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Abstract

Many real-world stochastic environments are in-

herently multi-objective environments with mul-

tiple possibly conflicting objectives. Techniques

from multi-objective optimization are imported

into the multi-armed bandits (MAB) problem for

efficient exploration/exploitation mechanisms of

reward vectors. We introduce the ε-approximate

Pareto MAB algorithm that uses the ε-dominance

relation such that its upper confidence bound

does not depend on the number of best arms,

an important feature for environments with rel-

atively many optimal arms. We experimentally

show that the ε-approximate Pareto MAB algo-

rithms outperform the performance of the Pareto

UCB1 algorithm on a multi-objective Bernoulli

problem inspired by a real world control applica-

tion.

1. Introduction

There are many interesting applications in the field of au-

tomatic control where one wants to simultaneously fulfill

different criteria (or objectives). Objectives can be aligned

as well as conflicting, resulting in complex Pareto fronts

that cannot be assumed to be convex. Furthermore, it is

hard to a priori weight this criteria and an approach that

combines different objectives using predefined weights is

not feasible. Multi-armed bandits (Auer et al., 2002) is

a machine learning paradigm used to study and analyze

resource allocation in stochastic and noisy environments.

A variant of multi-armed bandits that uses reward vectors

instead of reward values was introduced in (Drugan &

Preliminary work. Under review for BENELEARN 2014. Do not
distribute.

Nowe, 2013) and has been named multi-objective multi-

armed bandits (MO-MABs). Some of these techniques

were also imported in other related learning paradigms

like multi-objective reinforcement learning (van Moffaert

et al., 2013; Wang & Sebag, 2012; Roijers et al., 2013).

Multi-objective MABs lead to important differences to the

standard MABs. There can be several arms considered to

be the best according to their reward vectors and, thus,

dominance relations specific for the multi-objective search

spaces, i.e. Pareto or scalarized dominance relation, should

be considered. Moreover, when the multi-objective envi-

ronments are large and complex, i.e. ǫ-Pareto sets, can be

considered to efficiently explore the Pareto front.

The exploitation/exploration trade-off is important in both

EAs (Evolutionary Algorithms) and MABs but with differ-

ent meaning. Exploration in MABs means to choose sub-

optimal actions, whereas in EAs exploration means to gen-

erate solutions in unexplored regions of the search space.

Exploitation in MAB means to select the best option from

an available set, while in EAs exploitation means to gener-

ate new solutions in promising regions of the search space

using the commonalities of current solutions.

Main contributions. In this paper, we propose a Pareto

MAB algorithm that improves the exploration/exploitation

properties of the Pareto UCB1 algorithm (Drugan & Nowe,

2013) for large sets of optimal arms. The main idea of

this Pareto MAB algorithm is inspired by: i) the MAB

algorithms that successively remove the sub-optimal arms

(Audibert et al., 2010), and ii) Pareto ǫ-dominance opti-

mization algorithm where a subset of Pareto optimal arms

are considered. The best arm identification MAB algo-

rithm (Audibert et al., 2010) identifies a single optimal

arm, whereas in its generalization (Bubeck et al., 2013)

the m-best arms are identified. We extend this concept for

multi-objective environments.
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The ǫ-approximate Pareto optimal set of arms identifica-

tion algorithm (POAI) is a variant of the best arm identifi-

cation algorithm where the Pareto ǫ-dominance relation is

used. The multi-objective environment is considered a hy-

pergrid, and the arms are considered part of the hypercubes

inside the hypergrid. At first, the algorithm assigns arms

to hypercubes in order to deterministically delete domi-

nated hypercubes rather than the dominated arms. The re-

sulting algorithm is considered a naive PAC algorithm and

the probability that an arm is assigned to the wrong box is

bounded. Second, the Pareto MAB algorithm selects a sin-

gle non-dominated arm in each hypercube using a similar

approach with the Pareto optimal set of arms identification

algorithm but without the severe assumption that the size

of the Pareto optimal set of arms is known beforehand. The

upper confidence bound of the POAI algorithm does not

depend on the size of the Pareto optimal set of arms. It de-

pends on the number of non-dominated hypercubes instead,

and this is a parameter that can be tuned by the user.

In the experimental section, we consider the Hoeffding

race (Maron & Moore, 1994) as the baseline for compari-

son with the two Pareto optimal set of arms identification

algorithms proposed here. The three MO-MAB algorithms

are tested on data from a real world application that comes

from control theory. As expected, the two algorithms intro-

duced here outperform the Hoeffding race algorithm, and

the ǫ-Pareto optimal set of arms identification algorithm is

the best performing algorithm.

Outline. Section 2 introduces some background knowl-

edge. In Section 3, we present the Pareto UCB1 algorithm.

Section 4 introduces the ǫ-Pareto optimal problem. Sec-

tion 5 shows the usage of MAB with the ǫ-Pareto optimal

problem. Section 6 introduces a combination between the

ǫ-Pareto optimal problem and the best arm identification

algorithm. In Section 7, we compare the proposed algo-

rithms with Pareto UCB1 algorithm. Section 8 concludes

the paper.

2. Background

Let’s consider the definition of a multi-armed bandit algo-

rithm where only one arm is played at a time and there are

fixed equal range stochastic reward vectors for each arm.

When arm i is played at time steps t1,t2,. . ., the corre-

sponding reward vectors X
t1
i , Xt2

i , . . . are independently

and identically distributed according to an unknown law

with unknown expectation vector. The independence also

holds between the arms.

Let’s consider a K-armed bandit, K ≥ 2, and let I be

the set of K arms. In the multi-objective setting, the ex-

pected reward of each bandit i is multi-dimensional, µi =
(µ1

i , . . . , µ
D
i ), where D is a fixed number of dimensions, or

objectives. We consider the general case where a mean re-

ward vector can be better than another mean reward vector

in one dimension, and worse in another dimension. This

means that the objectives might be conflicting as well as

correlated.

The Pareto dominance relation (Zitzler et al., 2003) or-

ders the reward vectors. A reward vector µ is considered

better than, or dominating, another reward vector ν, ν ≺ µ,

if and only if there exists at least one dimension j for which

νj < µj , and for all other dimensions o, we have νo ≤ µo.

A reward vector µ is considered incomparable with another

reward vector ν, ν‖µ, if and only if there exists at least one

dimension j for which νj < µj , and there exists another

dimension o, for which νo > µo. We say that µ is non-

dominated by ν, ν 6≻ µ, if and only if there exists at least

one dimension j for which νj < µj .

Let I∗ be the Pareto optimal set of arms, i.e. non-

dominated by all other arms, and let the Pareto optimal re-

ward set O∗ be their reward vectors. Although these two

sets are equivalent, we will use them alternatively when

convenient.

2.1. The Pareto regret metric

The Pareto regret is introduced in (Drugan & Nowe, 2013)

and it estimates the distance between a suboptimal arm and

the Pareto optimal set of arms I∗.

To approximate the smallest distance between O∗ and µi,

we construct a virtual reward vector that is incomparable

with all the reward vectors from O∗. We add to µi a posi-

tive value ǫ in all objectives, resulting in a so called virtual

reward vector νi,ǫ, where νji,ǫ = µj
i + ǫ

j and ǫ
j > 0, ∀j.

For simplicity, we assume the ǫ has equal values in all di-

mensions, ∀j, k, ǫj = ǫ
k. The virtual optimal reward for

the arm i, ν∗i has the minimum value for ǫ for which νi,ǫ is

incomparable to all the rewards in O∗.

The distance between the virtual optimal reward vector of

the arm i, ν∗i , and the mean reward vector of the same arm,

µi, is denoted with

∆i =

√√√√
D∑

j=1

(ν∗ji − µj
i )

2 =
√
Dǫi (1)

Since by definition ǫi is always positive, this regret is al-

ways positive. Note that the distance between the Pareto

optimal arms and O∗ is 0 because the corresponding vir-

tual rewards coincide with the optimal reward vector itself.

An algorithm A selects the next arm to play based on the

list of past plays and obtained reward vectors. Let Ti(N)
be the number of times a suboptimal arm i has been played

by A during the first N plays. The expected regret after

the first N plays is
∑

i6∈I∗ ∆i · IE[Ti(N)], the expected
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Algorithm 1 Pareto UCB1

Play each arm i once

n← K; ni ← 1, ∀i; t← 0
while stopping criteria NOT met do

Find the current Pareto optimal set I∗(t) for all i ∈ I(t)

and µ̂i +

√
2 ln(n 4

√
D|I∗|)

ni

Pull arm h uniform randomly chosen from I∗(t)

Update µ̂h; n← n+ 1; nh ← nh + 1; t← t+ 1
end while

loss due to the play of suboptimal arms, where IE[·] is the

expectation and ∆i as in Equation 1.

The expected value of each arm is computed by averaging

the samples observed over time. The mean of arm i is esti-

mated as µ̂i(n) =
∑Ti(n)

s=1 Xk(s)/Tk(n), is the s-th sample

observed for arm i.

3. The Pareto UCB1 algorithm

Pareto UCB1 (Drugan & Nowe, 2013) is a straightforward

generalization of UCB1 where the Pareto dominance rela-

tion is used. By definition, the index for each arm has two

terms: i) the mean vector, and ii) a term related to the size

of a one-sided confidence interval of the average reward

according with the Chernoff-Hoeffding bounds.

As initialization step, each arm is played once. Each it-

eration, for each arm, i, we add its estimated mean re-

ward vector and its associated confidence interval, µ̂i +√
2 ln(n 4

√
D|I∗|)

ni
. The Pareto optimal set of arms for the

time step t, I∗(t), is calculated from this index. Thus, for

all not Pareto optimal arms i 6∈ I∗(t), there exists a Pareto

optimal arm h ∈ I∗(t) that dominates the arm i:

µ̂h +

√
2 ln(n 4

√
D|I∗|)

nh
≻ µ̂i +

√
2 ln(n 4

√
D|I∗|)

ni

We now select uniform at random a Pareto optimal arm

from I∗(t) and pull it. After selection, the mean value of

the selected arm µ̂h and the corresponding counters are

updated. A possible stopping criteria is a fixed number of

iterations n.

An arm that is closer to the Pareto optimal set of arms I∗ is

more often selected than an arm that is further away from

I∗. Note that, by design, the Pareto UCB1 algorithm is fair

in selecting Pareto optimal arms.

Consider the Pareto regret defined in Equation 1. The ex-

pected Pareto regret of a policy π after any number of n

plays is at most

∑

i6∈I∗

8 · log(n 4
√

D|I∗|)
∆i

+ (1 +
π2

3
) ·

∑

i6∈I∗

∆i

where I∗ is the set of Pareto optimal arms.

For any suboptimal arm i, IE[Ti(N)] ≤ 8
∆2

i
ln(N 4

√
D|I∗|)

plus a small constant. Like for the standard UCB1, the

leading constant is 8/∆2
i and the expected upper bound

of the Pareto regret for Pareto UCB1 is logarithmic in the

number of plays N . Unlike the single objective UCB1, this

expected bound is in addition logarithmic with the num-

ber of dimensions D and the number of optimal arms |I∗|.
The worst-case performance of this algorithm is when the

number of Pareto optimal arms is approximately equal with

the total number of arms |I∗| ≈ K, a probable situation in

many objective environments.

4. The ǫ-approximate Pareto MAB problem

An alternative Pareto dominance relation assumes that ex-

ists a set of representative vectors that is a good approxima-

tion of a large Pareto optimal reward set. This technique is

imported from multi-objective optimization and it is called

Pareto ǫ-dominance (Laumanns et al., 2002) and its us-

age in an MAB with reward vectors is described in Sec-

tion 5. In Section 6, we combine a best arm identification-

like algorithm with the Pareto ǫ-dominance relation in or-

der to obtain an MAB algorithm with an efficient exploita-

tion/exploration trade off.

The Pareto ǫ-dominance relation. We consider the defi-

nition of additive Pareto ǫ-dominance relation. The reward

vector µ ǫ-dominates another reward vector ν, µ ≻ǫ ν if

and only if for all the objectives j, we have µj + ǫ
j ≥ νj

and exists an objective for which µj + ǫ
j > νj . We take

ǫ
j positive constants defined for each dimension, ǫj > 0.

If ǫ
j = 0, ∀j, we have the classical definition of Pareto

dominance.

A set of reward vectors Oǫ is called an ǫ-approximate

Pareto reward set of O, if any reward vector ν is ǫ-

dominated by at least one reward vector µ ∈ Oǫ. Thus,

∀ ν ∈ O : ∃µ ∈ Oǫ such that µ ≻ǫ ν

Note that the set Oǫ is not unique. The simplest way to

generate Oǫ is to consider the multi-objective reward space

as a hyper-grid with equal non-intersecting hypercubes.

For simplicity, we assume that the upper and lower value

bounds are equal in all objectives. Let m and M be

the upper and the lower bound in each objective. Let

⌈M−m
ǫ
⌉ be the number of equal non-intersecting segments

of length ǫ in each objective. The number of hypercubes
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Algorithm 2 Assign arms to the hypergrid

(ArmToHypercubes)

Require: ξ > 0, δ > 0
Cǫ → ∅
for all arms i ∈ I do

Play it for ti =
4
ξ2 ln

2DN
δ times

Let µ̂i be its average reward vector

Assign it to the hypercube o · ǫ that contains µ̂i

If o · ǫ /∈ Cǫ, then Cǫ → Cǫ ∪ {o · ǫ}
end for

Remove the everywhere dominated hypercubes from Cǫ

in ǫ-approximative Pareto sets O∗
ǫ

is upper bounded by

|O∗
ǫ
| ≤ (m− 1) · M−m

ǫ
.

We define an hypercube using its lowest right vertex de-

fined as an inner product o · ǫ = (o1 · ǫ, . . . , oD · ǫ), where

∀j, 0 ≤ oj ≤ ⌈M−m
ǫ
⌉. An hypercube is the Cartesian

product of intervals×m−1
j=1 [oj ·ǫ, (oj+1)·ǫ[. Thus, the high-

est vertex of the hypercube is the following inner product

(o+ 1) · ǫ = ((o1 + 1) · ǫ, . . . , (oD + 1) · ǫ).
A hypercube o1 · ǫ is not everywhere dominated by an-

other hypercube o2 · ǫ, iff ∃j, for which oj1 ≥ oj2. Note

that, by definition, the not everywhere-dominated relation

is more relaxed than the definition of non-dominated rela-

tion. That is because two adjacent hypercubes can contain

non-dominated arms.

The optimal set of not everywhere dominated hypercubes is

denoted with O∗
ǫ
. The arms inside a hypercube are ordered

using the non-dominated relation, but only one arm would

be further used.

5. Assign arms to hypercubes

This is a sequential problem because each arm is individ-

ually assigned to a hypercube. Intuitively, an arm i is as-

signed to the hypercube that contains its mean reward vec-

tor, µi. We want to bound the probability that the arm i is

assigned to the wrong hypercube. Thus, the arms that are in

the middle of the hypercube are easier to assign, whereas

the arms that are close to the border of a hypercube are

more difficult to assign. The goal of this algorithm is to de-

terministically delete hypercubes that are dominated in all

objectives rather than dominated arms.

The pseudo-code for this algorithm is given in Algorithm 2.

An arm is assigned to a single hypercube, but to a hyper-

cube, more than one arm can be assigned. Let Cǫ be the

set of non-empty hypercubes to which at least one arm is

assigned. At initialization, Cǫ is the empty set. Each arm is

sampled for 4
ξ2 ln

2DN
δ times and then the arm is assigned

to the hypercube that contains its mean. As last, the hyper-

cubes that are dominated in all objectives by at least one

other hypercube from Cǫ are deleted.

Note that this algorithm is a variant of the naive

(ξ, δ)−PAC algorithm (Even-Dar et al., 2006) where the

probability that the expected reward vector of an arm i,
µi, does not belong to the same hypercube as its esti-

mated reward vector, µ̂i, is bounded with confidence inter-

val δ. Thus, we want to bound the probability of the event

|µi − µ̂i| 6≺ ξ1. Thus, 6 ∃j, for which |µj
i − µ̂j

i | > ξ and 1

the unity vector.

Theorem 1 Let Algorithm 2 be run on a K-armed multi-

objective bandit problem, K > 1, having arbitrary reward

distributions P1, . . .PK with support in [0, 1]D.

This algorithm is a naive (ξ, δ)-PAC with sample complex-

ity O(Nξ2 log 2DN
δ ).

Proof. Let’s prove that this algorithm is a naive (ξ, δ)-PAC

algorithm. Let’s consider the hypercube with the lowest

vertex o · ǫ be the hypercube that contains i, µi ∈ o · ǫ. We

consider that when the arm i is at a certain distance from

the bounds of o·ǫ, then i can be assigned to that hypercube.

Thus, µi 6≺ ǫ · o+ ξ and µi 6≻ ǫ · (o+ 1)− ξ. This means

that ∃j, such that µj
i > ǫ

j ·oj+ξ and µj
i < ǫ

j ·(oj+1)−ξ.

The probability that the estimated reward vector is not in

the same hypercube like µi, means that µ̂i 6≻ ǫo or µ̂i 6≺
(ǫ + 1)o. This means that ∃j, such that µ̂j

i < ǫ
joj or

µ̂j
i > ǫ

j(oj + 1).

Thus, the probability of error is

IP (|µi − µ̂i| 6≺ ξ) = IP (µ̂i 6≻ µi − ξ or µ̂i 6≺ µi + ξ)

≤ IP (µ̂i 6≻ µi − ξ) + IP (µ̂i 6≺ µi + ξ)

=

D∑

j=1

IP (µ̂j
i < µj

i−ξ)+IP (µ̂j
i > µj

i+ξ) ≤ 2De−ξ2ℓ/2 =
δ

N

where the last inequality uses the Hoeffding inequality.

Choosing ℓ = 2
ξ2 ln

2DN
δ assures that IP (|µi − µ̂i| 6≺ ξ) ≤

δ/N . Summing over all the arms, we have that the error

probability is at most δ.

The above bound does not depend on the number of op-

timal arms but depends on the number of dimensions D.

Thus, the number of times an arm should be pulled is thus

longer compared with the standard naive (ξ, δ)-PAC algo-

rithm from (Even-Dar et al., 2006).

The last step of the algorithm deletes the hypercubes that

are dominated in all objectives and it is deterministic. The

computational complexity of testing the dominance rela-

tions between the non-empty hypercubes is the same with

the complexity of sorting. Thus, O(c log c), where c =
|Cǫ|.



ε-approximate Pareto optimal set of arms identification

Algorithm 3 ǫ-Pareto optimal set of arms identification

(POAI)

A non-empty not everywhere dominated set of hyper-

cubes Cǫ ← ArmToHypercubes(ξ, δ)
I∗
ǫ
← ∅

for all hypercubes c = 1, . . . , |Cǫ| do

Let A1 = I, and n0 = 0, and nk =⌈
1

log(K)
· N−K
K+1−k

⌉

for all rounds k = 1, 2, . . . ,K − 1 do

(1) ∀i ∈ Ak, select arm i for nk − nk−1 rounds

(2) Let argmini∈Ak
µ̂i be the arm to dismiss

(3) Ak+1 → Ak \ argmini∈Ak
µ̂i

end for

Let the remaining set of arm be i∗ ← AK−1

I∗
ǫ
← I∗

ǫ
∪ {i∗}

end for

For a meaningful algorithm, we need to ensure that ξ ≪ ǫ.

Only for the arms that are at the border of hypercubes, the

probability to select the wrong hypercube is large. But the

Pareto dominance relation between arms in one hypercube

is invariable with the process of assigning these arms to the

right hypercube. Thus, we consider here ξ = ǫ.

The budget for this algorithm is now

n1 =
K∑

i=1

ti =
4K

ǫ2
ln

2DN

δ
=

4K

ǫ2
ln

N

δ
+

4K

ǫ2
ln 2D

≈ 4K

ǫ2
ln

N

δ

where the dominant term of this sum is given by 4K
ǫ
2 ln N

δ
and the second term is a constant that is further ignored.

Note that this budget n1 increases when δ decreases, thus

when the confidence that a certain arm is assigned to the

correct hypercube increases.

6. The ǫ-approximate Pareto optimal arm

identification algorithm

The goal of the best arm identification class of algo-

rithms (Gabillon et al., 2012) is to delete suboptimal arms

in such a way that the probability to delete the optimal arm

is bounded. The main idea of the ǫ-approximate Pareto op-

timal arm identification (POAI) algorithm is, for each not

everywhere dominated hypercube, to successively delete

dominated arms until all the arms that were not dismissed

are non-dominated arms. The only difference between the

standard, i.e. single objective, successive rejects and this

algorithm is the usage of Pareto dominance relations to

qualitatively classify the arms. The pseudo-code for the

POAI algorithm is given in Algorithm 3.

The POAI algorithm starts with dividing the time in K − 1
phases. The length of a phase is carefully chosen to en-

sure logarithmic regret. Thus, the length of the k-th phase

is nk =
⌈

1
log(K)

N−K
K+1−k

⌉
, where we have the follow-

ing approximation for the logarithm function log(K) =
1
2 +

∑K
i=2

1
i . At the end of each phase, the algorithm

dismisses the arm with the lowest empirical mean reward.

During the next phase, each arm that is not dismissed

yet will be pulled equally often. The probability of er-

roneously removing a Pareto optimal arm is shown to be

upper bounded by
(
K−1
2

)
e
− N−K

log(K)H2 , where a complexity

measure is H2 = maxi∈I i∆−2
i . This type of explo-

ration/exploitation trade-off is especially useful when the

regrets are close to 0, meaning there are near Pareto opti-

mal solutions.

For each hypercube, we assume that only one non-

dominated arm represents that hypercube. This algorithm

has an upper confidence bound on the probability that all

Pareto optimal arms are deleted in a hypercube, and thus

the selected arm is suboptimal. Like for the standard suc-

cessive reject algorithm, the probability of wrongly delet-

ing all Pareto optimal arms in a hypercube after any number

of N plays is at most

eN ≤ cD

(
K − 1

2

)
· e−

(N/c−K)

H2(log(K)+1)

The proof results immediately from the proof in (Audibert

et al., 2010).

The error from the POAI algorithm, cf. Algorithm 3, de-

pends on the number of non-dominated hypercubes, c, a

parameter that is controlled by the user.

In the limit, it can be at most K when all arms are in a

hypercube and the hypergrid is considered too coarse. The

smallest number of arms in a hypercube is 1. If almost

all non-empty not everywhere dominated hypercubes have

only one arm, then the hypergrid is considered too fine.

If the hypergrid is fine, there are many not everywhere

dominated hypercubes, each of them containing a small

number of arms. When c ≈ |I∗|, the POAI algorithm,

cf Algorithm 3, has a performance similar with the succes-

sive rejects algorithm. If the hypergrid is coarse, there are

few not everywhere dominated hypercubes, each of them

containing many arms. If c ≈ 1, then the POAI algorithm

selects only one non-dominated arm.

Thus, in order to obtain an efficient algorithm, we need to

tune parameter c. In the experimental section, we experi-

mentally select a value for c.

Let’s consider that the POAI algorithm has a fixed budget

of N pulls. The algorithm that assigns arms to hypercubes,

cf. Algorithm 2, spends n1 pulls to assign arms to hyper-
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cubes, and the rest of the plays n2 = N − n1 in the POAI

algorithm, cf Algorithm 3, are spent on identifying a Pareto

optimal arm in each hypercube.

Thus, the number of pulls for Algorithm 3 is n2 = N −
n1 = N − 4K

ǫ
2 ln N

δ . This can be tuned also with differ-

ent values for ǫ and δ. In general, the amount of pulls

needed for each of the two algorithms depends on the char-

acteristics of the environment. When there are many Pareto

optimal arms, we want to spend less arm pulls on assign-

ing arms to the hypergrid than on removing arms from a

hypercube. For many suboptimal arms, the importance of

correctly assigning arms to hypercubes is obvious.

7. Experiments

In this section, we consider the multi-objective multi-

armed bandits framework to find the Pareto optimal set of

settings of a control application like the wet clutch (Vaeren-

bergh et al., 2012).

The description of the wet clutch. In order to optimize

the functioning of the clutch it is necessarily to simultane-

ously minimize the optimal current profile to the electro-

hydraulic valve that controls the pressure of the oil to the

clutch, and the engagement time. The piston of the clutch

gets in contact with the friction plates to change the pro-

file of the valve, such a system being characterized by a

hard non-linearity. Additionally, external factors that can-

not be exactly controlled such as the surrounding tempera-

ture making the outcome of a control application stochas-

tic. Thus, the goal of such systems will be to minimize

the clutch’s profile and the engagement time in varying en-

vironmental conditions. These clutches are typically used

in power transmissions of off-road vehicles, which operate

under strongly varying environmental conditions.

Currently, Pareto (near)-optimal solutions for this problem

are generated using a standard multi-objective evolutionary

algorithm (Zhong et al., 2012) that considers only the mean

of the solutions. However, the classical multi-objective

evolutionary algorithm has no mechanism to handle the

stochastic information. The evolutionary algorithms for

dynamic and uncertain environments assumes a dynamic

support of the distribution of a solution, and the system up-

dates its operators at certain moments in time. In our case,

the underlying distribution is stochastic and the adaptation

step is expensive and might lead to inaccurate results. Thus,

we need an optimizer suited for stochastic environments

with stationary underlying distributions.

In Figure 1 a), we give 50 points generated with the wet

clutch application, each point representing a trial of the

machine and the jerk time obtained in the given time. In

Figure 1 a), we have a minimization problem that we trans-

form into a maximization problem, see Figure 1 b), by first

✥���

✁���

✂���

✄����

✄☎���

✄✥���

✄✁���

✄✂���

✂�� ✄��� ✄☎��

❥✆
✝✞
✟✠
✆
✡
☛☞
✌
✍✎
✏

t✑✒✓ ✔✕✖

❇✑✗✘✙✚✓✛t✑✜✓ ✜✓✛t✘✢ ✢✓✣✤✢✦✕

(a)

✥

✥�✁

✥�✂

✥�✄

✥�☎

✆

�✥ �✁✳ �✳✥ �✝✳ ✆�

♥
✞
✟✠
✡
☛☞
✌
✍
✎
✏✍
✟✑
✒✞
✓
✏✔
✕

✖✗✘✙✚✛✜✢✣✤ ✦✜✙✣ ✧✗★✩✁✪

◆✗✘✙✚✛✜✢✣✤ ✫✣✬✦✗✘ ✘✣✭✚✘✤✮

❉✗✙✜✖

P✚✘✣✦✗

(b)

Figure 1. a) All the points generated by the bi-objective wet-

clutch application. b) Transforming this points from a maximiza-

tion problem into a minimization problem.

normalizing each objective with values between 0 and 1,

and then transforming it into a maximization problem for

each of the two objectives. The best set of incomparable

reward vectors is called the Pareto optimal reward set, e.g.

in Figure 1 b), there are 16 such reward vectors. In our ex-

ample, the Pareto optimal set O∗ is about one-third from

the total number of arms, i.e. 16/50, and is a mixture of

convex and non-convex regions.

Parameter settings. The scope is to experimentally com-

pare the behavior of three instances of multi-objective

MAB algorithms:

PUCB1 The Pareto UCB1 algorithm described in Sec-

tion 3;

POAI The ǫ-Pareto optimal set of arms identification al-

gorithm described in Section 6;

Hoef As a basedline algorithm, we use an adaptation to

the multi-objective spaces of the Hoeffding race algo-

rithm (Maron & Moore, 1994) where all the arms are

pulled equally often and then the arms with the Pareto

non-dominated empirical mean are chosen.

Each algorithm is run 100 times with a fixed budged of

N = 106. We consider ǫ = 0.1, the accuracy ξ = 0.01
and the confidence interval δ = 0.1. Note that, for K = 50
and |I∗| = 16, the number of pulls for the assign arms to

hypercubes algorithm, cf Algorithm 2, is n1 ≈ 32 · 104,

and the number of pulls for the POAI algorithm, cf. Algo-

rithm 3, is almost double n2 ≈ 67 · 104. These parameters

are set based on data observation from Figure 1, automati-

cally tuning these parameters remains as future work.

Performance assessment. We evaluate the performance

of the three multi-objective MAB algorithms based on two

performance measures as indicated in Figure 2. Figure 2 a)

gives the instantaneously Pareto regret metric for each of

the three algorithms. According with this measure, Pareto
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Figure 2. The performance of the three multi-objective MAB al-

gorithms: i) Hoeffding race (Hoef), ii) Pareto UCB1 (PUCB1)

and iii) ǫ-approximate Pareto optimal set of arms identification

algorithm (POAI).

UCB1 and POAI are the best performing algorithms. Inter-

esting are the slopes of the Pareto regret metric. It seems

that for a larger budget, the best performing algorithm will

be ǫ-Pareto optimal set of arms identification algorithm

those regret grows very slowly after n1 ≈ 32000 pulls in

which the arms are assigned to hypercubes.

Figure 2 b) shows the percentage of times any of the Pareto

optimal arms from I∗ is used. Note that the Pareto UCB1

and Hoeffding algorithms perform similarly, while POAI

has a better performance in the beginning where the subop-

timal arms are deleted and resembles Pareto UCB1’s per-

formance when the Pareto optimal arms in the same hyper-

cube are deleted.

We conclude that POAI has the best performance from the

three algorithms.

8. Conclusions

The multi-objective multi-armed bandits is a theoretical

framework for stochastic environments. Pareto UCB1 is

a UCB1 algorithm extended to reward vectors those per-

formance depends on the number of Pareto optimal arms.

In order to improve the exploration/ exploitation trade-off

and thus the theoretical bounds of the Pareto UCB1 al-

gorithms, we incorporate techniques from multi-objective

evolutionary algorithms like Pareto ǫ-dominance. The up-

per confidence bound of this algorithm is independent of

the size of the Pareto optimal set of arms. This is an impor-

tant property for environments with many objectives where

relatively many arms have incomparable quality. We show

that the proposed ǫ-approximate Pareto optimal arms iden-

tification algorithm can be used to identify the Pareto opti-

mal set of solutions in a real world control problem.
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