
Notice

This paper is the author’s draft and has now been published officially as:

Beuls Katrien, Van Trijp Remi and Wellens Pieter (2012). Diagnostics and Repairs
in Fluid Construction Grammar. In Luc Steels and Manfred Hild (Eds.), Language
Grounding in Robots, 215–234. Berlin: Springer.

BibTeX:

@incollection{beulsdiagnostics2012,
Author = {Beuls, Katrien and Van Trijp, Remi and Wellens, Pieter},
Title = {Diagnostics and Repairs in {Fluid Construction Grammar}},
Pages = {215--234},
Editor = {Steels, Luc},
Booktitle = {Language Grounding in Robots},
Publisher = {Springer},
Address = {Berlin},
Year = {2012}}

Chapter 1
Diagnostics and Repairs
in Fluid Construction Grammar

Katrien Beuls1, Remi van Trijp2, and Pieter Wellens1

Abstract Linguistic utterances are full of errors and novel expressions, yet linguis-
tic communication is remarkably robust. This paper presents a double-layered ar-
chitecture for open-ended language processing, in which ‘diagnostics’ and ‘repairs’
operate on a meta-level for detecting and solving problems that may occur during
habitual processing on a routine layer. Through concrete operational examples, this
paper demonstrates how such an architecture can directly monitor and steer linguis-
tic processing, and how language can be embedded in a larger cognitive system.

Key words: Fluid Construction Grammar, language processing, robustness

1.1 Introduction

Language users do not follow a rule book. Especially in spoken dialog, utterances
are full of errors (such as hesitations, false starts and disconnected phrases) and
novel expressions (such as word play, new or borrowed words and other innova-
tions). Consider the following conversation between a foreign exchange student and
the father of an English host family at the dinner table:

Example 1.

- Father: Could you pass me the salmon, please?
(The student hesitates and then reaches for the salt.)
(The father shakes his head.)

- Father: No, I meant the salmon. (Points to the fish on a plate.)
(The student puts the salt back and hands over the plate.)

- Father: Thank you.

In this short interaction, several problems occur, which are solved in different
ways using different sources of information. First, the student experiences difficul-

1VUB AI-Lab, Vrije Universiteit Brussel, e-mail: katrien@arti.vub.ac.be
2Sony Computer Science Laboratory Paris

3

4 K. Beuls, R. van Trijp, and P. Wellens

ties in parsing the word salmon, but remembers the similar word salt, which happens
to be a good fit in the current context. The father of the host family, however, sees
that his utterance did not reach the desired effect and shakes his head to signal com-
municative failure. Knowing that the student does not yet fully master the English
language, he therefore repeats the word salmon with more emphasis while pointing
at the fish. The student now realizes that he in fact encountered a new word and tries
to infer its meaning from the context.

The interaction is but one of the many illustrations that show that language is an
inferential coding system (Sperber and Wilson, 1986) in which not all information is
explicit in the message, but in which the listener is assumed to be intelligent enough
to fill in the missing blanks. As Ronald Langacker (2000, p. 9) puts it:

It is not the linguistic system per se that constructs and understands novel expressions,
but rather the language user, who marshals for this purpose the full panoply of available
resources. In addition to linguistic units, these resources include factors such as memory,
planning, problem-solving ability, general knowledge, short- and longer-term goals, as well
as full apprehension of the physical, social, cultural, and linguistic context.

The open-ended nature of language has caused many headaches to anyone who
has ever attempted to implement language computationally because formalizations
often seem to be too rigid and mechanical. One way to overcome such issues, as
illustrated by Steels and van Trijp (2012), is to implement diagnostics for detecting
problems in linguistic processing and repairs that solve those problems. This paper
presents concrete examples of how this approach can be implemented in the meta-
level architecture that forms an integral part of Fluid Construction Grammar (FCG;
see Steels et al, 2012a in this volume and Steels, 2012a,c) and Babel (Steels and
Loetzsch, 2010), a general cognitive framework that is used in the whole systems
experiments discussed in other chapters of this book (Gerasymova and Spranger,
2012; Spranger et al, 2012; Spranger and Pauw, 2012; Steels, 2012d; Steels et al,
2012b). The architecture enables the grammar designer to build robust and open-
ended grammars embedded in a larger cognitive system.

1.2 Situated Interactions

The sentence No, I meant the salmon and the corresponding pointing gesture of Ex-
ample 1 only make sense as part of a situated dialog, not when studied in isolation.
This paper therefore adopts the language game methodology, as introduced in an
earlier chapter (Steels, 2012d). A language game can be considered as a microworld
that operationalizes everything needed for modeling a routinized, communicative
interaction: a situated context, two (or more) interlocutors, a communicative pur-
pose, and so on. By grounding the speech participants in concrete communicative
settings, language games allow pragmatic factors to play an important role as well.

Figure 1.1 illustrates the flow of a language game that roughly corresponds to
Example 1. Here, the speaker asks for a certain object (such as the salmon). As a
response, the listener can signal failure if he did not understand the question, or

1 Diagnostics and Repairs in Fluid Construction Grammar 5

Initial
state

Speaker asks
for an object

Listener
performs action

Listener signals
failure

Speaker signals
failure

Speaker signals
success

Speaker points to
the object

desired
action?

wrong
action?

New state

Fig. 1.1 Language games provide a way of modeling situated dialog. This diagram shows the
possible flow of one game.

perform an action. If the listener signals failure or if he did not perform the action
desired by the speaker, the speaker can provide feedback by pointing to the object
he had in mind. If the hearer performed the action that the speaker was expecting,
the game succeeds. There are many possible variations on this particular game (as is
the case for Example 1) and there are many other kinds of games that can be played.

None of the nodes in Figure 1.1 are simple tasks, but each node can be broken
down into several processes that correspond to different steps in the semiotic cycle,
as illustrated by Figure 1.2. The semiotic cycle outlines the main steps that speakers
and listeners have to go through when verbalizing and comprehending utterances as
part of the language game. For instance, both speaker and listener need to build a
situation model in which they maintain a connection between their internal factual
memory and the states and actions in the world. The speaker (shown on the left in
Figure 1.2) then needs to decide on a communicative goal (such as obtaining the
salmon) and conceptualize a meaning in such a way that it satisfies his communica-
tive goal when expressed through language (production). The hearer (shown on the
right in the Figure) needs to parse the observed utterance in order to reconstruct its
meaning and then interpret that meaning into his situation model, where he con-
fronts it with his appreciation of the context and his own factual memory. If the
hearer successfully retrieves the speaker’s intended goal, he may act accordingly. In
Example 1, however, the listener’s action did not correspond to the desired one, so
the interlocutors have to go through the semiotic cycle again.

6 K. Beuls, R. van Trijp, and P. Wellens

sensorimotor
systems

meaning

situation
modelgoal

conceptualization

production

situation

utterance

reference

sensorimotor
systems

meaning

actionsituation
model

interpretation

parsing

reference

speaker listener

Fig. 1.2 The semiotic cycle summarizes the main processes that speakers (left) and listeners (right)
go through when playing language games.

Each process in the semiotic cycle can in turn be dissected into smaller steps.
In this paper we are mainly concerned with production and parsing, which are the
linguistic processes handled by Fluid Construction Grammar. As already introduced
in an earlier chapter in this book (Steels et al, 2012a) and explained in more detail
by Steels (2012b); Bleys et al (2012), the FCG-interpreter handles linguistic pro-
cessing as a search problem in which the appropriate set of constructions need to be
found that, when applied, succeed in verbalizing a particular meaning (production)
or analyzing an observed utterance (parsing).

1.3 A Meta-level Architecture for Problem Solving

The architecture of FCG and Babel has a double-layered design, as shown in Figure
1.3. The first layer is called the routine layer and handles habitual processing. A sec-
ond layer, called the meta-layer, monitors and sometimes steers routine processing
through diagnostics and repairs, which try to detect and solve problems that may
occur in the routine layer. Repairs have the power to modify an agent’s inventory of
concepts, linguistic constructions, beliefs, and so on. They can also go back a few
steps, for instance choosing a different communicative goal or parsing an utterance
again, in order to test whether the repair adequately solves the detected problem.
Problems can be detected at each level, at each step and at any time; and differ-
ent repairs can be triggered in succession of each other. This constant interaction
between routine- and meta-layer processing ensures robustness and open-endedness
for coping with noise or variation in perception, differences in embodiment, novelty,
and other problems that inevitably occur in linguistic interactions.

1 Diagnostics and Repairs in Fluid Construction Grammar 7

...

routine processing

diagnostic diagnostic diagnostic

problem

meta-layer processing

repair

diagnostic

problem

repair

Fig. 1.3 FCG and Babel feature a double-layered architecture. Besides a routine layer for habitual
processing, a meta-layer of diagnostics and repairs detect and solve problems that may occur.

1.3.1 Basic Definitions

This section offers some basic definitions that build on earlier work on meta-
layer architectures for multi-agent modeling (Steels and Loetzsch, 2010). The stan-
dard architecture uses an object-oriented approach and has been implemented in
CLOS (Common Lisp Object System; see Keene, 1988). It builds on three main
classes that are represented by the boxes in the meta-layer in Figure 1.3: problem,
diagnostic and repair strategy. Specific implementations of diagnostics
and repairs subclass from these general classes and add further semantics. The three
base classes are defined as follows:

Definition 1.

class problem
Description: The base class for all problems. A problem is

instantiated by a diagnostic to report a
failure or some inefficiency.

Slots: issued-after
repaired-by

A problem has two slots: issued-after and repaired-by. The first
slot can be filled by a symbol that specifies when the problem has been instan-
tiated and reported (for instance, after a production process). If the problem has
been solved, the value of the second slot is automatically set to the name of the
repair-strategy that repaired it. If not, its value is set to the empty list nil.

Definition 2.

class diagnostic
Description The base class for all diagnostics. Diagnostics

instantiate a problem if they detect a failure
or inefficiency.

Slots learning-situations

8 K. Beuls, R. van Trijp, and P. Wellens

Diagnostics are responsible for finding difficulties and instantiating a problem
for reporting them. The only slot of the base class (learning-situations) is
used for specifying in which situations the diagnostic is active. For instance, some
diagnostics only need to be executing when acting as the listener.

Definition 3.

class repair-strategy
Description: The base class for all repairs. Repair

strategies handle problems.
Slots: triggered-by-problems

learning-situations
success-score

A repair-strategy has three slots. Triggered-by-problems, the
first slot, contains the names of problems that trigger the activation of the repair
strategy. The second slot learning-situations narrows down the point of
execution of a repair strategy similar to the same slot in the base class for diag-
nostics. The kinds of learning situations depends on the level the repair strategy is
operating on. The success-score reflects how successful the repair-strategy has
been in solving previous problems. If a problem has been reported that can be solved
by multiple repair strategies, the repair with the highest success-score is tried first.

1.3.2 Three Levels of Application

In line with the language game approach (see Section 1.2), we address language as
a problem-solving activity on (at least) three levels:

1. The FCG-level, which concerns linguistic processing itself whereby the FCG-
interpreter needs to parse and produce utterances.

2. The Process-level, which corresponds to cognitive processes in the semiotic cycle
(see Figure 1.2).

3. The Agent-level, which covers behaviors and turn-taking in a language game (see
Figure 1.1).

The FCG-level is embedded within the other levels through the general cogni-
tive framework Babel (Steels and Loetzsch, 2010). At each level, an agent (which
models a language user), performs problem-solving activities for achieving com-
municative goals and subgoals. When speakers make errors or need to use novel
expressions, however, an agent’s current state (including his knowledge, beliefs,
and so on) may not suffice for finding adequate solutions. Every level has its own
classes and methods for defining diagnostics and repairs that all subclass from the
basic definitions introduced in Section 1.3.1. The following subsections provide the
technical details of these classes and methods, which can be used by the reader as
background reference for understanding the examples of section 1.4.

1 Diagnostics and Repairs in Fluid Construction Grammar 9

1.3.2.1 FCG-Level Definitions

First, the fcg-diagnostic class is a subclass of diagnostic. It has one ad-
ditional slot direction, whose value is either the symbol → (which stands for
production) or← (which stands for parsing):

Definition 4.

class fcg-diagnostic subclass of diagnostic
Description: A diagnostic that can be activated during

parsing and production.
Slots: direction

Associated with the fcg-diagnostic is a generic function, which in CLOS
“defines an abstract operation, specifying its name and a parameter list but no im-
plementation” (Seibel, 2005, p. 191). The generic function diagnose-fcg has
two parameters: an fcg-diagnostic and a node from an FCG search process:

Definition 5.

generic function diagnose-fcg
Description: Can be called at each FCG search node.
Parameters: fcg-diagnostic

search-node

For each FCG-diagnostic, it is thus necessary to write a method that actually
executes the diagnostic. Methods “indicate what kinds of arguments they can handle
by specializing the required parameters defined by the generic function” (Seibel,
2005, p. 192). For example, a method may specialize on a specific kind of node.

Next, FCG has its own class for repairs. An fcg-repair-strategy sub-
classes from repair-strategy and defines one additional slot that specifies
whether the repair is called in production or parsing:

Definition 6.

class fcg-repair-
strategy

subclass of repair-strategy

Description: A repair that operates during parsing and
production.

Slots: direction

Again, there is a generic function associated with FCG-level repairs, which de-
fines three parameters: an FCG-level repair, a problem, and an FCG node. Each
fcg-repair-strategy thus requires a method that specializes on these three
parameters, for example a method that can handle an unknown-word problem.

Definition 7.

generic function repair-fcg
Description: Is called a new FCG node has been created.
Parameters: fcg-repair-strategy

problem
search-node

10 K. Beuls, R. van Trijp, and P. Wellens

1.3.2.2 Process-Level Definitions

Process diagnostics and repairs can be run after any given process. The class
process-diagnostic has a single slot: trigger-processes. These are
the names of processes after which this diagnostic should be triggered, such as
parse, conceptualize, etc.

Definition 8.

class process-diagnostic subclass of diagnostic
Description: A diagnostic that is triggered after the

execution of a process.
Slots: trigger-processes

To run a process diagnostic one has to implement a diagnose-process method.
diagnose-process returns either one problem, a list of problems or nil. If
one or more problems are returned they are automatically added to the problems of
the current turn. When nil is returned, no problems were detected.

Definition 9.

generic function diagnose-process
Description: Is called after running a process and handling

its process results.
Parameters: process-diagnostic

turn
process

Also on the process level, a general repair strategy class has been implemented
to host more specific repairs on this level. Process repair strategies try to repair
problems in the current turn, which could also be problems created by lower-level
diagnostics (i.e. in the FCG search).

Definition 10.

class process-repair-
strategy

subclass of repair-strategy

Description: A repair that can operate after the
execution of a process.

Every process repair strategy requires a specialized repair-processmethod.
repair-process returns two values: a first one to indicate its success (boolean)
and a second one to signal a restart. The second value is the name of the process that
must be restarted (e.g. parse). If the second value is nil processing will continue
where it left off.

Definition 11.

generic function repair-process
Description: Is called when problems occurred between

processes.
Parameters: process-repair-strategy

problem
turn
process

1 Diagnostics and Repairs in Fluid Construction Grammar 11

1.3.2.3 Agent-Level Meta-Operators

Sometimes it is impossible to diagnose or repair something in a single turn, for
instance when the listener first requires feedback from the speaker before he can
guess the meaning of a new word. For this reason, we support meta-operators on an
even higher level: that of one agent. Again, a general agent-diagnostic class
is available. It has no additional slots.

Definition 12.
class agent-diagnostic subclass of diagnostic
Description: A diagnostic that is triggered after an agent

finished his turn.

After an agent has finished his turn (e.g. speaking), the diagnose-agent
method is called for executing every agent-diagnostic that has been defined. This
method returns one or more problems, or nil. The agent-interaction-point
can be any point in a language game, such as listening, speaking, pointing,
and so on.

Definition 13.

generic function diagnose-agent
Description: Diagnose-agent is called for every agent-

diagnostic when an agent finished his turn.
Parameters: agent-diagnostic

agent-interaction-point
agent
world

Repair strategies on the Agent-level are defined in the agent-repair-strategies
class. Agent repair strategies are executed as soon as one agent has finished his turn.
They try to repair any detected problem, which could again also be problems created
by lower-level diagnostics (i.e. FCG- or Process-level).

Definition 14.

class agent-repair-
strategy

subclass of repair-strategy

Description: A repair that is triggered after an agent finished
his turn.

Specialized repair-agentmethods need to be implemented for executing the
repair strategies. These methods return two values: a boolean for indicating whether
the repair was successfully executed or not, and a request to restart an agent’s turn.

Definition 15.

generic function repair-agent
Description: Repair-agent is called after an agent finished

his turn. Might also repair problems of lower-
level diagnostics.

Parameters: agent-repair-strategy
agent-interaction-point
problem
agent
world

12 K. Beuls, R. van Trijp, and P. Wellens

turn #1

agent #1 in interaction #1

conceptualize

FCG-
node #1

FCG-
node #2

FCG-
node #3

process #1 process #2 process #3

produce re-enter render

process #4

turn #2 ...

process #1 process #2 process #3

... ...

…

Fig. 1.4 The design of diagnostics and repairs is based on the principle of devolution.

1.3.3 Principle of Devolution

As a rule of thumb, the choice for implementing a diagnostic or repair on the agent-,
process- or FCG-level should be based on the principle of devolution, which means
that everything that can better be managed and decided ‘on the spot’, should be.
Instead of always opting for a centralized, high-level approach, specific diagnostics
and repairs (which are also called meta-operators) are therefore devolved to the
particular level of the meta-level architecture where they are most efficient.

The main advantage of devolving meta-operators to specific levels is efficiency,
as illustrated in Figure 1.4. On the highest level of information processing, the
Agent-level meta-operators monitor and steer longer- and shorter-term discourse
goals and turn-taking in the interaction. For example, an Agent-level diagnostic can
detect whether the listener’s response corresponds to the speaker’s desired com-
municative goal. In principle, the operators can also detect whether any problems
occurred within a particular turn in the language game, but they cannot directly in-
tervene in the processes that try to achieve the subgoal of that turn (e.g. asking a
question). All the Agent-level meta-operators can do is detect a problem with the
output of those processes and then restart them again.

Problems that occur within a single turn are therefore better handled by Process-
level meta-operators, which manage all the steps of the semiotic cycle (see Figure
1.2) that a speaker or listener needs to go through in order to verbalize or compre-
hend utterances. These operators are best suited for monitoring the information flow
between different steps (for instance whether conceptualization has come up with a

1 Diagnostics and Repairs in Fluid Construction Grammar 13

meaning that can be expressed by the language) and the processing effort required
for each step (for example how many possible interpretations can be found for an
utterance). Like the Agent-level operators, however, Process-level operators cannot
directly intervene within a particular step and only works on their output.

Meta-operators on the FCG-level, then, can be seen as the ‘field workers’ that
directly act upon FCG’s search in production and parsing, and hence are able to
diagnose problems in linguistic processing as soon as they occur and possibly solve
them. Similar process-internal meta-operators can be specialized for other steps
in the semiotic cycle to improve efficiency, for example within conceptualization
where a speaker has to plan what to say, but they are not handled by this paper.

Despite being defined on different levels, all diagnostics and repairs can never-
theless cooperate with each other because the problem class is level-independent.
For example, an FCG-level diagnostic can detect an unknown word in parsing and
then instantiate a problem in which information about the unknown word is passed
to an Agent-level repair, which can then try to solve the problem by asking for feed-
back. By using problems as mediators between meta-operators instead of directly
linking diagnostics to repairs, the experimenter has complete control over the way
in which difficulties can be detected and solved.

1.3.4 Restart Requested

The basic unit on which the learning operators function is a search node (see Figure
1.3). This node can either be a complete process inside a turn of one agent or an
FCG-node within one of the linguistic processes of the turn. Meta-operators are
thus automatically passed to the appropriate level. Also the grammar of an agent is
copied to the lower levels to provide the possibility to adapt it in repair.

When a problem is instantiated in a search node, it is always local to the branch it
is detected in. This is important since other unexplored branches might not generate
the same problem. A problem contains a pointer to the complete search tree so that
the current best solution can constantly be updated, taking into account the problems
that have been signaled on different branches. A solution is always the branch with
the highest success score.

The option exists to restart the processing pipeline at a predefined node when a
successful repair took place. Figure 1.5 illustrates this approach. Any of the ances-
tors of the problematic node could potentially have caused the problem. A success-
ful repair automatically removes the repaired problem from the search tree. When
a node is restarted, data belonging to this node can be overridden depending on the
changes the repair made. For instance, when a new construction has been added to
the grammatical inventory, the restart node should have access to the latest version
of the grammar. It is important to note that when a restart is requested, all nodes that
are descendants of the restart node are deleted. This means that potential solutions
(in sibling branches) can be lost after a restart. It is therefore safer to verify whether
the search process has been finished before the search is restarted.

14 K. Beuls, R. van Trijp, and P. Wellens

restart
node

problem
found

new data
problems repaired?

Fig. 1.5 A restart is requested after a problem has been found in a node. The search is restarted at
the point where a split occurred.

1.4 The Salmon Game Revisited

The remainder of this paper presents concrete use cases of problems that may occur
on the agent-, process- and FCG-level (with a specific focus on the latter level), and
then provides operational examples of how diagnostics and repairs can be imple-
mented for solving those problems. We do not claim any cognitive or psychological
plausibility on the particular diagnostics and repairs that are described, but rather
aim at illustrating how grammar engineers can use the meta-level architecture for
designing their own solutions. Indeed, the architecture remains agnostic as to which
sets of diagnostics and repairs are most adequate and plausible.

1.4.1 FCG-level

Diagnosing and repairing problems on the FCG-level is not only efficient because it
allows problems to be detected and solved as they occur in processing; it also allows
grammar engineers to define open-ended, standalone FCG grammars outside of the
Babel framework.

1.4.1.1 Use Case

A widely known challenge for precision grammars is lexical coverage. For exam-
ple, when testing the English Resource Grammar (the most complete computational
formalization of English to date; Copestake and Flickinger, 2000) against a random
sample of 20.000 strings from the British National Corpus, 41% of the parsing fail-
ures were caused by missing lexical entries (Baldwin et al, 2005). The meta-level
architecture of Babel and FCG offers grammar engineers the necessary tools for
exploring which solutions may overcome this problem.

1 Diagnostics and Repairs in Fluid Construction Grammar 15

Let us return to the salmon game that opened this paper. The exchange student
did not understand what exactly he was supposed to hand over to his host father. He
therefore made a guess and reached out for the salt, an object on the table whose
name closely resembles that of the requested item. We can model this process of
finding the closest match once an unknown word has been detected by means of
the FCG-level meta-operators. This section illustrates how this can be done with an
FCG-diagnostic and -repair. The general problem that glues these operators together
is the unknown-word problem, which subclasses from problem. It contains one
additional slot whose value contains the unknown word, which can then be passed
to any repair strategy that tries to handle the problem:

Definition 16.

class unknown-word subclass of problem
Description: Instantiated when unprocessed words are

diagnosed in the linguistic structure.
Slots: word

1.4.1.2 Diagnostic

How can we now implement a way for detecting unknown words? First, we define
a new FCG-diagnostic and set the slot-value of its direction to←, which means that
it should be activated during parsing:

Definition 17.

class detect-unknown-
words-in-fcg-search

subclass of fcg-diagnostic

Description: Diagnoses unprocessed words in parsing.
Set slot-value: direction ←

Now we can define a diagnose-fcg method that specializes on this new
class. Here, we define a method that takes its second argument (i.e. an FCG node)
and checks whether there are unprocessed strings left in the linguistic structure
that is contained in the node. The method only cares about leaf nodes, which are
the last nodes of the branches of a search tree, which means that no construc-
tions can apply anymore. If there is one unknown string, the method instantiates
an unknown-word problem. For illustration purposes, the diagnostic only han-
dles single unknown words instead of multiple unknown strings. In pseudo code,
the method looks as follows:

diagnose-fcg (detect-unknown-word-in-fcg-search FCG-node)

When NODE is a LEAF then:
let UNPROCESSED-STRINGS be the EXTRACTED-UNPROCESSED-STRINGS of FCG-NODE

if UNPROCESSED-STRINGS contains a SINGLE-WORD
then return an instance of UNKNOWN-WORD

and set the slot-value of :WORD to SINGLE-WORD
else return NIL

In the FCG’s interactive web interface (Loetzsch, 2012), problematic nodes
are colored differently than successful ones, and they receive an additional status:

16 K. Beuls, R. van Trijp, and P. Wellens

problem-found. Figure 1.6 shows a screen shot of such a node, where the ‘top-
unit’ (the open box to the right) acts as a buffer that contains all unprocessed in-
formation. As can be seen, the unprocessed string as signaled by the diagnostic is
“salmon”. Also the word order conditions (cf. meets attributes) are still unpro-
cessed at this stage.

* ,

top
syn-subunits
form

problem-found, succeeded, cxn-applied

top
(the-20 pass-20 me-20)

((meets the-20 salmon-19)
(meets me-20 the-20)
(meets pass-20 me-20)
(string salmon-19 "salmon"))

determiner-cxn (fun)

me-20

pass-20

the-20

sem syn
the-20

pass-20

me-20

Fig. 1.6 A problem is diagnosed after the string “salmon" is left unprocessed at the end of the
search tree.

1.4.1.3 Repair

Once an unknown word has been detected inside the FCG search tree, a repair will
trigger and try to solve the problem. In the use case that we are investigating here, the
unknown word is “salmon”. An example of an FCG repair strategy that tackles this
problem is retry-with-closest-match. Such a strategy loops through all
words in the current grammar and find the word that mostly resembles the unknown
word based on its form. The example repair strategy here only considers similarity
in terms of spelling, not in phonetic form. In a more advanced implementation, the
latter could of course also be taken into account.

The repair strategy is initialized with the following slot values:

Definition 18.

class retry-with-closest-
match

subclass of fcg-repair

Description: Repairs unprocessed words in parsing.
Set slot-value: direction ←
Set slot-value: triggered-by- unknown-word

problems

When these initial values are satisfied, a specialized repair-fcg method can
execute this particular repair strategy. The pseudo code explains how the original
utterance by the host father (expert-utterance) is replaced with a slightly modified
version (learner-utterance) by substituting the unknown word with its closest match.
The function find-closest-string is responsible for searching the existing
lexical items and returning the most similar word.

1 Diagnostics and Repairs in Fluid Construction Grammar 17

repair-fcg (retry-with-closest-match problem FCG-node)

Let UTTERANCE be the RENDERED LINGUISTIC STRUCTURE of FCG-NODE
and UNKNOWN-WORD be the :WORD slot in PROBLEM
and CLOSEST-MATCH be the UNKNOWN-WORD’S CLOSEST RELATED WORD in LEXICON

if there is a CLOSEST-MATCH
then return TRUE

and let the REVISED-UTTERANCE be the UTTERANCE after the UNKNOWN-WORD
has been REPLACED with CLOSEST-MATCH

then RESTART SEARCH TREE with REVISED-UTTERANCE
else return NIL

When the search tree is restarted, the initial node contains the substituted utter-
ance (see Figure 1.7) and parsing succeeds.

top

top

top

top

form

top

Interaction 1
context (speaker & hearer):

((salmon salmon-set base-set) (unique-definite salmon salmon-set) (pass pass-event base-set) (pass-who pass-event you) (pass-what pass-event salmon) (pass-to-whom pass-event me) (1sg-recipient me base-set))

Running agent 1 (speaker).
picked topic: (salmon)

running production

Computing max 3 solutions for application of construction set (11) in direction →

Found a solution

initial structure
top

application process

applied constructions

resulting structure

top

task-60: succeeded, 3.25

best task: task-60
meaning: ((salmon salmon-set base-set) (unique-definite salmon salmon-set) (pass pass-event base-set) (pass-who pass-event you) (pass-what pass-event salmon) (pass-to-whom pass-event me) (1sg-recipient me base-set))
utterance: ("pass" "me" "the" "salmon")

<speak-action:
 <action speak-action : agent-id: NIL, recipient-ids: (ALL-AGENTS)>
 utterance: (pass me the salmon)>

Running agent 2 (hearer).
running interpretation

Computing max 3 solutions for application of construction set (10) in direction ←

diagnostic detect-unknown-word-in-fcg-search returned

<unknown-word: word: salmon <problem: repaired-by: NIL, issued-after: NIL>>

repair strategy retry-with-closest-match repaired problem unknown-word-fcg

Restart requested

initial structure
top

application process

Found a solution

initial structure
top

((string salt-8 "salt")
(string the-21 "the")
(string me-21 "me")
(string pass-21 "pass")
(meets pass-21 me-21)
(meets me-21 the-21)
(meets the-21 salt-8))

application process

applied constructions

resulting structure

top

task-61: failed, 4.00

best task: task-61
parsed-meaning: ((salt ?base-set-538 ?base-set-532) (unique-definite ?indiv-225 ?base-set-538) (pass ?event-248 ?base-set-532) (pass-who ?event-248 ?agent-160) (pass-what ?event-248 ?indiv-225) (pass-to-whom ?event-248 ?oblique-158) (1sg-recipient ?oblique-158 ?base-set-532))

<action signal-failure-action : agent-id: NIL, recipient-ids: (ALL-AGENTS)>

Running agent 1 (speaker).
<signal-failure-and-point-action:
 <action signal-failure-and-point-action : agent-id: NIL,
 recipient-ids: (ALL-AGENTS)>thing: (SALMON)>

Running agent 2 (hearer).
<no-action: <action no-action : agent-id: NIL, recipient-ids: (ALL-AGENTS)>>

Running agent 1 (speaker).
<no-action: <action no-action : agent-id: NIL, recipient-ids: (ALL-AGENTS)>>

Running agent 2 (hearer).
<no-action: <action no-action : agent-id: NIL, recipient-ids: (ALL-AGENTS)>>

Interaction failed, but repaired.

reset

sem syn

initial * pass (lex), the (lex), salmon (lex) * verb-verbal (fun), determiner-cxn (fun) me (lex) * pronoun-pronominal-cxn (fun), noun-nominal-cxn (fun) determiner-nominal-phrase-cxn (marked-phrasal) di-transitive (marked-phrasal)

di-transitive (marked-phrasal) determiner-nominal-phrase-cxn (marked-phrasal) noun-nominal-cxn (fun) pronoun-pronominal-cxn (fun) me (lex) determiner-cxn (fun) verb-verbal (fun) salmon (lex) the (lex) pass (lex)

trans-clause-21

nominal-phrase-23
new-unit-13

word-the-13

word-me-13

word-pass-13

sem syn
trans-clause-21

nominal-phrase-23
new-unit-13

word-the-13

word-pass-13

word-me-13

sem syn

initial * me (lex), pass (lex) * pronoun-pronominal-cxn (fun), verb-verbal (fun) the (lex)

top
syn-subunits
form

problem-found, succeeded, cxn-applied

top
(the-20 pass-20 me-20)

((meets the-20 salmon-19)
(meets me-20 the-20)
(meets pass-20 me-20)
(string salmon-19 "salmon"))

determiner-cxn (fun)

me-20

pass-20

the-20

sem syn
the-20

pass-20

me-20

sem syn

initial * me (lex), salt (lex), pass (lex) * pronoun-pronominal-cxn (fun), verb-verbal (fun), noun-nominal-cxn (fun) the (lex) determiner-cxn (fun) determiner-nominal-phrase-cxn (marked-phrasal) di-transitive (marked-phrasal)

di-transitive (marked-phrasal) determiner-nominal-phrase-cxn (marked-phrasal) determiner-cxn (fun) the (lex) noun-nominal-cxn (fun) verb-verbal (fun) pronoun-pronominal-cxn (fun) pass (lex) salt (lex) me (lex)

trans-clause-22

nominal-phrase-24
salt-8

the-21

pass-21

me-21

sem syn
trans-clause-22

nominal-phrase-24
the-21

salt-8

pass-21

me-21

Fig. 1.7 The new initial node after processing has been restarted.

Although the processing problem has been repaired, the game still fails since the
student did not manage to retrieve the correct object form the context. The student
also did not really learn something, that is, in technical terms no new construction
was added to the grammar. The following section illustrates how a construction can
be added while repairing.

1.4.2 Process-level

Process-level learning operators allow the experimenter to diagnose and repair prob-
lems after each step in the semiotic cycle. In case of the exchange student, the steps
(or processes) that have to be monitored are de-rendering, parsing and interpreta-
tion. Since the use case has remained the same (the salmon game), the problem that
is diagnosed is still unknown-word. The following sections illustrate the use of
Process-level operators for diagnosing and repairing this problem.

1.4.2.1 Diagnostic

First we define detect-unknown-word-after-parse, an instance of a
process-diagnostic that is triggered by the process ‘parse, which means that the
diagnostic needs to be executed after parsing the utterance:

18 K. Beuls, R. van Trijp, and P. Wellens

Definition 19.

class detect-unknown-
words-after-parse

subclass of process-diagnostic

Description: Diagnoses unprocessed words after the parse
process.

Set slot-value: trigger- parse
processes

Set slot-value: learning- listening
situations

The method that executes the diagnostic is similar to its FCG-variant in the sense
that it extracts strings from a linguistic structure. The main difference lies in the ob-
ject that is manipulated: instead of an FCG-node, the diagnostic takes a full process
result (i.e. a parsing result) and the name of the agent’s turn as its arguments. The
unprocessed strings can be accessed by extracting them from the last FCG node of
the linguistic process that is being diagnosed.

diagnose-process (detect-unknown-word-after-parse turn process)

Let UNPROCESSED-STRINGS be the EXTRACTED-UNPROCESSED-STRINGS
from the FINAL FCG-NODE in PROCESS

if UNPROCESSED-STRINGS contains a SINGLE-WORD
then return an instance of UNKNOWN-WORD

and set the slot-value of :WORD to SINGLE-WORD
else return NIL

1.4.2.2 Repair

Here we define a process repair strategy (add-generic-cxn) that is triggered by
the unknown-word problem:

Definition 20.

class add-generic-cxn subclass of fcg-repair
Description: Repairs unprocessed words in parsing.
Set slot-value: learning- listening

situations
Set slot-value: triggered-by- unknown-word

problems

A possible method for executing this repair strategy is to use a “generic” con-
struction that takes the unknown word as its form, but which leaves its meaning and
semantic and syntactic categorization underspecified. The pseudo code of the repair
function looks as follows:

repair-process (add-generic-cxn problem turn process)

If there is an UNKNOWN-WORD in PROBLEM
then add a GENERIC CONSTRUCTION of UNKNOWN-WORD to TURN-GRAMMAR

and return TRUE and restart process PARSE
else return NIL

1 Diagnostics and Repairs in Fluid Construction Grammar 19

top

top

Added to construction set (11)

added
 to

construction set (11)

repair strategy adopt-unknown-word repaired problem unknown-word

Computing max 3 solutions for application of construction set (11) in direction ←

Found a solution

initial
structure top

application
process

applied
constructions

resulting
structure

top

task-65: failed, 3.25

best
task:

task-65

parsed-
meaning:

((?some-meaning-1 ?base-set-675 ?context-282) (unique-definite ?indiv-276 ?base-set-675)
(pass ?event-304 ?context-282) (pass-who ?event-304 ?agent-200) (pass-what ?event-304 ?indiv-276)
(pass-to-whom ?event-304 ?oblique-198) (1sg-recipient ?oblique-198 ?context-282))

<action signal-failure-action : agent-id: NIL, recipient-ids: (ALL-AGENTS)>

Running agent 1 (speaker).
<signal-failure-and-point-action:
 <action signal-failure-and-point-action : agent-id: NIL,
 recipient-ids: (ALL-AGENTS)>thing: (SALMON)>

Running agent 2 (hearer).
<no-action: <action no-action : agent-id: NIL, recipient-ids: (ALL-AGENTS)>>

Running agent 1 (speaker).
<no-action: <action no-action : agent-id: NIL, recipient-ids: (ALL-AGENTS)>>

Running agent 2 (hearer).
<no-action: <action no-action : agent-id: NIL, recipient-ids: (ALL-AGENTS)>>

salmon (unmarked-lex)

footprints
tag ?meaning-779

?top-unit-1620
(==0 salmon)

(meaning
(==
(?some-meaning-1
?salmon-set-81
?context-282)))

footprints
tag ?form-1062

?top-unit-1620

salmon (unmarked-lex)

?top-unit-1620
(==0 salmon)

(form
(==
(string ?new-unit-138 "salmon")))

?top-unit-1620

sem syn

args
footprints
sem-cat

?new-unit-138
→ ?meaning-779

(?salmon-set-81 ?context-282)
(==1 salmon)

(==1 (class object))

footprints
syn-cat

?new-unit-138
→ ?form-1062

(==1 salmon)
(==1 (lex-cat noun)
(person/number ?pn-11))

sem syn

initial the
(lex)

determiner-
cxn (fun)

pass
(lex)

salmon
(unmarked-lex)

* verb-
verbal
(fun),
noun-
nominal-
cxn (fun)

+

determiner-
nominal-phrase-
cxn
(marked-phrasal)

me
(lex)

pronoun-
pronominal-
cxn (fun)

di-transitive
(marked-phrasal)

+

di-transitive (marked-phrasal) pronoun-pronominal-cxn (fun) me (lex) determiner-nominal-phrase-cxn (marked-phrasal) noun-nominal-cxn (fun)

verb-verbal (fun) salmon (unmarked-lex) pass (lex) determiner-cxn (fun) the (lex)

trans-clause-26

nominal-phrase-29
salmon-27

the-23

pass-23

me-23

sem syn
trans-clause-26

me-23

nominal-phrase-29
salmon-27

the-23

pass-23

Fig. 1.8 The lexical construction that is added for the unknown word “salmon”. No specific mean-
ing is added at the moment of creation, but this could be added later by another repair (e.g. agent
repair after pointing; cf. infra).

In case of successful repair, the method requests a restart of the process ‘parse,
using the generic construction as depicted in Figure 1.8. The generic construction
allows the agent to parse the utterance, but its lack of a specific meaning prevents the
listener of finding the object that was asked by the host father. Given the situation
in which the salmon game is embedded, an alternative repair strategy is therefore
to attribute a temporary meaning to the unknown word “salmon”. At the moment
of diagnosing the unknown-word problem, the meaning that has been parsed so
far indicates that the unknown word is the object of the passing event. In the con-
text of a family dinner, the listener could thus infer that the requested object prob-
ably meets the following semantic conditions: (edible +) (definite +)
and (graspable +). In this sense, the grammar could be searched for objects
that fulfill these conditions and (optionally) share a similar word form. In line with
the FCG repair strategy, a construction could then be added that maps the “salmon"
word form to the salt meaning predicate:

salt⇐⇒ "salmon"

If this construction would be used in parsing, the student would again reach for
the salt and later receive the information that the father meant the plate with salmon.
The final level in the architecture will allow us to incorporate this information and
learn the correct mapping between meaning and form.

1.4.3 Agent-level

Sometimes it is impossible to diagnose or repair something in between processes.
One reason is that at the process level you do not have all the information necessary
to perform the diagnosis. For example when you need re-entrance information and
compare this to production. Sometimes it is possible to diagnose something after a
given process but can only repair it later e.g. after receiving pointing information.

20 K. Beuls, R. van Trijp, and P. Wellens

This is exactly the case in the salmon game. When an agent participates in a
language game he carries out multiple actions, such as speaking, listening, point-
ing, signaling an error, etc. In each of these actions, a problem can occur. But
instead of instantiating a new problem and a new diagnostic for this level, we
recycle the original unknown-word problem and the process-level diagnostic
detect-unknown-word-after-parse. The compatibility of learning oper-
ators from different levels is a powerful feature of the meta-layer architecture. It
allows the experimenter to diagnose a problem early on and wait to repair it until
more information has become available. Of course, sometimes it is indispensable to
add an additional agent-diagnostic to signal problems in the agent’s actions them-
selves, such as in pointing to an object that cannot be retrieved from the situation.

The agent repair strategy specialized for the unknown-word problem triggers
when the listener has perceived a pointing action:

Definition 21.

class adopt-new-cxn subclass of fcg-repair
Description: Repairs unprocessed words in parsing.
Set slot-value: learning- listener-perceives-

situations pointing
Set slot-value: triggered-by- unknown-word

problems

The most straightforward repair strategy that presents itself in the context of the
salmon game is one that makes use of the object of the pointing action and couples
it to the unknown word. This coupling is casted into a new construction that is added
to the listener’s grammar. In the salmon game, the mapping would be the following:

salmon⇐⇒ "salmon"

Pseudocode for the main repair function that uses this information is included
below.

repair-agent (adopt-new-cxn agent-interaction-point problem agent world)

If there is an UNKNOWN-WORD in PROBLEM
then add a LEXICAL CONSTRUCTION for UNKNOWN-WORD to AGENT-GRAMMAR

and return TRUE
else return NIL

The game is not restarted here after the learner agent has adopted the new lex-
ical construction. The next time the word “salmon” is parsed, the unknown word
problem will not be diagnosed again.

1.5 Conclusion

This chapter has illustrated the workings of the meta-level computational layer that
is present in the architecture of Fluid Construction Grammar (FCG) and, more

1 Diagnostics and Repairs in Fluid Construction Grammar 21

largely speaking, the Babel platform. The decomposition of computation in sepa-
rate modules for routine language processing and meta-level computation guaran-
tees the effective and smooth functioning of routine grammatical processing in FCG.
By means of three constructive examples that all apply to the failed communication
in the salmon game (see Example 1), every level of the meta-level architecture has
been explained and illustrated, with specific attention for the tools that are available
to program the meta layer operators.

Acknowledgements

This research was conducted at the VUB AI-Lab at the University of Brussels and
at the Sony Computer Science Laboratory in Paris. Katrien Beuls received funding
from a strategic basic research grant from the agency for Innovation by Science and
Technology (IWT). Pieter Wellens has been supported by the ESF EuroUnderstand-
ing project DRUST. Additional funding came from the FP6 EU project ECAgents
and the FP7 EU project ALEAR. We would like to thank Luc Steels, director of
the Paris and Brussels labs, for his support and feedback. We would also like to
thank all members of our team for continuously reshaping the way the FCG archi-
tecture is constructed through their productive feedback on earlier versions of the
implementation. Some parts of this document have been adapted from the Babel2
manual (Loetzsch et al, 2008). All remaining errors in the explanation of the archi-
tecture are of course our own. The latest release of Babel can be downloaded from:
https://arti.vub.ac.be/trac/babel2.

References

Baldwin T, Beavers J, Bender EM, Flickinger D, Kim A, Oepen S (2005) Beauty
and the beast: What running a broad-coverage precision grammar over the BNC
taught us about the grammar – and the corpus. In: Kepser S, Reis M (eds) Linguis-
tic Evidence: Empirical, Theoretical, and Computational Perspectives, Mouton de
Gruyter, Berlin, pp 49–69

Bleys J, Stadler K, De Beule J (2012) Search in linguistic processing. In: Steels L
(ed) Design Patterns in Fluid Construction Grammar, John Benjamins, Amster-
dam

Copestake A, Flickinger D (2000) An open-source grammar development environ-
ment and broad-coverage English grammar using HPSG. In: Proceedings of the
2nd International Conference on Language Resources and Evaluation (LREC
2000), pp 591–600

Gerasymova K, Spranger M (2012) An Experiment in Temporal Language Learn-
ing. In: Steels L, Hild M (eds) Language Grounding in Robots, Springer, New
York

22 K. Beuls, R. van Trijp, and P. Wellens

Keene S (1988) Object-Oriented Programming in Common Lisp: A Programmar’s
Guide to CLOS. Addison-Wesley, Boston (MA)

Langacker RW (2000) A dynamic usage-based model. In: Barlow M, Kemmer S
(eds) Usage-Based Models of Language, Chicago University Press, Chicago, pp
1–63

Loetzsch M (2012) Tools for grammar engineering. In: Steels L (ed) Computational
Issues in Fluid Construction Grammar, Springer Verlag, Berlin

Loetzsch M, Wellens P, De Beule J, Bleys J, van Trijp R (2008) The babel2 manual.
Tech. Rep. AI-Memo 01-08, AI-Lab VUB, Brussels

Seibel P (2005) Practical Common Lisp. Apress, Berkeley, CA
Sperber D, Wilson D (1986) Relevance: Communication and Cognition. Harvard

University Press, Cambridge, MA
Spranger M, Pauw S (2012) Dealing with Perceptual Deviation: Vague Seman-

tics for Spatial Language and Determiners. In: Steels L, Hild M (eds) Language
Grounding in Robots, Springer, New York

Spranger M, Pauw S, Loetzsch M, Steels L (2012) Open-ended Procedural Seman-
tics. In: Steels L, Hild M (eds) Language Grounding in Robots, Springer, New
York

Steels L (ed) (2012a) Computational Issues in Fluid Construction Grammar.
Springer Verlag, Berlin

Steels L (2012b) Design methods for Fluid Construction Grammar. In: Steels L (ed)
Computational Issues in Fluid Construction Grammar, Springer Verlag, Berlin

Steels L (ed) (2012c) Design Patterns in Fluid Construction Grammar. John Ben-
jamins, Amsterdam

Steels L (2012d) Grounding Language through Evolutionary Language Games. In:
Steels L, Hild M (eds) Language Grounding in Robots, Springer, New York

Steels L, Loetzsch M (2010) Babel: A tool for running experiments on the evolu-
tion of language. In: Nolfi S, Mirolli M (eds) Evolution of Communication and
Language in Embodied Agents, Springer Verlag, Berlin, pp 307–313

Steels L, van Trijp R (2012) How to make construction grammars fluid and ro-
bust. In: Steels L (ed) Design Patterns in Fluid Construction Grammar, John Ben-
jamins, Amsterdam

Steels L, De Beule J, Wellens P (2012a) Fluid Construction Grammar on Real
Robots. In: Steels L, Hild M (eds) Language Grounding in Robots, Springer,
New York

Steels L, Spranger M, van Trijp R, Höfer S, Hild M (2012b) Emergent Action Lan-
guage on Real Robots. In: Steels L, Hild M (eds) Language Grounding in Robots,
Springer, New York

