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Abstract. Learning automata (LA) are policy iteration reinforcement learners
that exhibit nice convergence properties in discrete action settings. Recently, a
novel formulation for continuous action reinforcement learning automata was
proposed (CARLA), featuring an interesting exploration strategy, whichis well
suited for learning from sparse reward signals. In this paper, we propose an im-
provement of the algorithm, and evaluate its impact on performance comparing
with the original version, as well as with another continuous LA. The experimen-
tal evaluation is carried out both in simulation and on a real control setup, showing
a clear advantage of our method, which also performs well in distributed control
settings.

1 Introduction

Learning automata are reinforcement learners, belonging to the category of policy it-
erators. Their built-in exploration strategy makes them very well suited for distributed
and multi-agent settings. In a discrete action setting, it has been proven that a team
of independent learners using a LA with reward-inaction update converges to a Nash
Equilibrium [5]. This applies to both common interest as well as conflicting interest
n-player, m-action games. Here, we use independent learners, meaning that the agents
select actions independently and only observe their own feedback, and not the actions
taken by other agents, nor their feedback.

Despite the interesting convergence properties for these discrete action LAs, many
applications require the ability to deal with continuous actions. This has lead to the in-
troduction of continuous action LA (CALA) [4] and continuous action reinforcement
learning automata (CARLA) [2]. In these continuous schemes, the policy is represented
as a probability distribution over actions, which is updated after each epoch. In CARLA,
the policy is represented as a non-parametric distribution, initially uniform over action
space. After each epoch, the probability of the executed action is reinforced, mixing
the current density function with a Gaussian bell centered in the action itself, whose
amplitude is proportional to the observed reward. More specifically, CARLA is a state-
less learner capable of optimizing over a compact set given the possibly nose corrupted
observations of certain function.

A mayor drawback of the technique, however, is its computational complexity. Re-
cently, Rodŕıguez et al. [3], analyzed the CARLA approach, and proposed asignificant



improvement in terms of computation time and convergence tothe global optimum.
The improved automaton performs better on easy-to-learn functions, still it does not
perform very well in noisy or even noiseless scenarios with very small variance in the
resulting feedback for the learner.

In this paper, we present a further improvement to the CARLA approach, analyzing
its positive impact on performance in both single and multi-dimensional settings. We
introduce new ideas for making the learner more sensitive tosmall changes near the
optimum, but still absorbing noise in order to converge to globally optimal actions.

The formulation of CARLA used in this paper is described in Section 2. Section
3 introduces our modifications to the CARLA scheme. Section 4reports experimental
results, and Section 5 concludes the paper.

2 Learning Automata

The learning automaton is a simple model for adaptive decision making in unknown
random environments. Engineering research on LA started inthe early 1960’s [6].
Tsetlin and his colleagues formulated the objective of learning as an optimization of
some mathematical performance index [5]:

J(Λ) =
∫

A
R(a,Λ)dP(a) (1)

whereR(a,Λ) is the (possibly stochastic) reward function,Λ is a parametric represen-
tation of the distribution over actionsP(a), a is the action, andA is the set of possible
actions, assumed to be compact. The performance indexJ is the expectation ofR with
respect to the distributionP, and it therefore includes randomness ina and randomness
in R. The problem of maximizingJ is analogous to the well-knownmulti-armed bandit
problem, with discrete or continuous arm set [1].

In this section we recall two alternative versions of continuous action LA. In both
cases, the current policy of the automata is represented as aprobability distribution over
the action set, from which actions are drawn sequentially. The learning process consists
of updating this distribution, based on the observed reward, with the aim of increasing
the probability of actions which achieve the highest rewards.

The first algorithm, which we will use as a comparison in our experiments, is the
Continuous Action Learning Automata (CALA) algorithm, introduced in [4]. The au-
thors implementP as a normal probability distribution with meanµt and standard de-
viation σt . At every time stept, an action is selected according to a normal distribution
N(µt ,σt). Then, after exploring actionat and observing reward signalβt (at) , the up-
date rules (2) and (3) are applied, resulting in new values for µt+1 andσt+1.

µt+1 = µt +λ
βt (at)−βt (µt)

max(σt ,σL)

at −µt

max(σt ,σL)
(2)

σt+1 = σt +λ
βt (at)−βt (µt)

max(σt ,σL)

[

(

at −µt

max(σt ,σL)

)2

−1

]

−λK (σt −σL)

(3)



whereλ is the learning parameter controlling the step size (0< λ < 1), K is a large
positive constant, andσL is a lower bound of the standard deviationσt . The authors also
derived a convergence proof for this automaton, and tested it in games among multiple
learners.

Rodŕıguez et al. [3] remarked the poor applicability of this method in practical
problems. Note that the update rule needs two evaluations ofthe reward functionβt ,
one at the selected actionat , one at the mean of the probability distributionµt . Sam-
pling both actions is not practical, especially in scenarios where the evaluation of the
reward function is costly, or takes a relatively long time, as it is often the case with
electro-mechanical systems. The convergence can also be hindered by the noisiness of
the reward functionβt .

We now describe an alternative LA implementation, the Continuous Action Re-
inforcement Learning Automaton (CARLA) [2], on which our method is based. In
CARLA, P is implemented as a nonparametric distribution, initiallyuniform over the
action spaceA, assumed to be a compact set. After exploring actionat ∈ A in time step
t, the probability density function (pdf)ft is updated as in (4), where parameterλt is the
spreading rate, determining the size of the neighborhood ofat which will be reinforced,
andα is a learning rate. Notice that sampling the meanµt is no longer necessary.

ft+1 (a) =











γt

(

ft (a)+βt (at)αe
− 1

2

(

a−at
λt

)2
)

a∈ A

0 a /∈ A

(4)

At each iterationt, an action is drawn from the current pdf. To achieve this goal, the
cumulative density function (CDF) is required. Since the pdf used in CARLA is non-
parametric, it is expensive to re-evaluate the CDF every time the function changes. In
order to significantly reduce the computational complexity, [3] introduced an alternative
update rule which operates directly on the CDF. This versionof CARLA, which will
be used in our experiments, is described in (5), whereα is again the learning rate,λ0

is the initial spreading rate,β is the reward function, i.e., the objective that the learner
has to maximize,at is the action selected in time-stept, σt is the standard deviation of
the actions selected recently, andFN(0,1) is the standardized normal cumulative density
function.

Ft+1 (a) =







0 a< Amin

γt (Ft (a)+δtDt (Amin,at)) a∈ A
1 a> Amax

(5)

where:
δt = βt (at)αλt

√
2π

γt =
1

1+δtDt (Amin,Amax)

Dt (x,y) = FN(0,1)

(

y−at
λt

)

−FN(0,1)

(

x−at
λt

)

λt = λ0
12σt

(Amax−Amin)
2

(6)

Both CALA and CARLA are policy iterators: in practice, the main difference among
these two algorithms resides in the way the action space is explored. In CALA, which



employ a Gaussian distribution over actions, the exploration is locally distributed around
the mean of the current distribution; in CARLA, explorationis based instead on an ini-
tially uniform, nonparametric distribution. The exploration can cover different areas of
the action space, and, depending on the reward function, it can converge to an arbitrary,
possibly multimodal, distribution. The CARLA update scheme exhibits interesting ex-
ploration characteristics in environments with sparse reward signals. This is on the one
hand due to the action probabilities being initially uniform, and on the other hand to the
fact that the sampling of action that leads to zero reward results in a reduction of the se-
lection probabilities in the neighborhood of such action. This forces the exploration of
actions outside the penalized area. If the next selected action again leads to no reward,
the area around that action will again be penalized, and the exploration driven towards
areas that have not been sampled yet. When dealing with sparsereward signals, pol-
icy iteration methods typically get “stuck”, as there is no gradient information to guide
further search. As soon as a CARLA learner picks up a reward, instead, the probability
density around the corresponding action is increased, and convergence towards the op-
timum can start, analogous to policy gradient methods. In conclusion, CARLA methods
allow exploratory sampling in the beginning of the search process in a similar way as
value iteration approaches, with a reward scheme where eachunsuccessful action, i.e.
not making a direct transition into the goal state, results in negative immediate reward
and guides the exploration towards different regions. Fig.1 shows illustrative examples
of the exploration strategies of the CALA and CARLA algorithms.

Fig. 1: Sketches of LA action space exploration, for CALA (above) andCARLA (below).
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3 CARLA Online Reward Transformation

In this section we introduce our modification of the CARLA algorithm. The basic idea
is to improve the algorithm’s convergence, by rescaling thereward signal to amplify dif-
ferences in the feedbacks. From the analysis introduced by Rodŕıguez et al. [3], it can



be seen that larger differences in the feedbacks for different actions, lead to faster con-
vergence to the optimum. If the reward function varies very little around the optimum,
many time-steps may be required to detect the difference in feedback, and converge to
the optimum. If a learner memorizes the last few rewards, it can analyze their range,
in order to linearly transform newly received rewards, viewing them as a high or low
signals relative to recently observed rewards. Since exploration is still possible,z-score
standardizationis very useful to deal with this rescaling, avoiding sensitivity to outlier
observations. Letµrwd andσrwd be the mean and standard deviation of the rewards col-
lected, then every reward can be transformed as shown in expression (7). We stress that
µrwd andσrwd should be calculated from untransformed rewards.

β′
t (at) = max

(

0,0.5+
βt (at)−µrwd

2σrwd

)

(7)

Note that negative values are not allowed, in order to prevent the probability density
function from becoming negative. Using this transformation, it is easier for the learner
to differentiate rewards, no matter how close to the optimumit is exploring. Also ob-
serve that this is not a way to introduce extra information, it just modifies the reward
function increasing the amplitude of the difference between the extreme values of this
function. Scaling this amplitude does not imply changing the location of the maximum
(or minimum) values.

Fig. 2: Transformation of rewards. Both charts plots the reward functions. X axis represents the
action and Y axis the value of the function. We can see the original, untransformed reward func-
tion on the left. The black curve shows the reward function. On the right weplot both the original
and transformed reward function in gray and black, respectively.
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Figure 2 shows an illustrative example of our method. A learner exploring around
the local maximum on the left will have difficulty detecting the slightly better action
to the right. The figure on the right shows the effect of our transformation. The black
curve representsβ′ while the gray curve corresponds to the original function. Note that
the only change is in the amplitude of the function, the maxima are still located at the
same points. Since the exploration was concentrated on the local maximum to the left,
this is the zone that has been “zoomed in”. Nonetheless, the other maximum situated to
the right has also been amplified. Any exploratory actions tothe right will now clearly
detect the better feedback. Of course, in a real learning setting we could not simply
transform the entire reward function offline, and we would instead need to calculate the
transformation online, based on the current sample mean andstandard deviation.



4 Experimental Results

In this section, we validate the two proposed modifications for CARLA with several
experiments, also comparing with the performance of CALA. We first consider several
single-automaton function optimization scenarios, both noiseless (Sec. 4.1) and noisy
(Sec. 4.2). We then demonstrate the performance of our algorithm on a simple yet chal-
lenging control problem. Finally, we show that the algorithm also performs well in
multi-automaton settings. Parameter settings are fixed as follows: for CALA, λ, σL and
K were set to 0.01, 0.03 and 5 respectively, while the initial distribution is thestandard
normal withµ0 = 0 andσ0 = 1. For CARLA,α = 0.1 was used as a learning rate, and
λ0 = 0.2 as initial spreading rate.

4.1 Noiseless Settings

We recall the three example target functionsβi ,βii andβiii (8), introduced by [3]. These
three reward functions are displayed in Figure 3.

βi (at) = b(at ,0.5,0.2)
βii (at) = 0.9b(at ,0.2,1)

βiii (at) = (0.9b(at ,0.2,0.4))
⋃

b(at ,0.9,0.3)
(8)

with
x
⋃

y= x+y−xy

b(a,a0,σ) = e
− 1

2

(

a−a0
σ

)2

Fig. 3: Reward functionsβi (very simple function),βii (slowly varying with the action) andβiii

(with two optima)
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Figure 4 shows the performance obtained by the CARLA with theonline reward
transformation (ORT) algorithm (black curve) and the CARLAalgorithm as described
in [3], without transformation of rewards (gray curve). Thedotted line represents the
performance of the CALA algorithm. Remember that the latterrequires two function
evaluations for each update (see Section 2). In this and following plots, the horizon-
tal axis reports time in terms of the number of reward function evaluations, while the
vertical axis shows the obtained average reward over time. The plotted rewards are the
untransformed ones. It is clear that the transformation of rewards modification displays
the best performance. The chart in the middle, representingfunctionβii , shows the low-
est difference, with the dotted (CALA) line barely below theblack (CARLA-ORT) line.
For theβi andβiii functions, the CARLA-ORT algorithm shows a marked improvement
over both standard CARLA and CALA.



Fig. 4: Average rewards forβi , βii andβiii , versus number of reward function evaluations. The
black and gray lines report the performances of CARLA, with and without ORT, respectively,
while the dotted line corresponds to CALA.
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4.2 Noisy Settings

In the following experiment, we add noise to the reward functions introduced in the
previous section. The noisy functions are shown in (9), where rand(r) ∈ [0, r] is a uni-
formly distributed random number. We also consider two additional reward functions
(10), where two functions with different optima are mixed with equal probability. Fig-
ure 5 plots these two functions, the dotted line representing the expected reward.

βi′ (at) = 0.8βi (at)+ rand(0.2)
βii ′ (at) = 0.7778βii (at)+ rand(0.2)

βiii ′ (at) = 0.8βiii (at)+ rand(0.2)
(9)

βiv (at) =

{

0.8b(at ,0.2,0.3) rand(1)< 0.5
b(at ,0.9,0.2) otherwise

βv (at) =

{

b(at ,0.8,0.2) rand(1)< 0.5
0.8b(at ,0.5,0.3) otherwise

(10)

Fig. 5: Reward functionsβiv andβv. The functions are composed by two bell shaped functions
that are randomly selected to generate the reward. The dotted line represents the expected reward.
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Figure 6 shows the average rewards collected over time. As was the case before, the
black curve shows the results obtained using transformation of rewards, the gray curve
displays the performance of CARLA without ORT, and the dotted line corresponds to
CALA. The results obtained here are similar to those reported in the previous subsec-
tion, with the CARLA-ORT algorithm outperforming the otherapproaches.



Fig. 6: Average rewards forβi′ , βii ′ , βiii ′ , βiv and βv. The gray curve represents the standard
CARLA while the black one the results obtained with the new proposal. The dotted line corre-
sponds to CALA.
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Fig. 7: Sketch set-up, position measurement at one location

4.3 Control Task

In many industrial applications, it is either not possible or too expensive to install sen-
sors which measure the system’s output over the complete stroke: instead, the motion
can only be detected at certain discrete positions. The control objective in these systems
is often not to track a complete trajectory accurately, but rather to achieve a given state
at the sensor locations (e.g. to pass by the sensor at a given time, or with a given speed).
Model-based control strategies are not suited for the control of these systems, due to the
lack of sensor data. In this section, we present experimentswith a simple abstraction of
such systems, an electro-mechanical setup consisting of a linear motor and a moving
mass mounted on a straight horizontal guide (Figure 7). The position of the moving
mass is monitored via a single discrete sensor, set along theguide, which fires at the
passage of a small (1 cm) element attached to the mass. When themotor is activated,
the mass is “punched” forward, and slides up to a certain position, depending on the
duration and speed of the motor’s stroke, and on the unknown friction among the mass
and its guide. Two tasks are defined on this setup, with different objectives: a) let the
mass pass the sensor at a predefined time (time task); b) let the mass stop exactly in
front of the sensor (position task).

In the first series of experiments, we only consider constantspeed signals, with
duration varying on a closed interval, such that an action consists of a single scalar,



which we normalize in[0,1], an epoch consists of a single action, followed by a scalar
reward, and no state information is used. For each task, a corresponding reward function
is implemented, favoring the desired behavior. For the timetask, given a target time
t0, reward is given asr = exp{−c(t − t0)2}, wherec is a constant (c = 1000), andt
is the time at which the sensor starts firing, which is∞ if the mass does not reach
it. For the position task, the reward is given as the portion of time during which the
sensor fires, over a fixed time interval (4s), measured from the beginning of the motor’s
movement. Fig. 8 reports samples of the two reward functions: note that the system is
highly stochastic, and repeating the same action may resultin different rewards.

The results of the modified CARLA algorithm are shown in Figure 9 on both tasks.
We plot single experiments with the actual setup, each lasting for 300 epochs. CARLA
was run with a learning rate of 0.8, and a constant spreading rate 0.25. The lower bar
plot reports the returns observed at each epoch, while the upper plot reports the actions
performed (+), along with the evolution of statistics describing the policy: mean and
standard deviation of the CARLA nonparametric distribution. The position task turns
out to be more difficult: this can easily be explained comparing the reward samples
(Fig. 8). The best action for the position task, around 0.4, is a “needle in a haystack”
compared to the time task, where the reward function changesmore gradually around
the optimal action. Nonetheless, the CARLA algorithm is able to converge to a good
action for both tasks.

4.4 Multi-automata systems

In this section we evaluate the performance of our algorithmon a number of multi-
automata settings, where several LA learn in the same environment. At every time step,
each automaton selects a single scalar, corresponding to one of the dimensions of the
action vector. The reward obtained by the automata therefore depends on all input ac-
tions.

In a first series of experiments, we apply CARLA and CARLA-ORTto a number
of characteristic functions with 2 input actions. These functions were chosen to study
the behavior of the algorithm in settings where coordination is required. In the first
three experiments, the automata have to coordinate on a narrow region in the 2D action
space, using only a noisy reward signal. The fourth experiment investigates the result of
individual reward functions for the two automata. The automata still have to coordinate
to receive a reward, but have different preferences for the selected combined action.
Each automaton wants to minimize the magnitude of its own action, but when both do
this at the same time the result is a 0 reward. This is intendedto model a control task
with multiple controllers, where each controller tries to minimize an individual cost
(e.g. energy use). The results for these functions are shownin Figure 10.



βi (at ,bt) = 0.8|at +bt −1|+ rand(0.2)
βii (at ,bt) = 0.8|at +bt −1|− bt

10+ rand(0.2)

βiii (at ,bt) =

{

1 |at +bt +N(0,0.1)−1|< 0.2

0 otherwise

βiv
a (at ,bt) =

{

1− at
10 |at +bt +N(0,0.1)−1|< 0.2

0 otherwise

βiv
b (at ,bt) =

{

1− bt
10 |at +bt +N(0,0.1)−1|< 0.2

0 otherwise

(11)

To conclude, we consider a 2D input version of the control tasks of the previous
section, in which one automaton controls the speed of the motor, and the other controls
the duration of the signal. The reward functions for both automata are identical to those
described above, but the outcome of the system (either the time the sensor fires or final
position of the mass, depending on the task) now depends on the values selected by both
automata. Figure 11 shows how, on both tasks, the automata succeed in coordinating on
a pair of actions which leads to high rewards.

5 Conclusions

We introduced CARLA-ORT, an improvement of continuous action reinforcement learn-
ing. The new algorithm was evaluated on a number of noiselessand noisy function op-
timization scenarios, as well as on a real control setup, outperforming both the original
CARLA, and an alternative continuous action learner (CALA). It also performed very
well in distributed control settings, where each agent had to learn a different dimension
of the control signal. Ongoing research is aimed at improving the coordination among
different agents in the distributed setting, in order to address more challenging open
loop control applications.
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Learning Research, 12:1655–1695, 2011.

2. M. N. Howell, G. P. Frost, T. J. Gordon, and Q. H. Wu. Continuous action reinforcement
learning applied to vehicle suspension control.Mechatronics, 7(3):263 – 276, 1997.
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Fig. 8: Reward functions for the two control tasks, sampled for 500 randomly chosen actions on
a subset of the unit interval, including the optimal action. Left: time task. Right: position task.
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Fig. 9: Results for the CARLA-ORT algorithm on both control tasks. The toprow shows sampled
actions together with together with the mean and standard deviation of the actionprobabilities.
Bottom row shows obtained rewards. Left: time task. Right: position task.



Fig. 10: Results for the multi-automata reward functions in Equation 11. Thegray curve repre-
sents the standard CARLA while the black one the results obtained with the new proposal. First
row charts show the average rewards collected. Second and third rowsshow the mean of the
sampled actions for players one and two respectively. All averages are calculated using a sliding
window of 20 samples.
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Fig. 11: Results for the CARLA-ORT algorithm on both 2D control tasks. The top row shows
sampled actions together with the mean and standard deviation of the action probabilities. Bottom
row shows obtained rewards. Left: time task. Right: position task.


