlalso performs well in
multi-automaton settings. Parameter settings are fixedlsvs: for CALA, A, o, and

K were set to @M1, 003 and 5 respectively, while the initial distribution is thtandard
normal withpp = 0 andop = 1. For CARLA,a = 0.1 was used as a learning rate, and
Ao = 0.2 as initial spreading rate.

4.1 Noiseless Settings

We recall the three example target functi@hg andpil (8), introduced by [3]. These
three reward functions are displayed in Figure 3.
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Fig. 3: Reward function§' (very simple function)p (slowly varying with the action) anf
(with two optima)
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Figure 4 shows the performance obtained by the CARLA withahkne reward
transformation (ORT) algorithm (black curve) and the CAR&gorithm as described
in [3], without transformation of rewards (gray curve). Téhetted line represents the
performance of the CALA algorithm. Remember that the latbepires two function
evaluations for each update (see Section 2). In this andwoig plots, the horizon-
tal axis reports time in terms of the number of reward funcéwaluations, while the
vertical axis shows the obtained average reward over tithe.plotted rewards are the
untransformed ones. It is clear that the transformatiomwirds modification displays
the best performance. The chart in the middle, represefuimgion ', shows the low-
est difference, with the dotted (CALA) line barely below tilack (CARLA-ORT) line.
For thep' andp'! functions, the CARLA-ORT algorithm shows a marked improeein
over both standard CARLA and CALA.



Fig.4: Average rewards fd', Bl andpii, versus number of reward function evaluations. The
black and gray lines report the performances of CARLA, with and witl@RT, respectively,
while the dotted line corresponds to CALA.
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4.2 Noisy Settings

In the following experiment, we add noise to the reward fiomsg introduced in the
previous section. The noisy functions are shown in (9), elandr) € [O,r] is a uni-
formly distributed random number. We also consider two @alaal reward functions
(10), where two functions with different optima are mixedwequal probability. Fig-
ure 5 plots these two functions, the dotted line represgrtia expected reward.

0.8p' (a) +rand0.2)

B (a) =
B’ (at) =0.7778p" (a) +rand0.2) 9)
piil’ (a) =0.8p" (a)+rand0.2)

BIV

b(a;,0.9,0.2) otherwise
b(a,0.8,0.2) rand(1) <0.5
0.8b(a;,0.5,0.3) otherwise

{08b &,0.2,0.3) rand(1) < 0.5
{ (10)

Fig.5: Reward function§ andp". The functions are composed by two bell shaped functions
that are randomly selected to generate the reward. The dotted linearsrdte expected reward.
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Figure 6 shows the average rewards collected over time. Asheecase before, the
black curve shows the results obtained using transformatioewards, the gray curve
displays the performance of CARLA without ORT, and the dibtiee corresponds to
CALA. The results obtained here are similar to those reploriehe previous subsec-
tion, with the CARLA-ORT algorithm outperforming the othegproaches.



Fig. 6: Average rewards fo", pi’, Bii’, BV and p¥. The gray curve represents the standard
CARLA while the black one the results obtained with the new proposal. Theddixtes corre-
sponds to CALA.
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Fig. 7: Sketch set-up, position measurement at one location

4.3 Control Task

In many industrial applications, it is either not possibtéan expensive to install sen-
sors which measure the system’s output over the completkestinstead, the motion
can only be detected at certain discrete positions. Theaatijective in these systems
is often not to track a complete trajectory accurately, bther to achieve a given state
at the sensor locations (e.g. to pass by the sensor at a giverar with a given speed).
Model-based control strategies are not suited for the obotithese systems, due to the
lack of sensor data. In this section, we present experinvgitiisa simple abstraction of
such systems, an electro-mechanical setup consistinginéarlmotor and a moving
mass mounted on a straight horizontal guide (Figure 7). Tdsitipn of the moving
mass is monitored via a single discrete sensor, set alonguide, which fires at the
passage of a small (1 cm) element attached to the mass. Whemotbe is activated,
the mass is “punched” forward, and slides up to a certaintiposidepending on the
duration and speed of the motor’s stroke, and on the unkndativh among the mass
and its guide. Two tasks are defined on this setup, with @iffeobjectives: a) let the
mass pass the sensor at a predefined time (time task); belehdlss stop exactly in
front of the sensor (position task).

In the first series of experiments, we only consider conssgeed signals, with
duration varying on a closed interval, such that an actiamsists of a single scalar,



which we normalize if0, 1], an epoch consists of a single action, followed by a scalar
reward, and no state information is used. For each taskrasmynding reward function

is implemented, favoring the desired behavior. For the tiask, given a target time
to, reward is given as = exp{—c(t —to)?}, wherec is a constantq = 1000), anct

is the time at which the sensor starts firing, whichedgf the mass does not reach
it. For the position task, the reward is given as the portibtime during which the
sensor fires, over a fixed time intervak{dmeasured from the beginning of the motor’s
movement. Fig. 8 reports samples of the two reward functinate that the system is
highly stochastic, and repeating the same action may riesdgifferent rewards.

The results of the modified CARLA algorithm are shown in Feg@ron both tasks.
We plot single experiments with the actual setup, eachmig$tir 300 epochs. CARLA
was run with a learning rate of® and a constant spreading rat2® The lower bar
plot reports the returns observed at each epoch, while therypot reports the actions
performed {), along with the evolution of statistics describing theipgl mean and
standard deviation of the CARLA nonparametric distribati®he position task turns
out to be more difficult: this can easily be explained compathe reward samples
(Fig. 8). The best action for the position task, aroundl & a “needle in a haystack”
compared to the time task, where the reward function chamges gradually around
the optimal action. Nonetheless, the CARLA algorithm iseatal converge to a good
action for both tasks.

4.4 Multi-automata systems

In this section we evaluate the performance of our algoritma number of multi-

automata settings, where several LA learn in the same emvigat. At every time step,
each automaton selects a single scalar, correspondingetofahe dimensions of the
action vector. The reward obtained by the automata thexefepends on all input ac-
tions.

In a first series of experiments, we apply CARLA and CARLA-ORTa number
of characteristic functions with 2 input actions. Thesections were chosen to study
the behavior of the algorithm in settings where coordimai® required. In the first
three experiments, the automata have to coordinate on @aweggion in the 2D action
space, using only a noisy reward signal. The fourth experinmgestigates the result of
individual reward functions for the two automata. The autarstill have to coordinate
to receive a reward, but have different preferences for éhected combined action.
Each automaton wants to minimize the magnitude of its owioacbut when both do
this at the same time the result is a 0 reward. This is intend@dodel a control task
with multiple controllers, where each controller tries tenimize an individual cost
(e.g. energy use). The results for these functions are shotigure 10.



B (a.br) = 0.8[a +Ibx — 1] + rand0.2)
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av 0 otherwise
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0 otherwise

To conclude, we consider a 2D input version of the contrdtsasf the previous
section, in which one automaton controls the speed of themnad the other controls
the duration of the signal. The reward functions for botloendta are identical to those
described above, but the outcome of the system (eitherrtieettie sensor fires or final
position of the mass, depending on the task) now dependeamthes selected by both
automata. Figure 11 shows how, on both tasks, the autometeeiin coordinating on
a pair of actions which leads to high rewards.

5 Conclusions

We introduced CARLA-ORT, an improvement of continuous@tteinforcement learn-
ing. The new algorithm was evaluated on a number of noisaledsoisy function op-
timization scenarios, as well as on a real control setupertdrming both the original
CARLA, and an alternative continuous action learner (CALWplso performed very
well in distributed control settings, where each agent lodddrn a different dimension
of the control signal. Ongoing research is aimed at impmwire coordination among
different agents in the distributed setting, in order toradd more challenging open
loop control applications.
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Fig. 8: Reward functions for the two control tasks, sampled for 508oary chosen actions on
a subset of the unit interval, including the optimal action. Left: time task. tRgsition task.
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Fig. 9: Results for the CARLA-ORT algorithm on both control tasks. Thetmpshows sampled
actions together with together with the mean and standard deviation of the patipabilities.
Bottom row shows obtained rewards. Left: time task. Right: position task.



Fig. 10: Results for the multi-automata reward functions in Equation 11.gfée curve repre-
sents the standard CARLA while the black one the results obtained with theropasal. First
row charts show the average rewards collected. Second and thirdstmmsthe mean of the
sampled actions for players one and two respectively. All averagesatrulated using a sliding
window of 20 samples.
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Fig. 11: Results for the CARLA-ORT algorithm on both 2D control taskse Tdp row shows
sampled actions together with the mean and standard deviation of the acti@bitities. Bottom
row shows obtained rewards. Left: time task. Right: position task.



