
AI Lab Technical Report AI-TR-14-69

Efficient Weight Space Search in
Multi-Objective Reinforcement

Learning

Kristof Van Moffaert1, Tim Brys1, and Ann Nowé1

Artificial Intelligence Lab,
Vrije Universiteit Brussel,

Pleinlaan 2, 1050 Brussels, Belgium
{kvmoffae,timbrys,anowe}@vub.ac.be

Abstract. Linear scalarization is, due to its simplicity, by far the most
commonly used method to solve multi-objective problems, as it permits
the use of single-objective solution techniques by combining multiple ob-
jectives into a single scalar value by means of a weighted sum. This tech-
nique is also extensively used in multi-objective reinforcement learning
(MORL) specifically, but the usefulness of scalarization depends on the
shape of the Pareto optimal set, and the values assigned to the weights.
For each policy in the convex multi-objective hull of the Pareto optimal
set, there exist weight combinations that modify the Markov Decision
Process (MDP), such that that specific policy is optimal. Setting the
weights appropriately allows the system designer to select which policy
the learning agent will converge to, but this assignment of weights is not
trivial. In this paper, we propose an algorithm that efficiently searches
the weight space to identify the policies that are included in the convex
hull of the Pareto optimal set, and the associated regions in the weight
space that make those policies optimal. The technique is experimentally
validated on several MORL benchmark problems.

Keywords: Multi-objective reinforcement learning, linear scalarization,
weight space search.

1 Introduction

Many optimization problems that need to be solved nowadays are in essence tasks
that involve more than one objective. For example, in network routing, the ob-
jectives to be optimized are packet latency and energy consumption. When the
system engineer wants to optimize more than one objective at the same time,
it is not always clear from the problem description (if any) how to achieve this,
and how the objectives influence each other. Also, it is often not sufficient to

2 K. Van Moffaert et al.

try to optimize just one objective without considering the effect that this maxi-
mization has on the other objectives in the system. In such cases, we are dealing
with a genuine multi-objective optimization problem. Formally, multi-objective
optimization (MOO) is the process of simultaneously optimizing multiple objec-
tives which can be complementary, conflicting as well as independent. The goal
of MOO is to search the policy space and eventually find policies that provide
different trade-offs between objectives.

Usually, a (weighted) linear scalarization function is used to translate the
original multi-objective problem into a single-objective problem that can be
solved by single-objective techniques. The weight parameters wo ∈ [0, 1] are
preference factors that identify the relative importance of objectives o, with∑m−1
o=0 wo = 1 for m objectives. This transforms the original problem into a

single-objective optimization problem, which is a weighted convex sum of the
original objectives: f(x) =

∑m−1
o=0 wofo(x). The main disadvantages of this ap-

proach are (i) that it is limited to finding policies that are located on convex
parts of the Pareto optimal set, and (ii) that the correspondence between weights
and policies is not clear, i.e. a uniform sampling of weights usually does not re-
sult in a uniform sampling of (convex parts of) the Pareto optimal set. The
former problem can be solved by applying non-linear scalarization techniques,
such as the Chebyshev metric [1]. The latter problem requires system designers
to spend a lot of excessive computation to the problem of fine-tuning the linear
scalarization weights, in order to find desired trade-off policies from the Pareto
optimal set.

Main contributions. In this paper, we analyse the mapping of the weight-
space to policies on the convex hull of the Pareto optimal set, found by rein-
forcement learning agents for several convex MORL benchmark problems. We
show that setting scalarization weights based on intuition or a uniform sam-
pling of the weight-space is very inefficient, since often very few Pareto optimal
policies have large basins of attraction in the weight space, with other policies
limited to very small regions in the weight-space. We therefore present a simple
tree-based search algorithm on top of a value-iteration algorithm that steers the
weight configuration of the learning agent by analyzing the learned policies. The
algorithm is particularly suited for being used in an on-line context, while being
easily applied to problems with any number of objectives, in contrast to other
techniques that are often limited to two or three, due to complex (geometrical)
calculations. We perform an empirical evaluation of the method on several multi-
objective environments and show it to be superior both to uniform sampling and
a popular non-linear scalarization method.

Outline. The contents of the paper is organized as follows. In Section 2,
we describe related concepts such as reinforcement learning and multi-objective
optimization. In Section 3, we present our tree-based algorithm for steering the
underlying value-iteration algorithm. Furthermore, in Section 4, we conduct an
empirical evaluation of the method on several benchmark instances. In Section 5,
we summarize the paper and form conclusions.

Efficient Weight Space Search using Multi-Objective Reinforcement Learning 3

2 Related work

In this section, we describe some of the basic concepts related concepts to multi-
objective reinforcement learning (MORL) and current techniques in MORL for
the approximation of convex Pareto optimal sets.

2.1 Reinforcement learning

A reinforcement learning [2] environment is typically described as a Markov
Decision Process (MDP), which is formulated as follows. Let S = {s1, . . . , sN}
be the state space of a finite Markov chain {xl}l≥0 and A = {a1, . . . , ar} the
action set available to the learning agent. Each combination of current state si,
action choice ai ∈ Ai and next state sj has an associated transition probability
T (sj |si, ai) and immediate reward R(si, ai). The goal is to learn a policy π,
which maps each state to an action so that the expected accumulated future
discounted reward Jπ is maximized:

Jπ ≡ E

[∞∑
t=0

γtR(st, π(st))

]
(1)

where γ ∈ [0, 1) is the discount factor and expectations are taken over stochastic
rewards and transitions. This goal can also be expressed using Q-values which
explicitly store the expected discounted reward for every state-action pair. The
optimal Q∗-values are defined as follows.

Q∗(s, a) = R(s, a) + γ
∑
s′

T (s′|s, a) max
a′

Q∗(s′, a′) (2)

The most well known RL algorithm is Q-Learning [3], described by Watkins to
iteratively approximate Q∗. In the Q-learning algorithm, a Q-table consisting of
state-action pairs is stored. Each entry contains a value for Q̂(s, a) which is the
learner’s current estimate about the actual value of Q∗(s, a). The Q̂-values are
updated according to the following update rule:

Q̂(s, a)← (1− αt)Q̂(s, a) + αt[R(s, a) + γmax
a′

Q̂(s′, a′)] (3)

where αt is the learning rate at time step t and R(s, a) is the reward received for
performing action a in state s. Provided that all state-action pairs are visited
infinitely often, and a suitable evolution for the learning rate is chosen, the
estimates, Q̂, will converge to the optimal values, Q∗ [4].

2.2 Multi-objective reinforcement learning

In multi-objective optimization, the objective space consists of two or more di-
mensions. Therefore, regular MDPs are extended to multi-objective MDPs or

4 K. Van Moffaert et al.

MOMDPs. MOMDPs are by definition MDPs that provide a vector of rewards
instead of a single reward, i.e:

R(si, ai) = (R0(si, ai), . . . Rm−1(si, ai)) (4)

where m represents the number of objectives. Since reinforcement learning tradi-
tionally concerns a maximization problem, we also describe multi-objective rein-
forcement learning (MORL) as a maximization problem. In the case of MORL,
a solution is a policy π and is evaluated by its expected return Jπ, which is a
vector of expected returns for each objective. Thus,

Jπ ≡

[
E

[∞∑
t=0

γtR0(st, π(st))

]
, . . . , E

[∞∑
t=0

γtRm−1(st, π(st))

]]
(5)

Since the environment now consists of multiple objectives, conflicts could arise
when trying to simultaneously optimize the objectives. In such a case, trade-offs
between these objectives have to be made, resulting in a set of incomparable
policies. The set of non-dominated, optimal policies for each objective or a com-
bination of objectives is referred to as the Pareto optimal set1. A solution x1 is
said to strictly dominate another solution x2, i.e. x2 ≺ x1, if each objective in
x1 is not strictly less than the corresponding objective of x2 and at least one
criterion is strictly greater. In the case where x1 improves x2 on some criterion
and x2 also improves x1 on one or more objectives, the two solutions are said to
be incomparable.

Current approaches in MORL often use scalarization functions [5] to reduce
the dimensionality of the underlying multi-objective environment to a single
dimension. Scalarization functions often imply that an objective o is associated
with a weighted coefficient, which allows the user some control over the nature
of the policy found by the system, by placing more or less emphasis on each of
the objectives. In a multi-objective environment, this trade-off is parametrized
by wo ∈ [0, 1] for objective o and

∑m−1
o=0 wo = 1.

In [1], a general framework for MORL algorithms was proposed that extends

the scalar Q̂-values to Q̂-vectors that store a Q̂-value for each objective, i.e.

Q̂(s, a) =

[
Q̂0(s, a), . . . , Q̂m−1(s, a)

]
(6)

The proposed framework uses a scalarization function to perform the multi-
objective action selection, based on the Q̂-vector of each state-action pair. More
precisely, by performing a scalarization function over the Q̂-vector of action a
in state s, a scalarized Q-value or SQ-value is obtained. Commonly, the linear
scalarization function is used that performs a weighted-sum over the Q-value of
each objective and its corresponding weight, i.e.

SQ(s, a) =

m−1∑
o=0

wo · Q̂o(s, a) (7)

1 Also known as the Pareto front

Efficient Weight Space Search using Multi-Objective Reinforcement Learning 5

The framework also allows to incorporate non-linear scalarization functions,
such as the Chebyshev scalarization function. This particular method was found
to be very effective on non-convex Pareto optimal sets, as it always tries to
minimize the weighted distance from the current solution to a utopian point, i.e.

SQ(s, a) = max
o=0...(m−1)

wo · |Q̂(s, a, o)− z∗o | (8)

Using the Chebyshev metric, the action corresponding to the minimal SQ-value
is considered the greedy action in state s, i.e. greedya′(s

′):

greedya′(s) = min
a′

SQ(s, a′) (9)

2.3 Related work on methods to identify the convex hull

There are few value-iteration algorithms that approximate the convex parts of
the Pareto optimal set. The work by Barrett and Narayanan [6] is a model-
based method that aims to learn every deterministic policy that lies on the
convex hull of the Pareto optimal set. More precisely, their algorithm learns in
parallel all optimal policies under a set of fixed linear weight combinations of
the reward components. Their convex hull value iteration algorithm uses a series
of translation, scaling and summing operations to retrieve the Q-values that are
maximal for some set of linear preferences to identify the convex hull. These
operations are very costly in terms of computational complexity which makes
extensions to larger and higher dimensional environments computationally very
demanding.

In [7], an algorithm is proposed that calculates a piecewise linear spline rep-
resentation of the value function over the actions in a bi-objective environment.
More precisely, it calculates a list of trade-off weights together with a list of
their policies from batch data. The algorithm was recently extended to environ-
ments with three objectives in [8], using triangulation geometry. Extending their
work to more than three objectives is definitely not straightforward. The authors
conjecture that extended algebraic decision diagrams might work for higher di-
mensional spaces, but they state themselves that there is no guarantee these
methods would provide a computationally feasible solution.

3 Efficient weight search

Current techniques that aim to identify or approximate convex regions in the
Pareto optimal set are limited to model-based or batch learning approaches,
which are furthermore not easily extendible to higher dimensional spaces, i.e. en-
vironments with three or more objectives. In this section, we present a tree-based
search algorithm that efficiently explores the weight space for linear scalarization
in order to identify all policies located on convex regions of the Pareto optimal
set.

6 K. Van Moffaert et al.

Our tree-search algorithm exploits two properties of convex linear combina-
tions. First, we know that the weight space for linear scalarization is always
(m − 1)−dimensional, with m the number of objectives. This is due to the
fact that all weights must sum to 1, and therefore setting all but one weight
is enough to also fix the value for the last weight. Selecting different weight
assignments w = {w0, w1, ..., wm−1} transforms the MOMDP into MDPs with
different Pareto optimal policies as optimal policy.

Another important aspect of convex Pareto optimal sets is that the set of
policies that is optimal for a weight wo ∈ [0, 1] are precisely those policies whose
line-representations lie on the upper convex envelope of the Q-functions [9], i.e.
if for two different weight assignments a policy is optimal, it is also optimal for
the weight assignments on the line between them.

The aim of our method is to take benefit from these properties and exploit the
structure of convex hulls to identify the weight space regions that are associated
with a particular Pareto optimal policy, and specifically by recursively refining
the boundaries of these regions.

0 1
w0

0 10.5
w0

(a) Tree level 1 (b) Tree level 2

0 10.25
w0

0 10.375
w0

(c) Tree level 3 (d) Tree level 4

Fig. 1. A vizualization of search through the weight space for a bi-objective problem.
Search is only performed on weight w0 (x-axis), since w1 = 1 − w0. Different symbols
and colors identify different Pareto optimal policies.

The algorithm starts by solving the MOMDP using linear scalarized Q-
learning with the weight combinations that define the boundaries of the en-
tire weight space, which are e.g. for a bi-objective problem (and therefore one-
dimensional weight space), the two extrema: (w0 = 0;w1 = 1) and (w0 = 1;w1 =
0). As a running example, we visualize the search process for a bi-objective toy
problem in Figure 1(a), with different symbols and colors identifying different
Pareto optimal policies. If the discounted cumulative rewards of the learned

Efficient Weight Space Search using Multi-Objective Reinforcement Learning 7

policies (with learning converged) are the same, our search stops, and we can
conclude that there is only one Pareto-optimal policy, therefore no concave re-
gions in the Pareto optimal set, and that the objectives are not conflicting. Note
that different policies can be optimal for a given weight assignment, but their
discounted cumulative rewards must be the same.

If the discounted cumulative rewards for the policies found are different, as
is the case in our toy problem, the region bounded by these weight assignments
is split into equal parts. In the one-dimensional weight space case, the interval is
split in two, and the scalarized MOMDP is again solved with the weight values
at the split point, see Figure 1(b). Thus, we build a tree (a binary tree in the bi-
objective case) of weight space regions. With breadth-first search, we efficiently
search the tree to identify the weight space regions associated with different
policies, by only expanding nodes (splitting regions) if some of the boundary
points yield different policies. After four iterations on our toy problem, two
Pareto optimal policies are identified, with the intervals currently estimated at
[0, a] and [a, 1] respectively, with a somewhere between 0.25 and 0.375 . Further
refinements of the boundary may reveal new intervals lying in the (0.25, 0.375),
leading to other Pareto-optimal policies, or the boundary may simply be refined
ad infinitum.

For higher dimensional spaces (m > 2), the binary tree becomes a quad-
tree, octree, etc. Whereas for splitting a one-dimensional interval, evaluating
one new point is enough, the number of split points increases with the number
of objectives. For a three objective problem, the number of split points is 5 (one
in the middle of each edge of the square, and one in the middle). An example
search in a three objective environment is visualized in Figure 2. Note that the
upper-right part of the weight space is infeasible, since in that region w0+w1 > 1.

In general, for an m-objective environment, the number of split points of an
(m− 1)−dimensional hypercube is:

1 +

m−2∑
l=1

2m−1−l
(
m− 1

l

)
= 1 +

m−2∑
l=1

2m−1−l
(m− 1)!

l!(m− 1− l)!
(10)

which is basically counting the lower dimensional geometrical figures (l = 1 for
edges, l = 2 for faces, l = 3 for cells, etc.) of which the (m − 1)−dimensional
hypercube consists. Note that instead of having m in the equation, we have m−1
because the weight-space has one dimension less than the objective-space. For
example, for an environment with four objectives, the search tree is an octree
and the geometrical figures we are splitting are cubes. In that case, the number
of split points to be evaluated is equal to the number of edges (one split point in
the middle of each edge), plus the number of faces (one split point in the middle
of each face), plus 1 split point for the middle of the cube:

1 + 12 + 6 = 19 (11)

8 K. Van Moffaert et al.

10

1

w0

w1

10

1

0.5

0.5
w0

w1

(a) Tree level 1 (b) Tree level 2

10

1

0.75

0.25 0.75

0.25

w0

w1

10

1

0.125 0.875

0.125

0.875

w0

w1

(c) Tree level 3 (d) Tree level 4

Fig. 2. A vizualization of search through the weight space for a tri-objective problem.
Search is only performed on weights w0 (x-axis) and w1 (y-axis), since w2 = 1−w0−w1.
Different symbols and colors identify different Pareto optimal policies.

4 Experiments

In this section, we will perform an empirical evaluation of the search algorithm
on several MORL benchmark instances.

4.1 Testing environments

The Bountiful Sea Treasure world. The Bountiful Sea Treasure (BST) en-
vironment is an adaptation of the Deep Sea Treasure world [10], with the reward
structure altered to yield a convex Pareto optimal set. The problem is an episodic
task where an agent controls a submarine, searching for undersea treasures. The
world consists of a 10 x 11 grid where 10 treasures are located, with larger
treasures as the distance from the starting location increases. A visualization
of the environment and its Pareto optimal set is shown in Fig. 3. At each time
step, the agent can move into one of the cardinal directions (up, down, left,

Efficient Weight Space Search using Multi-Objective Reinforcement Learning 9

right). The two objectives are the time needed to reach the treasure and the
treasure value itself, which are to be minimized and maximized, respectively2.
The shortest path to each treasure is an element of the Pareto optimal set, and
the shape of the Pareto optimal set is entirely convex (Fig.3(b)). The world is
named bountiful because the convexification of the Pareto optimal set required
assigning higher treasure values to most of the treasure locations as compared
to the original Deep Sea Treasure world.

−20 −15 −10 −5 0
0

50

100

150

200

Time

T
re

a
s
u
re

Pareto optimal set of the Bountiful Sea Treasure world

(a) The Bountiful Sea Treasure world (b) The Pareto optimal set of policies

Fig. 3. Bountiful Sea Treasure world

The Bountiful Sea Treasure 3D world. Additionally, we extended the
two-dimensional BST by adding a third objective, called pressure. This pressure
objective relates to the depth of the submarine and a penalty is given linear to
this depth, i.e. at every step, the agent receives a reward of −depth. As a result,
the Pareto optimal set still consists of 10 optimal policies, but instead of allowing
for any shortest path to a treasure (Manhattan distance), the submarine must
travel as long as possible in the shallowest water before making its descent to a
particular treasure.

The Resource world. In this environment, adapted from [6], the agent
goes on a quest to bring gold and gems to its home. Upon returning to its
starting location, the goods he acquired are analyzed. The possible gathering
outcomes are bringing home nothing, gold, gems or gold and gems. The three
objectives are time, gold, and gems, and there are 4 Pareto optimal policies
in this environment, i.e. a policy that returns to the home location as fast as
possible without carrying anything, a policy that gathers the gold and returns as
fast as possible, a similar one for the gems objective, and a policy that gathers
both resources as fast as possible. Figure 4 vizualizes the Resource world and
depicts the convex hull these policies represent.

2 Traditionally, single-objective reinforcement learning solves a maximization problem.
If the problem at hand concerns a minimization of one of the objectives, negative
rewards are used for that objective to transform it into a maximization problem.

10 K. Van Moffaert et al.

−15
−10

−5
0

0

0.5

1
0

0.5

1

Time

Convex policy space of the Resource world

Gold

G
e
m

s

(a) The Resource world (b) The Pareto optimal set of policies, a convex hull

Fig. 4. Resource world

4.2 Results

We now present the results of our search technique on these testing environments.
We compare uniform random weight selection for linear scalarization and a pop-
ular non-linear scalarization function, i.e. the Chebyshev metric, which typically
obtains good results for concave regions in the Pareto optimal set [1, 11], as well
as our tree-based search with linear and Chebyshev scalarization. We analyze
the results by looking at the number of elements obtained from the Pareto op-
timal set as the search process progresses. We do not compare with the batch
learning method of [7], which requires complex geometrical calculations, and is
not applicable to multi-objective problems with more than three objectives.

In a first experiment, we explore the bi-objective Bountiful Sea Treasure
world. To give an idea about the mapping between weights and Pareto optimal
policies, we show in Fig. 5(a) and (b) a sweep through the weight space for
linear and Chebyshev scalarization respectively, identifying different policies with
different colors. Note that for linear scalarization, there are clearly delineated
intervals in the weight space for which specific policies are optimal. Yet, a large
part of the weight space leads to the same policy being optimal (dark blue),
and the other policies are only optimal in restricted areas of the weight space,
showing that uniform sampling of the weight space will be biased towards this
one policy. The mapping between the weight space and policies using Chebyshev
scalarization is very fragmented, resulting from the non-linear Chebyshev metric
not yielding a deterministic mapping. Instead of finding clearly bounded intervals
for each policy, we see most policies scattered through the weight space.

In Fig. 5(c), we depict a running sum of the number of Pareto optimal poli-
cies obtained during the search process, averaged over 50 runs. Note that our
(deterministic) method efficiently searches the weight space and was able to
obtain every element of the Pareto optimal set in under 100 iterations (one it-
eration equals solving an MDP with a single weight combination). The random
search method performs worse as it only finds 8 Pareto optimal policies after
1000 iterations. The fact that the random method is still able to obtain 8 poli-

Efficient Weight Space Search using Multi-Objective Reinforcement Learning 11

0 0.2 0.4 0.6 0.8 1
Weight W

0

Policies found for a range of weights with linear scalarization

Policy

0 0.2 0.4 0.6 0.8 1

Policies found for a range of weights with Chebyshev scalarization

Weight W
0

Policy

(a) Weight space with policies (b) Weight space with policies
found using linear scalarization found using Chebyshev scalarization

0 200 400 600 800 1000

2

4

6

8

10

Iteration

P
a
re

to
 e

le
m

e
n
ts

 l
e
a
rn

e
d

Pareto optimal elements learned on the Bountiful Sea world

Pareto optimal set

Random linear

Efficient linear

Random Chebyshev

Efficient Chebyshev

(c) Search performance (number of Pareto optimal
policies identified as a function of the number

of weight combinations tried)

Fig. 5. Bi-objective Bountiful Sea world

cies is due to the still somewhat reasonable sizes of most of the weight space
regions leading to different policies. In the three objective version of this world,
we will see that the difference with the random method becomes much larger, as
the size of most regions shrinks dramatically. The Chebyshev scalarization func-
tion however was not able to find every element on the convex hull and found
around 7 optimal policies on average. Also, applying the tree-search method on
top of the Chebyshev scalarization function is not very effective. Paradoxically,
because Chebyshev scalarization is quite robust with respect to specific weight
settings [1], potentially finding various policies for the same weight assignment in
different runs (usually a good property, achieving greater spread), it cannot be
relied on in a search procedure as that proposed in this paper, since the search
procedure relies on a deterministic relationship between weights and policies.

In the three-objective Resource world, the weight space in Fig. 6(a) is two-
dimensional, as only w0 and w1 need to be set, with the assignment of w2 sub-
sequently being fixed, as

∑m
o=0 wo = 1. From this figure, we can clearly see the

four large, distinct regions associated with the four Pareto optimal policies. We
hypothesize that uniform random sampling the weight space will be much more
efficient in this world. In Fig. 6(b) we summarize the search performance on this
benchmark instance. We notice that, although there are no dramatic differences
in size between the various regions, the random search on average neetds more
than 50 iterations. On the other hand, the tree-based search algorithm only re-

12 K. Van Moffaert et al.

5 10 15 20 25 30 35 40 45 50
0.5

1

1.5

2

2.5

3

3.5

4

Iteration

P
a
re

to
 e

le
m

e
n
ts

 l
e
a
rn

e
d

Pareto optimal elements learned on the Resource world

Pareto optimal set

Random linear

Efficient linear

Random Chebyshev

Efficient Chebyshev

(a) Weight space with associated (b) Search performance (number of
Pareto optimal policies Pareto optimal policies identified as

a function of the number of weight
combinations tried)

Fig. 6. Resource world

quires 5 iterations. We also note that applying the search method on top of the
non-linear Chebyshev function is able to improve the search performance of the
algorithm (although not over the linear scalarization). This is the case because
the world is in essence relatively easy and the areas under which the different
policies are optimal are even large enough for a random search technique to
perform well. Nevertheless, our smart method efficiently found all elements at a
minimum cost of resources.

The Bountiful Sea Treasure 3D world is the most challenging environment of
the three discussed here. As is clear from the weight space in Fig. 7(a), a single
policy is optimal in 95% of the space, while the other optimal policies are only
obtained for a very specific set of weights (see the zoomed-in representation in
Fig. 7(b)). Even using a brute-force search of the weight space, trying all weight
combinations with increments of 0.001, only 7 of the 10 Pareto optimal policies
are identified. This again shows that uniformly sampling the weight space to
identify the convex parts of the Pareto optimal set can be a very inefficient
procedure indeed.

In Fig. 8(a), we show the search performance of the different search algo-
rithms. It is clear that a random search strategy, be it using a linear or Chebyshev
scalarization function, only finds a limited subset of the convex hull. The com-
bination of the Chebyshev learner with the tree-search method again improves
the search process, but on average only 7 out of 10 elements are learned. Once
more, our tree-based search algorithm is able to identify all Pareto optimal poli-
cies, although requiring many more evaluations than on previous worlds, due to
the extremely small size of the weight space regions associated with some of the
Pareto optimal policies (especially the three that are never found by brute-force,
random, or tree-based Chebyshev search). Note that there is some stochasticity
present in the search process, as learning with weight combinations near bound-
aries has not always completely converged, resulting in a misclassification of the
weight combination.

Efficient Weight Space Search using Multi-Objective Reinforcement Learning 13

0 0.02 0.04 0.06 0.08 0.1
0.9

0.92

0.94

0.96

0.98

1

Weight W
0

W
e
ig

h
t
W

1

Weight space on the Bountiful Sea 3D world

(a) Weight space with associated (b) Weight space zoomed in.
Pareto optimal policies. Only 7 of 10
Pareto optimal policies are identified

using an exhaustive brute-force search.

Fig. 7. Bountiful Sea Treasure 3D

Fig. 8(b) shows the resulting quad-tree, with color indicating the depth of
the tree, red being the deepest levels. The figure clearly shows that the search
algorithm is able to concentrate on the regions containing multiple policies, while
avoiding those other regions that will not contain as yet unidentified policies.
Figure 9 also confirms this, by showing which weight combinations are evalu-
ated by the tree-based search algorithm. The algorithm intensively explores the
boundaries between different regions, and ignores the interiors of these regions,
as they will not yield new policies. Refining the boundaries between regions can
help find new (very small) regions that are associated with other Pareto optimal
policies.

0 2000 4000 6000 8000 10000 12000
0

2

4

6

8

10

Iteration

P
a
re

to
 e

le
m

e
n
ts

 l
e
a
rn

e
d

 Pareto optimal elements learned on the Bountiful Sea 3D world

Pareto optimal set

Random linear

Efficient linear

Random Chebyshev

Efficient Chebyshev

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Weight W
0

W
e
ig

h
t

W
1

Visualization of adaptive weights, iteration 2720

(a) Search performance (number of (b) Resulting Quad-tree
Pareto optimal policies identified as
a function of the number of weight

combinations tried)

Fig. 8. Bountiful Sea Treasure 3D

14 K. Van Moffaert et al.

(a) Weight space search (each point is (b) Weight space search zoomed in
a weight combination that is evaluated). (exploration is focused on the

boundaries between regions)

Fig. 9. Bountiful Sea Treasure 3D

5 Conclusions

In this paper, we proposed a search algorithm that can automate the fine-tuning
of weights to identify the Pareto optimal set’s entire convex hull, using a multi-
objective reinforcement learning technique. We showed that a uniform sampling
of the weight space often does not lead to a uniform sampling of the convex
parts of the Pareto optimal set, and that therefore system designers can benefit
from a search algorithm, instead of relying on intuition and wasting computa-
tion power when tuning weights by hand, as is so often done. Our algorithm
performs breadth-first search on a tree-based partitioning of the weight space,
and explores those regions that contain the boundaries between already iden-
tified policies. We experimentally showed it to outperform a uniform random
sampling of the weight space, and that it can automate the process of tuning
weights to find policies that achieve a desired trade-off between the different
objectives. Even though the number of split points for the algorithm increases
exponentially in the number of objectives, it is still by far preferable over uni-
form random sampling, since uniform sampling of high dimensional spaces is
notoriously unrepresentative of the space. Directed search is always to be pre-
ferred over random sampling, even on the easiest of problems, as seen on the
Resource world. Our tree-search technique is furthermore easily extendible to
environments with more than three objectives in contrast to the methods in [6,
7], as our method only requires an additional number of weight points to be
evaluated and their results stored in the tree.

In future work, we intend to investigate heuristic search processes that can
improve over the current breadth-first search process, by helping decide which
nodes of the tree are most likely to contain regions leading to undiscovered
Pareto optimal policies, looking at distance metrics for policies. Furthermore,
we are interested in leveraging information learned in initial iterations of the
search algorithm, to speed up learning in later iterations. For example by storing
the MDP reward and transition samples in the first few iterations, and building
a Dyna-Q model to speed up learning in later iterations. This methodology

Efficient Weight Space Search using Multi-Objective Reinforcement Learning 15

would allow the search algorithm to transition from initially learning completely
on-line (which might be expensive), to model-based and batch learning later
on in the search process. Another alternative to the process described here, is
to use k-d trees, instead of quad-trees, octrees, etc., and not splitting regions
symmetrically, but based on an inspection of the bounding weight assignments,
and neighbouring regions.

6 Acknowledgement

Kristof Van Moffaert is supported by the IWT-SBO project PERPETUAL
(grant nr. 110041). Tim Brys is funded by a Ph.D grant of the Research Foun-
dation Flanders (FWO).

References

1. Van Moffaert, K., Drugan, M.M., Nowé, A.: Scalarized Multi-Objective Reinforce-
ment Learning: Novel Design Techniques. In: 2013 IEEE International Symposium
on Approximate Dynamic Programming and Reinforcement Learning, IEEE (2013)

2. Sutton, R., Barto, A.: Reinforcement Learning: An Introduction. Adaptive Com-
putation and Machine Learning. Mit Press (1998)

3. Watkins, C.: Learning from Delayed Rewards. PhD thesis, University of Cam-
bridge,England (1989)

4. Tsitsiklis, J.: Asynchronous stochastic approximation and q-learning. Journal of
Machine Learning 16(3) (1994) 185–202

5. Vamplew, P., Yearwood, J., Dazeley, R., Berry, A.: On the limitations of scalari-
sation for multi-objective reinforcement learning of pareto fronts. In: Proceedings
of the 21st Australasian Joint Conference on Artificial Intelligence: Advances in
Artificial Intelligence. AI ’08, Berlin, Heidelberg, Springer-Verlag (2008) 372–378

6. Barrett, L., Narayanan, S.: Learning all optimal policies with multiple criteria. In:
Proceedings of the 25th international conference on Machine learning. ICML ’08,
New York, NY, USA, ACM (2008) 41–47

7. Lizotte, D.J., Bowling, M., Murphy, S.A.: Efficient reinforcement learning with
multiple reward functions for randomized controlled trial analysis. In: Proceedings
of the Twenty-Seventh International Conference on Machine Learning (ICML).
(2010) 695–702

8. Lizotte, D.J., Bowling, M., Murphy, S.A.: Linear fitted-q iteration with multiple
reward functions. Journal of Machine Learning Research 13 (2012) 3253–3295

9. Ehrgott, M.: Multicriteria Optimization. Lectures notes in economics and mathe-
matical systems. Springer (2005)

10. Vamplew, P., Dazeley, R., Berry, A., Issabekov, R., Dekker, E.: Empirical eval-
uation methods for multiobjective reinforcement learning algorithms. Machine
Learning 84(1-2) (2010) 51–80

11. Van Moffaert, K., Drugan, M.M., Nowé, A.: Hypervolume-based multi-objective
reinforcement learning. Lecture Notes in Computer Science, Evolutionary Multi-
Criterion Optimization (EMO 2013) (2013)

