
Evaluating Hypotheses

[Read Ch. 5]
[Recommended exercises: 5.2, 5.3, 5.4]

• Sample error, true error

• Confidence intervals for observed hypothesis error

• Estimators

• Binomial distribution, Normal distribution, Central Limit
Theorem

• Paired t tests

• Comparing learning methods
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Two Definitions of Error

The true error of hypothesis h with respect to target function f
and distribution D is the probability that h will misclassify an

instance drawn at random according to D.

errorD(h) ⌘ Pr
x2D

[f(x) 6= h(x)]

The sample error of h with respect to target function f and data
sample S is the proportion of examples h misclassifies

errorS(h) ⌘
1

n

X

x2S

�(f(x) 6= h(x))

Where �(f(x) 6= h(x)) is 1 if f(x) 6= h(x), and 0 otherwise.

How well does errorS(h) estimate errorD(h)?
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Problems Estimating Error

1. Bias: If S is training set, errorS(h) is optimistically biased

bias ⌘ E[errorS(h)]� errorD(h)

For unbiased estimate, h and S must be chosen
independently

2. Variance: Even with unbiased S, errorS(h) may still vary
from errorD(h). The smaller the test-set, the larger the
probability of a large variance.
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Example

Hypothesis h misclassifies 12 of the 40 examples in S

errorS(h) =
12

40
= .30

What is errorD(h)?
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Estimators

Experiment:

1. choose sample S of size n according to distribution D

2. measure errorS(h)

errorS(h) is a random variable (i.e., result of an experiment)

errorS(h) is an unbiased estimator for errorD(h)

Given observed errorS(h) what can we conclude about errorD(h)?
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Confidence Intervals

• IF S contains n examples, drawn independently of h and
each other

• n � 30

• THEN With approximately 95% probability, errorD(h)
lies in interval

errorS(h)± 1.96

r
errorS(h)(1� errorS(h))

n
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Confidence Intervals

• IF S contains n examples, drawn independently of h and
each other

• n � 30

• THEN with approximately N% probability, errorD(h) lies
in interval

errorS(h)± zN

r
errorS(h)(1� errorS(h))

n

WHERE

N%: 50% 68% 80% 90% 95% 98% 99%
zN : 0.67 1.00 1.28 1.64 1.96 2.33 2.58

• at least 30 examples

• errorS(h) not too close to 0 or 1

• or

n⇥ errorS(h)⇥ (1� errorS(h)) � 5
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Example

data sample S, n = 40

r = 12, number of error h commit over S

i.e. errorS(h) = 12
40 = 0.3

95% confidence interval estimate for

errorD(h) 2 [0.3± (1.96⇥
p

0.3⇤0.7
40 )]

errorD(h) 2 [0.3± 0.14]
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Example 2

Same example, di↵erent confidence interval

data sample S, n = 40

r = 12, number of error h commit over S

i.e. errorS(h) = 12
40 = 0.3

98% confidence interval estimate for

errorD(h) 2 [0.3± (2.33⇥
p

0.3⇤0.7
40 )]

errorD(h) 2 [0.3± 0.1631]
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Example 3

Same example, di↵erent sample size and error

data sample S, n = 1000

r = 300, number of error h commit over S

i.e. errorS(h) = 300
1000 = 0.3

95% confidence interval estimate for

errorD(h) 2 [0.3± (1.96⇥
p

0.3⇤0.7
1000 )]

errorD(h) 2 [0.3± 0.028403098]
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errorS(h) is a Random Variable

Rerun the experiment with di↵erent randomly drawn S (of size n)

Probability of observing r misclassified examples:

P (r) =
n!

r!(n� r)!
errorD(h)r(1� errorD(h))n�r

errorD(h) = P
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Binomial Probability Distribution

P (r) =
n!

r!(n� r)!
pr(1� p)n�r

Probability P (r) of r heads in n coin flips, if p = Pr(heads)

• Expected, or mean value of X, E[X], is

E[X] ⌘
nX

i=0

iP (i) = np
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• Variance of X is

V ar(X) ⌘ E[(X � E[X])2] = np(1� p)

• Standard deviation of X, �X, is

�X ⌘
p

E[(X � E[X])2] =

r
np(1� p)

n2
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Normal Distribution Approximates
Binomial

errorS(h) follows a Binomial distribution, with

• mean µerrorS(h) = errorD(h)

• standard deviation �errorS(h)

�errorS(h) =

r
errorD(h)(1� errorD(h))

n

Approximate this by a Normal distribution with

• mean µerrorS(h) = errorD(h)

• standard deviation �errorS(h)

�errorS(h) ⇡

r
errorS(h)(1� errorS(h))

n
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Normal Probability Distribution

p(x) =
1

p
2⇡�2

e�
1
2(

x�µ
�

)2

The probability that X will fall into the interval (a, b) is given by

Z b

a

p(x)dx

• Expected, or mean value of X, E[X], is

E[X] = µ
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• Variance of X is

V ar(X) = �2

• Standard deviation of X, �X, is

�X = �
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Normal Probability Distribution

80% of area (probability) lies in µ± 1.28�

N% of area (probability) lies in µ± zN�

N%: 50% 68% 80% 90% 95% 98% 99%
zN : 0.67 1.00 1.28 1.64 1.96 2.33 2.58
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Confidence Intervals, More Cor-
rectly

• IF S contains n examples, drawn independently of h and
each other

• n � 30

• THEN with approximately 95% probability, errorS(h) lies
in interval

errorD(h)± 1.96

r
errorD(h)(1� errorD(h))

n

equivalently, errorD(h) lies in interval

errorS(h)± 1.96

r
errorD(h)(1� errorD(h))

n

which is approximately

errorS(h)± 1.96

r
errorS(h)(1� errorS(h))

n
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A General Approach For Calculat-
ing Confidence Intervals

1. Pick parameter p to estimate

• errorD(h)

2. Choose an estimator (unbiased, low variance)

• errorS(h)

3. Determine probability distribution that governs estimator

• errorS(h) governed by Binomial distribution,
approximated by Normal when n � 30

4. Find interval (L,U) such that N% of probability mass
falls in the interval

• Use table of zN values
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Two-sided bounds and One-sided
bounds

P (x 2 [L,U ]) = N%

P (x 62 [L,U ]) = (100 �N)%

P (x  U ]) = (N + 100�N
2 )%
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An example

errorS(h) = 0.3, n = 40

?u such that p(x  u) = 97.5%

or N such that N + 100�N
2 = 97.5

! N = 95

u = 0.30± Z95

q
(0.3)(1�0.3)

40 , Zn = 1.96

u = 0.30+ 0.14 = 0.44
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Di↵erent Hypotheses, Which One
Is The Best?

Test h1 on sample S1, test h2 on S2

1. Pick parameter to estimate

d ⌘ errorD(h1)� errorD(h2)= true error

2. Choose an estimator (unbiased)

d̂ ⌘ errorS1(h1)� errorS2(h2)

3. Determine probability distribution that governs estimator

�d̂ ⇡
q

errorS1(h1)(1� errorS1(h1))

n1
+

errorS2(h2)(1� errorS2(h2))

n2

4. Find interval (L,U) such that N% of probability mass
falls in the interval

d̂± zN

r
errorS1(h1)(1� errorS1(h1))

n1
+

errorS2(h2)(1� errorS2(h2))

n2
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Example

h1, S1, n1 = 100

Thus, errorS1(h1) = 0.3

AND

h2, S2, n2 = 100

Thus, errorS2(h2) = 0.2 Given �̂ = 0.1

Is errorD(h1) > errorD(h2)?

or if d = errorD(h1)� errorD(h2)

What is the probability that d > 0, given we observed d̂ = 0.1

probability d̂ < d+0.1
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probability d̂ one sided interval

µd̂ + zN�d̂ with �d̂ = 0.061 (see Eq. 5.12)

! ZN such that 0.1 = ZN0.061

ZN ⇡ 1.64

Thus, two-sided confidence level = 90%

one-sided confidence level = 90%+ 100%�90%
2 = 95%
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Paired t test to compare hA,hB

1. Partition data into k disjoint test sets T1, T2, . . . , Tk of
equal size, where this size is at least 30.

2. For i from 1 to k, do

�i  errorTi(hA)� errorTi(hB)

3. Return the value �̄, where

�̄ ⌘
1

k

kX

i=1

�i

N% confidence interval estimate for d:

�̄ ± tN,k�1 s�̄

s�̄ ⌘

vuut 1

k(k � 1)

kX

i=1

(�i � �̄)2

Note �i approximately Normally distributed
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Comparing learning algorithms LA and LB

What we’d like to estimate:

ES⇢D[errorD(LA(S))� errorD(LB(S))]

where L(S) is the hypothesis output by learner L using
training set S

i.e., the expected di↵erence in true error between
hypotheses output by learners LA and LB, when trained
using randomly selected training sets S drawn according
to distribution D.

But, given limited data D0, what is a good estimator?

• could partition D0 into training set S and test set
T0, and measure

errorT0(LA(S0))� errorT0(LB(S0))

• even better, repeat this many times and average
the results (next slide)
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Comparing learning algorithms LA and LB

(a) Partition data D0 into k disjoint test sets
T1, T2, . . . , Tk of equal size, where this size is at
least 30.

(b) For i from 1 to k, do
use Ti for the test set, and the remaining

data for training set Si

• Si  {D0 � Ti}
• hA  LA(Si)
• hB  LB(Si)
• �i  errorTi(hA)� errorTi(hB)

(c) Return the value �̄, where

�̄ ⌘
1

k

kX

i=1

�i

(d) �̄ is an estimator of
ES⇢Do[errorD(LA(S))� errorD(LB(S))]
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Comparing learning algorithms LA
and LB

Notice we’d like to use the paired t test on �̄ to obtain a
confidence interval

but not really correct, because the training sets in this algorithm
are not independent (they overlap!)

more correct to view algorithm as producing an estimate of

ES⇢D0[errorD(LA(S))� errorD(LB(S))]

instead of

ES⇢D[errorD(LA(S))� errorD(LB(S))]

but even this approximation is better than no comparison
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Confidence levels
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Summary

• p = probability coin

• p(toss) = p(head)

• r = number of heads over sample of size n

• ! 1
n

• Estimating p

• errorD(h) = probability h misclassifies random instance

• ratio of misclassifications by h over n random instances

• r = number of heads over sample of size n

• ! errorS(h)

• Estimating errorD(h)
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Confidence Interval

• Describes the uncertainty associated with an estimate

• It is the interval within which the true value is expected
to fall with a certain probability

An example

• h tested on 40 samples of S and r = 12 errors

• approx. prob of 95%

• errorD(h) 2 0.3± 0.14

• Why, how to compute interval?

• We know errorD(h) random variable according to
Binomial probability distribution
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• SD mean = errorD(h) = P

• SD mean =

q
P (1�P )

n

• P (errorS(h) 2 H) = 90%

• P (errorD(h) 2 errorS(h)± d) = 90%
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Exercises

130


