Evaluating Hypotheses

[Read Ch. 5] [Recommended exercises: 5.2, 5.3, 5.4]

- Sample error, true error
- Confidence intervals for observed hypothesis error
- Estimators
- Binomial distribution, Normal distribution, Central Limit Theorem
- Paired t tests
- Comparing learning methods

Two Definitions of Error

The **true error** of hypothesis h with respect to target function fand distribution \mathcal{D} is the probability that h will misclassify an instance drawn at random according to \mathcal{D} .

$$error_{\mathcal{D}}(h) \equiv \Pr_{x \in \mathcal{D}}[f(x) \neq h(x)]$$

The **sample error** of h with respect to target function f and data sample S is the proportion of examples h misclassifies

$$error_S(h)\equiv rac{1}{n}\sum_{x\in S}\delta(f(x)
eq h(x))$$

Where $\delta(f(x) \neq h(x))$ is 1 if $f(x) \neq h(x)$, and 0 otherwise.

How well does $error_{S}(h)$ estimate $error_{D}(h)$?

Problems Estimating Error

1. Bias: If S is training set, $error_S(h)$ is optimistically biased

$$bias \equiv E[error_{S}(h)] - error_{D}(h)$$

For unbiased estimate, \boldsymbol{h} and \boldsymbol{S} must be chosen independently

2. Variance: Even with unbiased S, $error_S(h)$ may still vary from $error_D(h)$. The smaller the test-set, the larger the probability of a large variance.

Hypothesis \boldsymbol{h} misclassifies 12 of the 40 examples in \boldsymbol{S}

$$error_S(h) = \frac{12}{40} = .30$$

What is $error_{\mathcal{D}}(h)$?

Estimators

Experiment:

- 1. choose sample S of size n according to distribution \mathcal{D}
- 2. measure $error_{S}(h)$

 $error_{S}(h)$ is a random variable (i.e., result of an experiment)

 $error_{S}(h)$ is an unbiased *estimator* for $error_{\mathcal{D}}(h)$

Given observed $error_{S}(h)$ what can we conclude about $error_{D}(h)$?

Confidence Intervals

- IF S contains n examples, drawn independently of h and each other
- n ≥ 30
- **THEN** With approximately 95% probability, $error_{\mathcal{D}}(h)$ lies in interval

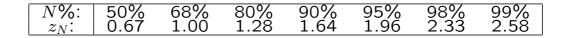
$$error_{S}(h) \pm 1.96 \sqrt{rac{error_{S}(h)(1 - error_{S}(h))}{n}}$$

Confidence Intervals

- IF S contains n examples, drawn independently of h and each other
- n ≥ 30
- **THEN** with <u>approximately</u> N% probability, $error_{\mathcal{D}}(h)$ lies in interval

$$error_{S}(h)\pm z_{N}\sqrt{rac{error_{S}(h)(1-error_{S}(h))}{n}}$$

WHERE



- at least 30 examples
- $error_S(h)$ not too close to 0 or 1
- or

$$n \times error_{S}(h) \times (1 - error_{S}(h)) \geq 5$$

data sample S, n = 40

r = 12, number of error h commit over S

i.e.
$$error_S(h) = \frac{12}{40} = 0.3$$

95% confidence interval estimate for

$$error_{D}(h) \in [0.3 \pm (1.96 \times \sqrt{\frac{0.3*0.7}{40}})]$$

$$error_D(h) \in [0.3 \pm 0.14]$$

Same example, different confidence interval

data sample S, n = 40

r = 12, number of error h commit over S

i.e.
$$error_S(h) = \frac{12}{40} = 0.3$$

98% confidence interval estimate for

$$error_D(h) \in [0.3 \pm (2.33 imes \sqrt{rac{0.3 imes 0.7}{40}})]$$

$$error_D(h) \in [0.3 \pm 0.1631]$$

Same example, different sample size and error

data sample S, n = 1000

r = 300, number of error h commit over S

i.e.
$$error_S(h) = \frac{300}{1000} = 0.3$$

95% confidence interval estimate for

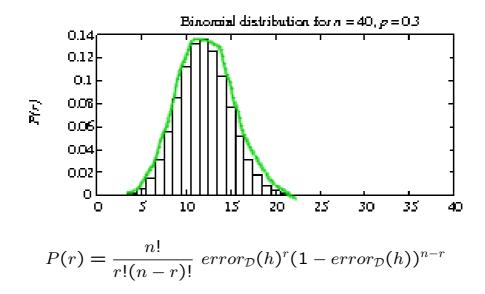
$$error_D(h) \in [0.3 \pm (1.96 imes \sqrt{rac{0.3 imes 0.7}{1000}})]$$

 $error_D(h) \in [0.3 \pm 0.028403098]$

$error_{S}(h)$ is a Random Variable

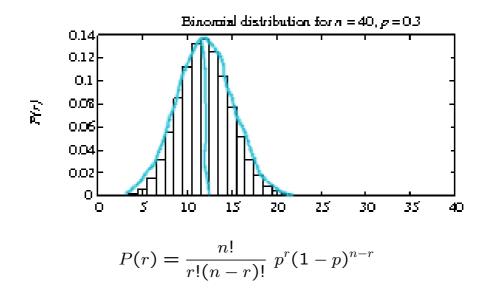
Rerun the experiment with different randomly drawn S (of size n)

Probability of observing r misclassified examples:



 $error_{\mathcal{D}}(h) = P$

Binomial Probability Distribution



Probability P(r) of r heads in n coin flips, if p = Pr(heads)

• Expected, or mean value of X, E[X], is

$$E[X] \equiv \sum_{i=0}^{n} iP(i) = np$$

• <u>Variance</u> of X is

$$Var(X) \equiv E[(X - E[X])^2] = np(1 - p)$$

• Standard deviation of X, σ_X , is

$$\sigma_X \equiv \sqrt{E[(X - E[X])^2]} = \sqrt{\frac{np(1 - p)}{n^2}}$$

Normal Distribution Approximates Binomial

 $error_{S}(h)$ follows a *Binomial* distribution, with

- mean $\mu_{error_S(h)} = error_D(h)$
- standard deviation $\sigma_{error_{S}(h)}$

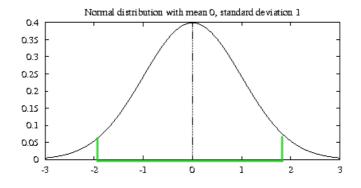
$$\sigma_{error_{\mathcal{D}}(h)} = \sqrt{\frac{error_{\mathcal{D}}(h)(1 - error_{\mathcal{D}}(h))}{n}}$$

Approximate this by a Normal distribution with

- mean $\mu_{error_S(h)} = error_D(h)$
- standard deviation $\sigma_{error_S(h)}$

$$\sigma_{error_S(h)} pprox \sqrt{rac{error_S(h)(1 - error_S(h))}{n}}$$

Normal Probability Distribution



$$p(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2}$$

The probability that X will fall into the interval (a, b) is given by

$$\int_{a}^{b} p(x) dx$$

• Expected, or mean value of X, E[X], is

$$E[X] = \mu$$

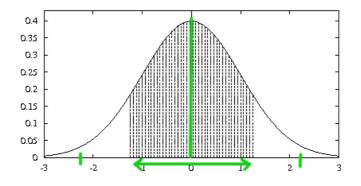
• <u>Variance</u> of X is

$$Var(X) = \sigma^2$$

• Standard deviation of X, σ_X , is

 $\sigma_X = \sigma$

Normal Probability Distribution



80% of area (probability) lies in $\mu\pm1.28\sigma$

N% of area (probability) lies in $\mu\pm z_N\sigma$

<i>N</i> %:	50%	68%	80%	90%	95%	98%	99%
z_N :	0.67	1.00	1.28	1.64	1.96	2.33	2.58

Confidence Intervals, More Correctly

- IF S contains n examples, drawn independently of h and each other
- n ≥ 30
- **THEN** with approximately <u>95%</u> probability, $error_S(h)$ lies in interval

$$error_{\mathcal{D}}(h) \pm 1.96 \sqrt{rac{error_{\mathcal{D}}(h)(1 - error_{\mathcal{D}}(h))}{n}}$$

equivalently, $error_{\mathcal{D}}(h)$ lies in interval

$$error_{S}(h) \pm 1.96 \sqrt{\frac{error_{D}(h)(1 - error_{D}(h))}{n}}$$

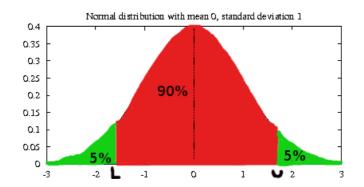
which is approximately

$$error_{S}(h) \pm 1.96 \sqrt{rac{error_{S}(h)(1 - error_{S}(h))}{n}}$$

A General Approach For Calculating Confidence Intervals

- 1. Pick parameter p to estimate
 - $error_{\mathcal{D}}(h)$
- 2. Choose an estimator (unbiased, low variance)
 - $error_{S}(h)$
- 3. Determine probability distribution that governs estimator
 - $error_{S}(h)$ governed by Binomial distribution, approximated by Normal when $n \ge 30$
- 4. Find interval (L, U) such that N% of probability mass falls in the interval
 - Use table of z_N values

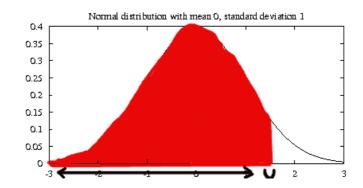
Two-sided bounds and One-sided bounds



$$P(x \in [L, U]) = N\%$$

 $P(x \notin [L, U]) = (100 - N)\%$

 $P(x \le U]) = (N + \frac{100 - N}{2})\%$



An example

$$error_{S}(h) = 0.3, n = 40$$

u such that $p(x \le u) = 97.5\%$

or N such that $N+\frac{100-N}{2}=97.5$

$$\rightarrow N = 95$$

$$u = 0.30 \pm Z_{95} \sqrt{\frac{(0.3)(1-0.3)}{40}}, Z_n = 1.96$$

$$u = 0.30 + 0.14 = 0.44$$

Different Hypotheses, Which One Is The Best?

Test h_1 on sample S_1 , test h_2 on S_2

1. Pick parameter to estimate

$$d \equiv error_{\mathcal{D}}(h_1) - error_{\mathcal{D}}(h_2) =$$
true error

2. Choose an estimator (unbiased)

$$\hat{d} \equiv error_{S_1}(h_1) - error_{S_2}(h_2)$$

3. Determine probability distribution that governs estimator

$$\sigma_{\hat{d}} \approx \sqrt{\frac{error_{S_1}(h_1)(1 - error_{S_1}(h_1))}{n_1}} + \frac{error_{S_2}(h_2)(1 - error_{S_2}(h_2))}{n_2}$$

4. Find interval (L, U) such that N% of probability mass falls in the interval

$$\widehat{d} \pm z_N \sqrt{rac{error_{S_1}(h_1)(1 - error_{S_1}(h_1))}{n_1}} + rac{error_{S_2}(h_2)(1 - error_{S_2}(h_2))}{n_2}$$

 $h_1, S_1, n1 = 100$ Thus, $error_{S1}(h1) = 0.3$

AND

 $h_2, S_2, n2 = 100$ Thus, $error_{S2}(h2) = 0.2$ Given $\hat{\delta} = 0.1$

Is $error_D(h1) > error_D(h2)$?

or if $d = error_D(h1) - error_D(h2)$

What is the probability that d > 0, given we observed $\hat{d} = 0.1$

probability $\hat{d} < d + 0.1$

probability $\hat{d} \leftarrow$ one sided interval

 $\mu_{\hat{d}} + z_N \sigma_{\hat{d}}$ with $\sigma_{\hat{d}} = 0.061$ (see Eq. 5.12)

! Z_N such that $0.1 = Z_N 0.061$

$$Z_N pprox 1.64$$

Thus, two-sided confidence level = 90%

one-sided confidence level = $90\% + \frac{100\% - 90\%}{2} = 95\%$

Paired t test to compare h_A , h_B

- 1. Partition data into k disjoint test sets T_1, T_2, \ldots, T_k of equal size, where this size is at least 30.
- 2. For i from 1 to k, do

$$\delta_i \leftarrow error_{T_i}(h_A) - error_{T_i}(h_B)$$

3. Return the value $\overline{\delta}$, where

$$ar{\delta} \equiv rac{1}{k} \sum_{i=1}^k \delta_i$$

N% confidence interval estimate for d:

$$\delta \pm t_{N,k-1} \ s_{\overline{\delta}}$$

$$s_{\overline{\delta}} \equiv \sqrt{rac{1}{k(k-1)}\sum_{i=1}^k (\delta_i - \overline{\delta})^2}$$

Note δ_i approximately Normally distributed

Comparing learning algorithms L_A and L_B

What we'd like to estimate:

$E_{S \subset \mathcal{D}}[error_{\mathcal{D}}(L_A(S)) - error_{\mathcal{D}}(L_B(S))]$

where L(S) is the hypothesis output by learner L using training set S

i.e., the expected difference in true error between hypotheses output by learners L_A and L_B , when trained using randomly selected training sets S drawn according to distribution \mathcal{D} .

But, given limited data D_0 , what is a good estimator?

• could partition D_0 into training set S and test set T_0 , and measure

 $error_{T_0}(L_A(S_0)) - error_{T_0}(L_B(S_0))$

• even better, repeat this many times and average the results (next slide)

Comparing learning algorithms L_A and L_B

- (a) Partition data D_0 into k disjoint test sets T_1, T_2, \ldots, T_k of equal size, where this size is at least 30.
- (b) For *i* from 1 to *k*, do use T_i for the test set, and the remaining data for training set S_i
 - $S_i \leftarrow \{D_0 T_i\}$
 - $h_A \leftarrow L_A(S_i)$
 - $h_B \leftarrow L_B(S_i)$
 - $\delta_i \leftarrow error_{T_i}(h_A) error_{T_i}(h_B)$
- (c) Return the value $\overline{\delta}$, where

$$\bar{\delta} \equiv \frac{1}{k} \sum_{i=1}^{k} \delta_i$$

(d) $\overline{\delta}$ is an estimator of $E_{S \subset D_o}[error_{\mathcal{D}}(L_A(S)) - error_{\mathcal{D}}(L_B(S))]$

Comparing learning algorithms L_A and L_B

Notice we'd like to use the paired t test on $\overline{\delta}$ to obtain a confidence interval

but not really correct, because the training sets in this algorithm are not independent (they overlap!)

more correct to view algorithm as producing an estimate of

$$E_{S \subset D_0}[error_{\mathcal{D}}(L_A(S)) - error_{\mathcal{D}}(L_B(S))]$$

instead of

 $E_{S \subset \mathcal{D}}[error_{\mathcal{D}}(L_A(S)) - error_{\mathcal{D}}(L_B(S))]$

but even this approximation is better than no comparison

Confidence levels

	Co 90%	onfidenc 95%	e level 1 98%	N 99%
$\nu = 2$	2.92	4.30	6.96	9.92
v = 5	2.02	2.57	3.36	4.03
$\nu = 10$	1.81	2.23	2.76	3.17
$\nu = 20$	1.72	2.09	2.53	2.84
v = 30	1.70	2.04	2.46	2.75
v = 120	1.66	1.98	2.36	2.62
$\nu = \infty$	1.64	1.96	2.33	2.58

TABLE 5.6

Values of $t_{N,\nu}$ for two-sided confidence intervals.

As $\nu \to \infty$, $t_{N,\nu}$ approaches z_N .

Summary

- p = probability coin
- p(toss) = p(head)
- r = number of heads over sample of size n
- $\rightarrow \frac{1}{n}$
- Estimating p
- $error_{\mathcal{D}}(h) = \text{probability } h \text{ misclassifies random instance}$
- ratio of misclassifications by h over n random instances
- r = number of heads over sample of size n
- $\rightarrow error_{S}(h)$
- Estimating $error_{\mathcal{D}}(h)$

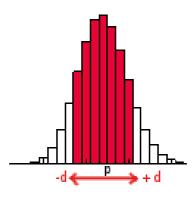
Confidence Interval

- Describes the uncertainty associated with an estimate
- It is the interval within which the true value is expected to fall with a certain probability

An example

- *h* tested on 40 samples of *S* and r = 12 errors
- approx. prob of 95%
- $error_{\mathcal{D}}(h) \in 0.3 \pm 0.14$
- Why, how to compute interval?
- We know $error_{\mathcal{D}}(h)$ random variable according to Binomial probability distribution

- SD mean = $error_{\mathcal{D}}(h) = P$
- SD mean = $\sqrt{\frac{P(1-P)}{n}}$
- $P(error_S(h) \in H) = 90\%$
- $P(error_{\mathcal{D}}(h) \in error_{S}(h) \pm d) = 90\%$



Exercises

EXERCISFS

- 5.1. Suppose you test a hypothesis h and find that it commits r = 300 errors on a sample S of n = 4000 randomly Gavin test examples. What is the standard deviation in $error_{S}(h)$? How does this compare to the standard deviation in the example at the end of Section 5.2.4?
- 5.2. Consider a learned hypothesis, h, for some boolean concept. When h is tested on a set of 100 examples, it classifies 83 correctly. What is the standard deviation and the 95% confidence interval for the true error rate for $Error_{\mathcal{D}}(h)$?
- 5.3. Suppose hypothesis h commits r = 10 errors over a sample of n = 65 independently drawn examples. What is the 90% confidence interval (two-sided) for the true error rate? What is the 95% one-sided interval (i.e., what is the upper bound U such that error_p(h) $\leq U$ with 95% confidence)? What is the 90% one-sided interval?
- 5.4. You are about to test a hypothesis h whose $error_{\mathcal{D}}(h)$ is known to be in the range between 0.2 and 0.6. What is the minimum number of examples you must collect to assure that the width of two-sided 95% confidence interval will be smaller than 0.1?
- 5.5. Give general expressions for the upper and lower one-sided N% confidence intervals for the cliffet nee in errors between two hypotheses tested on different samples of data. Hint: a_{12} odify the expression given in Section 5.5.
- 5.6. Explain wh, the confidence interval estimate given in Equation (5.17) applies to estimating the quantity in Equation (5.16), and not the quantity in Equation (5.14).