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ABSTRACT
This study investigates the effect of training different cate-
gorization algorithms on a corpus that is significantly larger
than those reported in experiments in the literature. By
means of machine learning techniques, a collection of 1.2
million patent applications is used to build a classifier that
is able to classify documents with varyingly large feature
spaces into the International Classification System (IPC) at
Subclass level. The two algorithms that are compared are
Balanced Winnow and Support Vector Machines (SVMs).
Contrary to SVM, Balanced Winnow is frequently applied
in today’s patent categorization systems. Results show that
SVM outperforms Winnow considerably on all four docu-
ment representations that were tested. While Winnow re-
sults on the smallest sub-corpus do not necessarily hold for
the full corpus, SVM results are more robust: they show
smaller fluctuations in accuracy when smaller or larger fea-
ture spaces are used. The parameter tuning that was carried
out for both algorithms confirms this result. Although it is
necessary to tune SVM experiments to optimize either recall
or precision - whereas this can be combined when Winnow
is used - effective parameter settings obtained on a small
corpus can be used for training a larger corpus.

Categories and Subject Descriptors
H.3.3 [Information storage and retrieval]: Information
search and retrieval—clustering, information filtering, re-
trieval models, search process, selection process

General Terms
Algorithms, Performance, Experimentation

Keywords
Patent Classification, Intellectual Property, IPC taxonomy

1. INTRODUCTION
The Intellectual Property domain with its more than 70

million patents is characterized by the continuing need to
make critical scientific and technical decisions in the face
of the exponential growth in the quantity of potentially
relevant information. A fundamental need in the Intellec-
tual Property domain is the availability of sophisticated and
trustworthy systems for automatic categorization of patent
applications.

Various systems have been developed to provide the au-
tomatic categorization of patent documents. In general,
patent categorization requires the assignment of test doc-
uments into a very large taxonomy. In addition, predefined
categories are often ambiguous and difficult to distinguish.
The processing of patent documents introduces a large num-
ber of distinctive terms that are often very technical due to
the domain-dependent vocabulary and trigger a low term
occurrence frequency over the entire patent collection. The
total number of extracted terms to build class profiles is
therefore huge. This negatively affects both the categoriza-
tion quality in terms of Precision and Recall as well as the
efficiency of state-of-the-art learning methods.
Text categorization is often defined as the task of assign-

ing a Boolean value to each pair < dj , ci >∈ D × C, where
D is a domain of documents and C = {c1, . . . , c|C|} is a
set of pre-defined categories [13]. Patent document catego-
rization differs from prototypical text categorization on at
least three more grounds related to the set of predefined
categories. First, this set is characterized by a large imbal-
ance as the number of inventions varies in different parts
of the taxonomy. Second, because the target of the cate-
gorization problem is a very small subset of the huge fea-
ture space, the scalability of training and testing can be-
come problematic. And third, patents are mostly assigned
to multiple categories, which means we are dealing with a
multi-categorization task.
The Winnow algorithm belongs to the family of on-line

mistake-driven learning algorithms such as the Perceptron.
It differs from the latter as the algorithm does not learn the
linear separation between examples assigned to different cat-
egories additively but rather multiplicatively. Most current
patent categorization systems, e.g. IPCCAT1, are based on
a variant of the Winnow algorithm, Balanced Winnow.
This paper contrasts BalancedWinnow with an SVM (Sup-

port Vector Machine) learner, known to be more robust con-
sidering the unbalancedness in class distributions. The com-
putation of the discriminative function of an SVM happens
by solving an optimization problem based on a maximum
margin separation. SVMs are frequently applied in applica-
tions based on images, music, etc. In text categorization,
multiple publications [6, 7] state that SVMs outperform
other machine learning methods in terms of accuracy but
with the disadvantage of needing far more calculation time.
The evaluation that is presented in this paper incorporates

1Automatic categorization system of the World Intellectual
Property Organization (WIPO).
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considerably more train and test documents than was the
case in previous studies.

Extensive comparisons between algorithms have been pub-
lished in the literature [13, 4, 15]. This study uses a corpus of
1.2 million patent documents extracted from the Alexandria
patent repository of Matrixware2 and sets up categorization
experiments on the basis of the International Patent Classi-
fication (IPC) taxonomy on the sub class level (639 classes).
The use of such a large corpus makes this study closer to
solving the problem such as it exists in the real world. Next
to comparing two different learning algorithms, Balanced
Winnow and learning with SVMs, the effect of training dif-
ferent patent representations is investigated.

The Linguistic Classification System3 (LCS), developed
in the course of the DORO and PEKING Esprit Projects,
was used as a workbench to carry out the experiments. The
LCS represents a full text categorization framework with the
possibility to adjust various components for optimal perfor-
mance according to the categorization problem.

2. RELATED WORK
One of the first patent categorization systems was devel-

oped by Larkey [9], in which an automatic search and catego-
rization tool for U.S. patent documents according to the US
Patent classification (USPC) scheme. The service catego-
rizes patent documents at the subclass level of the USPC by
applying the k-nearest neighbor algorithm on a pre-selected
set of patent documents retrieved by the system’s search
component. As the subclasses of those pre-selected patents
are known to the system, the k-nearest neighbor algorithm
computes a subclass ranking based on the document simi-
larity of the unseen patent and the pre-selection. Unfortu-
nately, an evaluation of the categorization quality was not
made public. In 2002, the European Patent Office (EPO)
published a comparative analysis of categorization systems
in terms of pre-categorization [16]. All compared categoriza-
tion systems perform pre-categorization on the basis of 44
directorates, 549 teams and 624 subclasses, i.e. three dif-
ferent category structures, with considering only the given
prediction. The results show precision scores of 72%, 57%
and 61% respectively. The CLAIMS project [2] has partic-
ipated in a public call of World Intellectual Property Of-
fice (WIPO). Again, it does pre-categorization by catego-
rizing patents into the first four hierarchy levels of IPC.
While Larkey deployed the k-nearest neighbor algorithm,
CLAIMS made an effort to utilize the more accurate Bal-
anced Winnow algorithm using a restricted document rep-
resentation comprising only the first 600 different terms of
every document. In fact, CLAIMS won the public call and
the patent categorizer IPCCAT has been directly derived
from CLAIMS and is still in use. In [8], another patent cat-
egorization system using Balanced Winnow is introduced.

In recent years, international IR evaluation campaigns
started patent retrieval and mining tasks. The Japanese
evaluation project NTCIR for information retrieval systems
was the first IR evaluation campaign which included a sepa-
rate task on patent mining. A patent categorization subtask
[5] was firstly introduced at the NTCIR-5 workshop and cat-
egorization (sub) tasks were organised in the following NT-
CIR campaigns. Most recently, the NTCIR-7 campaign [11]

2http://www.matrixware.com
3http://www.cs.ru.nl/peking/

investigated the categorization of research publications into
IPC based on training with patent data.

3. CLASSIFICATION METHODS
The categorization of patent documents into the IPC com-

prises a large number of categories, depending on the level
of the IPC at which the categorization will be done. As the
standard implementations of Balanced Winnow and SVM
only work on binary class problems, ensemble learning is ad-
ditionally applied by transforming the multi-category prob-
lem into an ensemble of binary (one-vs.-rest) problems. For
every IPC subclass a separate binary SVM or Balanced Win-
now classifier was trained. The categorization is done by se-
lecting the prediction that has the highest confidence among
the predictions of all binary classifiers.

3.1 Winnow
The implementation of the algorithm reported in this pa-

per is BalancedWinnow [10, 3]. The classifier consists in this
case of weight pairs (positive and negative weights) that are
used to calculate the class membership score of a document.
The positive weights indicate evidence for class membership
whereas negative weights provide negative evidence. The
overall weight of a feature is the difference between the pos-
itive and negative weights, which are only updated when a
mistake is made.
If a mistake is made on a positive example, the positive

part of the weight is promoted,while the negative part of
the weight is demoted. When a mistake occurs on a nega-
tive example the positive part of the weight is demoted and
the negative part is promoted. Apart from promotion and
demotion parameters α and β on-line algorithms also have a
threshold θ that forms the decision criterion for class mem-
bership. In Balanced Winnow the thick threshold heuristic
is applied. This means that in training, rather than forcing
the score of relevant documents above 1 and irrelevant doc-
uments below 1 (θ), we have two thresholds: θ+ > 1.0 and
θ− < 1.0. The result is judged incorrect either if the score
of a document is below θ+ although it belongs to the class
or if the document does not belong to the class although its
score is above θ−.

3.2 SVM
In the text categorization process the training data can be

separated by at least one hyperplane h�. This presupposes
a weight vector wT and a threshold bT , so that all the pos-
itive examples are on one side, while the negative examples
can be located on the other. This is equivalent to requiring
ti((w

T × xn) + bT ) > 0 for each training example (xn,tn).
In practice, there can often be several hyperplanes that sep-
arate the data but as Support Vector Machines (SVMs) are
based on the Structural Risk Minimization principle4 [14]
only the hyperplane that maximizes the margin δ separat-
ing positive and negative examples is selected. The small
set of training examples that determines the best surface is
called the support vectors. They have a distance of exactly
δ to the hyperplane.
One problem with the implementation of SVMs is that

training fails when the training examples are not linearly
separable. Even though this is almost never the case in text

4More information on how SVMs implement structural risk
minimization can be found in [7]
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categorization, flawless training can result in overfitting of
the data and therefore affect the testing accuracy. To avoid
this, soft-margin SVM [1] is used. When training with soft
margins, an upper bound on training errors is included in
the optimization function where this bound is minimized
simultaneously with the length of the weight vector. In the
SVM implementation SVM Light, the parameter C controls
this trade-off between training error and margin. C = 0
refers to a hard margin learner, while C > 0 represents soft-
margin SVM.

4. EXPERIMENTAL SETUP
This section describes the patent data corpus used for the

categorization experiments, including some important fea-
tures of patents. The hardware environment and the setup
of the categorization process is also summarized.

4.1 Features of Patent Documents
The content of a patent is governed by legal agreements

and is therefore semi-structured. In a European patent doc-
ument, for instance, the bibliographic data field contains in-
formation such as technical details (e.g. the invention title,
citations, etc.) and a listing of the parties involved (ap-
plications, inventors and agents) but also publication and
application references, terms of grant, international conven-
tion data and priority claims. A patent’s abstract describes
in general terms the content of the application whereas the
description contains more information on the invention. A
more thorough documentation of what has been invented
can be found in the description, usually accompanied by
multiple tables and figures that support the arguments of
the applicant. The claims section of a patent document
states the prior art and the novelty of the patent application
and often contains standard expressions. A final field that is
part of a patent document is the patent’s legal status. This
status indicates whether the patent is still an application or
whether it is an already granted patent.

4.2 International Patent Classification
Patent documents receive specific codes that refer to the

class they belong to. The International Patent Classifica-
tion5 (IPC) provides a hierarchical system of language inde-
pendent symbols for the categorization of patents and util-
ity models according to the different areas of technology to
which they pertain. In the past, the IPC has been updated
every five years and it is currently in the IPC-2009 edition.
Each IPC code is a unique combination of the hierarchi-
cal structure codes of the patent identity. The three levels
in the patent hierarchy that are used in this paper, shown
with the number of classes in parentheses, are Section (8),
Class (121), and Subclass (631). The official IPC hierarchy
contains two deeper levels: Main Group and Sub Group.
Table 1 shows a portion of the IPC specification at the start
of section G.

4.3 Description of the Corpus

4.3.1 General Statistics
The complete corpus contains 1 270 185 patent documents

that are split up into two sub collections: EP (563 248)
and PCT (706 937). The patents were extracted from the

5http://www.wipo.int/classifications/ipc/en/

Table 1: Sample portion of the IPC taxonomy at

the start of Section G

Category Symbol Title

Section G PHYSICS
Class G06 COMPUTING; CALCU-

LATING; COUNTING
Subclass G06N COMPUTER SYSTEMS

BASED ON SPECIFIC
COMPUTATIONAL MOD-
ELS

Main group G06N 5/00 Computer systems utilizing
knowledge based models

Sub group G06N 5/02 Knowledge representation

Table 2: The 3 most frequent IPC subclasses in the

data corpus

Sub class Description Examples

A61K Preparations for medical,
dental, or toilet purposes

121955

G06F Electric digital data process-
ing

76575

A61P Therapeutic activity of
chemical compounds or
medicinal preparations

65655

patent document repository Alexandria Patent created by
Matrixware . The patent document archive is provided in a
common XML format, created by merging data from vari-
ous sources. The collection contains EP and PCT patent
applications in the period 01/01/1985 - 31/12/2006 hav-
ing the sections title, abstract and description in English.
The patent corpus covers 621 different IPC subclasses, cov-
ering 94% of the possible 639 subclasses according to IPC
AL6. The focus of research and development varies over the
last 20 years and more, resulting in highly varying numbers
of patent applications filled for a particular subclasses and
year. Consequently, the population of the subclasses with
examples is unbalanced in real world and in the data cor-
pus that is illustrated in Figure 1. For instance, the 3 most
frequent subclasses in the data corpus are given in Table 2.

4.3.2 Sub Collections
Sub collections were created for better indicating both

the categorization quality and scalability of the learners on
smaller data sets of respectively 100k, 200k, 400k and 500k.
A statistics of all sub collections, including coverage of IPC
classes and subclasses, is listed in Table 3. Note that the
full data set contains double the amount of documents of
the biggest sub collection. Train and test sets are built for
each of sample collection (cf. 4.4)
Since the class distribution of a collection used for train-

ing influences the categorization quality, we defined an algo-
rithm that takes the class distribution of the original corpus
into account. Instead of selecting classes that are included
into a sub collection randomly, the algorithm follows the
following idea. Firstly, all classes are ordered based on the
number of examples. Secondly, k sample sets are created.
Thirdly, n classes are chosen out of every sample set and all

6IPC Advanced Level (AL)
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Table 3: Sub collections statistics

Dataset #Docs #Classes #Subclasses

100k 103666 52(40%) 70(11%)
200k 179250 70(54%) 120(19%)
400k 400750 109(84%) 400(63%)
500k 509560 120(93%) 600(94%)

1200k 1270185 121(94%) 631(98%)

A01B A47H B21J B41B B62L C07F C21B E01C F04F F25J G06C H02B

IPC subclasses

#e
xa

m
pl

es

0
20

00
0

40
00

0
60

00
0

80
00

0
10

00
00

12
00

00

Figure 1: Class distribution of the whole data corpus

containing 1.2 million patent applications

examples, which are assigned by those selected classes, are
added to the sub collection.

We investigate four different document representations in-
cluding different sections of the patent documents, shown in
Table 4.

4.4 Test Environment and Settings
All the experiments were run on the LDC (Large Data

Collider), an SGI Altix 4700 machine provided by the IRF.
This server runs under SUSE Linux Enterprise Server 10 and
has 40 Dual Core Itanium 2 (1.4 GHz) processing units as
well as 320 GB memory. In contrast with the newest version
of the LCS, the system that we used for our experiments did
not apply parallelization in the training phase.

The experiments were executed using the LCS classifica-
tion system, using the following setup:

Pre-processing: de-capitalization, removal of special char-
acters such as braces. Term profiles are created by
LCS’s proprietary indexer. Class profiles containing
the term distributions (per class) are generated for the
term selection step.

Table 4: Document representations

tabs title, abstract
itabs inventor, title, abstract
tdesc title, description
itabsdesc inventor, title, abstract, description

Global term selection: document frequency (min=3), term
frequency (min=3), noise reduction based on the Un-
certainty measure introduced in [12].

Local term selection (class-specific): Simple Chi Square.
We chose the LCS feature to automatically select the
most adequate number of relevant terms for every class.

Term strength calculation: LTC algorithm [8], extension
of TF-IDF.

Training method: Ensemble learning based on one-vs.-rest
binary classifiers.

Classification algorithms: Balanced Winnow and SVM,
using LCS’s propriety implementation of BalancedWin-
now and the SVM Light implementation developed by
Thorsten Joachims7.

Parameter settings for the Winnow experiments: A
settings of α = 1.1, β = 0.9, θ+ = 1.1, θ− = 0.9
and 4 iterations was chosen according to an evaluation
carried out within the domain of patent categorization
[8].

Parameter settings for the SVM experiments: Based
on an evaluation regarding the optimization of F1 us-
ing a small subset (±50000 documents) of the corpus,
we selected C = 1.5, J = 1.0 along with a linear kernel.

Class assignment: min/max number of classifications for
each document (resp. 1 and 4)

Evaluation: Split ratio for train/test split: 80/20. The
quality of the categorization is determined by Preci-
sion, Recall and F1 measure according to the defini-
tion in [8]. Both micro-averages and macro-averages
are calculated to measure the quality over all classes.

5. EXPERIMENTAL RESULTS
This section presents the experimental results of compar-

ing both learning algorithms SVM and Balanced Winnow on
the basis of four document representations defined in Sec-
tion 5.1. In Section 5.2, the investigation of the SVM param-
eters complexity (C) and cost factor (J) and the search for
an optimal SVM parameter settings concludes this section.

5.1 Comparative Analysis
In Table 5, the micro-averages of Precision, Recall and

F1 are listed based on the five sample collections (Table 3)
and the four document representations (Table 4). Due to
scalability limits, the experiment of SVM with tdesc and
itabsdesc representations on the full data corpus could not
be executed, while the corresponding experiment deploying
Winnow succeeded. Macro-averages are not presented here
due to the space limitations.
Although primary results confirmed the superiority of SVM

training over Balanced Winnow with regard to evaluation
scores, a detailed analysis of both algorithms should take a
complete range of different aspects into account.
First, there is the size of the feature space. On the one

hand, the dimensionality of the feature space depends on the
document representation that is used in the evaluation. As
shown in Table 5, the difference in performance between the
7http://svmlight.joachims.org

10th Dutch-Belgian Information Retrieval Workshop, 2010

11



Table 5: Micro-averaged Precision (P), Recall (R) and F1 results for SVM and Balanced Winnow

Doc.Rep.
100k 200k 400k 500k 1200k

SVM
P R F1 P R F1 P R F1 P R F1 P R F1

tabs 87,97 71,58 78,93 84,94 47,42 58,16 82,38 51,09 63,07 81,01 46,79 59,32 79,21 45,31 57,64
itabs 88,18 70,80 78,54 84,82 48,48 59,00 83,18 52,59 64,44 82,13 48,27 60,81 80,08 47,57 59,69

itabsdesc 90,40 79,86 84,81 90,66 58,54 68,04 84,47 62,26 71,68 83,00 57,48 67,92 x x x
tdesc 90,31 79,90 84,79 90,51 76,79 83,09 84,31 61,84 71,35 82,32 56,86 67,26 x x x

Doc.Rep.
Balanced Winnow

P R F1 P R F1 P R F1 P R F1 P R F1
tabs 72,75 77,87 75,23 70.29 74.49 72.33 59,20 57,77 58,48 58,14 53,83 55,90 56,43 52,81 54,56
itabs 73,67 78,57 76,04 71,84 75,07 73,42 62,03 59,68 60,84 60,37 54,85 57,48 59,64 53,94 56,65

itabsdesc 80,86 84,30 82,54 79,66 81,99 80,81 70,30 67,27 68,75 68,22 61,57 64,72 66,37 59,59 62,80
tdesc 80,71 84,67 82,64 79,48 81,82 80,63 67,74 61,46 64,45 67,74 61,46 64,45 65,63 59,49 62,41

Figure 2: Decrease in F1 scores between 200k and

400k

algorithms becomes smaller with respect to the term space,
ranging from the smallest document representation tabs to
the largest itabsdesc and tdesc representations. This means
that the gap in terms of achieved Precision and F1 between
SVM andWinnow narrows when longer documents are used.

On the other hand, the SVM optimization problem seems
to be affected more by an increase in the amount of docu-
ments that is used. In our experiments, no single documents
were added to the corpus but complete classes. The biggest
increase in classes occurs when going from the 200k to the
400k collection (70 classes in 200k, 400 in 400k). Different
reactions are triggered dependent on the learner. When the
feature space is smallest (tabs), Winnow is slightly more af-
fected by the increase of classes than SVM. Running from
smallest to largest feature space (itabsdesc), the SVM bars
in Figure 2 decrease more steeply than the Winnow bars.
Whereas in Winnow training, the addition of inventors to
the document representation has a bigger effect on the adap-
tation to an increase in classes than the addition of the
description, SVM reacts more strongly on the explosion of
the feature space in combination with the rapid increase in
classes. The difference between 200k and 400k across the
learning algorithms is maximized at this point (itabsdesc).

Second, both Precision and Recall should be considered
when drawing a comparison between both learners. The bar
charts in Figure 3 show that both SVM and Winnow expose
a less steep decrease in Precision than Recall when moving

Figure 3: Precision/Recall results on 100k and full

corpus for SVM and Winnow (tabs)

from the smallest to largest dataset. Whereas Recall drops
by 26.27% for SVM and 25.06% for Winnow, the difference
in SVM Precision is only 8.76%. Winnow Precision, on the
other hand, decreases by double the percentage of SVM Pre-
cision, namely 16.32%. This rather indicates the extremely
high Precision of SVM training.
When looking at the micro-averages in greater detail, there

are further interesting trends visible. The training results
for Winnow show that over the collection sizes, Recall is
higher than Precision for 100k whereas the opposite sce-
nario is found for the 1200k corpus. This indicates that
Winnow Recall decreases more rapidly than Winnow Pre-
cision when more classes are used for training. This is not
the case for SVM, where Precision stays always higher than
Recall. What is more, SVM Precision scores proved to be so
stable that the difference between tabs and itabsdesc for the
400k collection results in only 2%, while the exactly same
settings yield a difference of 11% for Balanced Winnow.
Figure 4 illustrates the empirical distributions of category-

based Precision and F1 for two different document repre-
sentations using box plots. The SVM classifier is able to
learn most of the sub classes with a quite similar Precision,
even though the numbers of examples strongly vary among
the sub classes, whereas the Winnow classifier is not that
stable. Contrarily, the category-based F1 results vary much
stronger in terms of the SVM classifier compared to the Win-
now classifier. This gap between Precision and Recall results
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Figure 4: Extreme results of SVM Precision: Box-

plots of category-based Precision/F1 results on itabs
and the 1200k dataset

among the categories suggests the need of parameter tuning
in order to balance Precision and Recall.

5.2 Tuning of SVM parameters
So far the experimental results suggest superior perfor-

mance of the SVM in terms of Precision compared to Win-
now. However, the large differences between Precision and
Recall for both learning algorithms imply the need of pa-
rameter tuning. In fact, the used SVM parameters caused
Precision to remain high, while Recall dropped under 50%.
Depending on the goal of the experiment, such a low level
of Recall may not be ideal. We therefore target parameter
tuning in order to find SVM parameters that optimize either
Precision or Recall.

Our previous experiments were conducted with three pa-
rameters that affected the workings of the SVM Light pack-
age: the soft margin parameter (C), the cost parameter (J)
and the type of kernel (T ). The latter is kept at its default
value, i.e. linear. As the type of problem we are trying
to solve is linearly separable, using a polynomial or radial-
based kernel would not bring an increase in accuracy but
rather delay the categorization even more.

The parameter tuning was carried out with the smallest
collection (100k) to speed up the process.

5.2.1 C tuning
The default setting for the soft margin parameter in SVM

Light is avg[x ∗ x]−1. This parameter setting tries to find
the line that best separates the positive and negative train-
ing examples. To maximize this difference (x), the value is
squared and inverted. This is done for every training exam-
ple that has a counter example in its neighborhood, i.e. only
for support vectors. In general, C can be any floating point
number bigger than 0.
Different values of C ranging between 0 and 50 were tested.

Above 2.0 the results do not add much more to the param-
eter tuning (and are therefore not shown): Precision fluctu-
ates in a slightly downward trend from 77.96% to 76.2%;

Figure 5: SVM tuning of the complexity parame-

ter C (top) and the cost factor J (bottom) on 100k

corpus

Recall finds its maximum at C = 17.5 (72.81%) and fluctu-
ates up and down across the interval (71.38% at C = 50).
A more detailed parameter tuning between 0.1 and 2.0

with steps of 0.1 shows that for the smallest values of C, the
distance between Precision and Recall is greatest. The max-
imum Precision (92.43%) and minimum Recall (48.06%)
values are situated at C = 0.1. The recall curve then rises
rapidly between 0.1 and 1 up to 69.78% (+ 21.72%). Preci-
sion drops only by 3.5%. The highest recall in this interval
is situated at C = 2.0 (72.22%). The C value used in the
baseline experiments (1.5) is the point where the F1 value
reaches its maximum.

5.2.2 J tuning
The second parameter that can be changed in the SVM

algorithm used in the experiments is the cost factor. By
changing J , the misclassification of a positive example can
be punished more or less severely. The cost of misclassifying
a positive example is determined as C+ = J × C, while
the misclassification cost of a negative example C− remains
unaltered [6]. By default J = 1.0.
Figure 5 shows the results of a tuning J ∈ [1, 10] with

step sizes of 1. The highest recall value is found at J =
8. Although the goal of this parameter tuning is to get
Recall possibly at its highest level, Precision, and therefore
F1, value should in the best cases not drop significantly.
Therefore, J = 5 seems a reasonable choice. In all these
experiments, C was kept at its default value (1.5).

5.2.3 Grid search
In order to find SVM parameters that can be used to op-

timize Precision and Recall, a grid search of C/J pairs was
carried out. Similar to the previous tuning experiments, we
define C ∈ [0, 2] and J ∈ [1, 8]. Figure 6 shows the re-
sults of this grid search as heat maps. It can be seen that
the extremes in Precision and Recall are almost reversed.
Whereas the highest recall values are obtained when J is
largest, Precision peaks when J is smallest. This indicates
that a separate tuning for Precision and Recall is necessary
when SVM is used. Contrarily, a similar investigation of
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Table 6: Optimal Precision/Recall settings for SVM

and Winnow on itabsdesc 100k

Settings Precision Recall F1

C = 0.25; J = 10 68.54% 85.21% 75.97%
C = 0.05; J = 12 62.46% 85.55% 72.20%
α = 1.05;β = 0.9 71.43% 78.73% 74.90%
α = 1.1;β = 0.9 72.23% 78.00% 75.00%

Table 7: Maximum Precision/Recall and default

SVM settings on itabsdesc 500k

Settings Precision Recall F1

C = 0.10; J = 1.0 89.34% 30.97% 46.00%
C = 0.25; J = 10.0 62.92% 73.50% 66.14%
C = 1.50; J = 1.0 83.00% 57.48% 67.92%

Balanced Winnow tuning8 identifies one set of parameters
that optimize both Precision and Recall. If the C parame-
ter is taken into account, the plots show that the smallest C
values exhibit both the highest and lowest Precision and Re-
call results. Precision peaks at C = 0.1 and J = 1, whereas
Recall reaches its maximum value at C = 0.4 and J = 8.

The highest Recall scores are situated on the open-ended
side of the heat plot. In order to have a quick idea whether
we have reached the upper limit in terms of Recall scores,
two more experiments were conducted that were expected to
improve Recall even more (and therefore worsen Precision).
The results, which are summarized in Table 6, indicate that
using even higher J values does not improve Recall signifi-
cantly anymore compared to Figure 6(b).

5.2.4 Robustness
It was verified how the best Precision/Recall settings on

the 100k would score on the 500k corpus. Is the accuracy on
500k still proportionally higher with tuning as without? To
maximize Precision, the values C = 0.1 and J = 1.0 were
used. The maximum recall was in the 100k tests achieved
with C = 0.25 and J = 10.0. These values were tested on
the 500k itabsdesc corpus. The results are summarized in
Table 7.

The experiment that was run with the optimal Precision
settings yielded Precision of 89.34% on the 500k corpus,
which is 6.3% higher than the baseline run on the 500k
itabsdesc corpus. On the 100k corpus, the difference between
the baseline and the optimal Precision settings was 3.6%.
This shows that the optimal Precision settings hold for a
bigger corpus as well. The maximum recall settings yielded
an increase in Recall of 16.02% on top of the baseline. A
last point to note is the stability of the F1 value, losing only
just over 1% after the tuning has taken place.

6. DISCUSSION AND CONCLUSIONS
The Support Vector Machine is a popular machine learn-

ing algorithm, which achieves excellent performance in many
categorization applications, including text categorization.
Although patent categorization is a sub problem of text cat-
egorization, a direct application of SVM must be evaluated

8Optimal Precision/Recall settings are given in Table 6. Due
to space limitations, more detailed tuning results could not
be included.

due to specific aspects of patents and patent classification
systems. This study investigates SVM in patent categoriza-
tion based on the IPC and compares SVM with Balanced
Winnow, which is frequently applied in current patent cat-
egorization systems such as the IPCCAT.
SVM outperforms Balanced Winnow in terms of Precision

on all sample collections and document representations (see
Table 5). The difference in Precision of the two learning
algorithms becomes smaller with growing number of terms.
In other words, Balanced Winnow benefits more from the
increase in the number of terms introduced by the longer
document representations itabsdesc and tdesc. In fact, SVM
still outperforms Balanced Winnow in terms of Precision on
longer document representations. On the other hand, in
the experiments the SVM training does not scale to longer
document representations without algorithmic paralleliza-
tion and distribution, while training with Balanced Winnow
still succeeds.
In contrast to the Precision results, SVM training deliv-

ered lower Recall compared to Balanced Winnow. The re-
sults show large differences between Precision and Recall for
each of the SVM experiments. This suggests that the SVM
parameters that were applied in the experiments are not op-
timal and parameter tuning is needed in order to increase
both Precision and Recall.
Since the used sample collections do not only grow in

terms of document number, but, also in the number of classes
(max. 600), the Precision values in Table 5 show that SVM
results remain more stable than Winnow results as the cor-
pus size increases (100k → 1200k). Another important con-
clusion is that SVM is more robust regarding the unbalanced
class distribution depicted in Figure 1. The Precision values
delivered by Winnow are more affected by the imbalance in
the training collection than SVM, which is shown in Fig-
ure 4.
Depending on either optimizing Precision or Recall, differ-

ent SVM parameter settings are determined in this study.
Using a linear kernel with C = 0.1 and J = 1.0 achieves
highest Precision, while optimal Recall is found with C =
0.25 and J = 10.0. Table 7 lists those settings in combina-
tion with the achieved Precision, Recall and F1 values. On a
corpus of 500k patent documents, Precision tuning exceeds
the baseline experiments by 6.34%, Recall tuning even by
16.32%.
Due to its robustness, SVM learning can be tuned on a

small corpus and does not take up too much time if a care-
ful grid search is applied. Keeping the cost parameter (J)
low improves Precision, whereas a bigger J maximizes Re-
call. This finding can be extended to tuning other types of
text corpora. A low cost parameter means allowing fewer
mistakes (Precision) but therefore reduces the number of
positive examples being retrieved (Recall). The complexity
parameter (C) can be chosen in the interval [0, 2].
Although detailed results on Balanced Winnow tuning

could not be included due to the space limitations, it was
also a part of the study. Low α-values of 1.01 and 1.02
along with 5 to 8 learning iterations yield optimal Preci-
sion/Recall on itabsdesc 500k, while α-values of 1.1 and 1.05
yield optimal Precision/Recall on itabsdesc 100k. Compar-
ing with SVM two important differences can be observed.
Firstly, Winnow tuning is not robust on different training
collections. Secondly, the gap between Precision and Recall
issignificantly smaller using the same parameter setting.
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89.15 82.87 77.59 73.82 70.92 68.65 66.41 64.47

88.29 82.04 77.32 73.61 70.08 67.83 65.65 63.88

88.31 81.79 76.7 72.79 69.46 67.2 65.71 63.42

87.63 80.85 76.1 72.59 69.15 67.32 64.91 63.2

86.79 79.73 74.74 71.55 68.76 66.45 64.27 62.89

86.04 78.95 74.8 70.68 67.63 65.53 64.37 63.04

(a) Precision
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(b) Recall

Figure 6: Grid Search of SVM parameters C and J. More reddish (darker) colors denote low Precision/Recall,

while brighter colors indicate high Precision/Recall.

To summarize the most interesting conclusions, all LCS
Winnow experiments reveal moderate to low micro-averaged
Precision and Recall results as well as moderate robustness
in case of an increasing corpus size. itabsdesc significantly
outperforms all other document representations. Parameter
tuning showed that same parameter setting improves both
Precision (72.23%) and Recall (78%).

The SVM experiments, on the other hand, achieve high
Precision over all sample collections with an exceptional bal-
ancing of the Precision over all sub classes. SVM is highly
robust in terms of number of sub classes to be learned. itab-
sdesc significantly outperforms all other document represen-
tations, while parameter tuning is indispensable.

The next step in this study is the development of auto-
matic tuning methods. Depending on the requirements of
the user, specific Precision- or Recall-directed tuning can be
realized. Another issue that deserves attention in future in-
vestigation is the use of semantic information in the creation
of the index. The incorporation of such linguistic informa-
tion is the next component that will be added to the LCS.
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