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Abstract

Multi-objective problems with correlated objectives are
a class of problems that deserve specific attention. In
contrast to typical multi-objective problems, they do
not require the identification of trade-offs between the
objectives, as (near-) optimal solutions for any objec-
tive are (near-) optimal for every objective. Intelligently
combining the feedback from these objectives, instead
of only looking at a single one, can improve optimiza-
tion. This class of problems is very relevant in rein-
forcement learning, as any single-objective reinforce-
ment learning problem can be framed as such a multi-
objective problem using multiple reward shaping func-
tions. After discussing this problem class, we propose
a solution technique for such reinforcement learning
problems, called adaptive objective selection. This tech-
nique makes a temporal difference learner estimate the
Q-function for each objective in parallel, and introduces
a way of measuring confidence in these estimates. This
confidence metric is then used to choose which objec-
tive’s estimates to use for action selection. We show sig-
nificant improvements in performance over other plau-
sible techniques on two problem domains. Finally, we
provide an intuitive analysis of the technique’s deci-
sions, yielding insights into the nature of the problems
being solved.

Introduction
Multi-objective problems (MOP) require the simultaneous
optimization of multiple feedback signals. As conflicts may
exist between objectives, there is in general a need to iden-
tify (a set of) trade-off solutions. The set of optimal, i.e.
non-dominated, incomparable solutions is called the Pareto-
front. Assuming maximization, define the set S∗p to contain
all candidate solutions s of MOP p that are within εo of opti-
mality for at least one objective o (w.r.t. utility function uo):

s ∈ S∗p ⇐⇒ ∃o ∈ Op,∀s′ ∈ p : uo(s) + εo ≥ uo(s′)

εo ≥ 0 defines the largest difference in utility of objective o
that the system designer is indifferent about. S∗p will include
at least the extrema of the Pareto-front of p.

We identify multi-objective problems with correlated ob-
jectives (CMOP) as a specific sub-class of multi-objective
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problems, defined to contain those MOPs p whose set S∗p
(and by extension whose Pareto-front) is so small that one
can barely speak of trade-offs. By consequence, the system
designer does not care about which of the very similar op-
timal solutions is found, but rather how fast it is found (and
perhaps how well it is approximated). Formally:

p ∈ CMOP ⇐⇒ ∀o ∈ Op : max
o

(S∗p )−min
o

(S∗p ) ≤ εo

Thus, whether a problem is a CMOP depends partially on
the system designer’s preferences (εo). Problems with every
element in S∗p achieving the same utility are contained in
this class irrespective of the system designer’s preferences
(even ∀o : εo = 0). Such problems can be seen as providing
multiple sources of information or feedback for the same
basic single-objective problem, and intelligently combining
such objectives may yield faster and better optimization.

This paper deals with such reinforcement learning (RL)
problems (Sutton and Barto 1998), formulated as Correlated
Multi-Objective Markov Decision Processes (CMOMDP).
(Single-objective) MDPs describe a system as a set of po-
tential observations of that system’s state S, a set of pos-
sible actions A, transition probabilities T for state-action-
state triplets, and a reward function R that probabilistically
maps these transitions to a scalar reward indicating the util-
ity of that transition. The goal of an RL agent operating
in an MDP is to maximize the expected, discounted return
of the reward function. Temporal-difference learners such
as SARSA (Rummery and Niranjan 1994) attempt this by
estimating the Q-function, which represents the utility of
each state-action pair. MOMDPs (Roijers et al. 2013) ex-
tend this framework to multiple objectives, with the reward
function returning a vector of rewards to be maximized, and
the added difficulty of finding trade-off solutions (e.g., trad-
ing off economical, environmental and aesthetic objectives
in forest management (Bone and Dragićević 2009)). Finally,
CMOMDPs satisfy the condition described above and re-
move the need for trade-offs (e.g., the traffic problem con-
sidered in this paper, where policies that minimize car delay
simultaneously maximize the system’s throughput).

The relevance of this problem class may seem lim-
ited, which can explain its neglect in the literature, but
recent work on multi-objectivization opens up the pos-
sibility of framing any MDP as a CMOMDP. Multi-
objectivization (Knowles, Watson, and Corne 2001) is the



Algorithm 1 Adaptive Objective Selection
Require: State s

for each objective o do
co = confidence((s, a1, o), ..., (s, an, o))

end for
obest = arg maxo co
actionSelection(Q(s, a1, obest), ..., Q(s, an, obest))

process of turning a single-objective problem into a multi-
objective problem in order to improve solving of the single-
objective problem. By preference, this new multi-objective
problem is a CMOP, which would mean that no (signifi-
cant) conflicts are introduced, and finding an optimal solu-
tion in the CMOP equals finding a (near-) optimal solution in
the original single-objective problem. MDPs can simply be
multi-objectivized by copying the reward function multiple
times, which results in a CMOMDP with a single Pareto-
optimal point. Of course, this modification in itself can not
improve learning, but these copies of the basic reward sig-
nal can be diversified by adding a different potential-based
reward shaping function to each (Brys et al. 2014). Since
potential-based reward shaping is guaranteed to not alter
the optimality of solutions (Ng, Harada, and Russell 1999),
the problem remains a CMOMDP with a single Pareto op-
timal point, but each of the different shaping functions can
help speed up learning differently. Their combined knowl-
edge may be exploited by techniques specifically built for
CMOMDPs — a linear scalarization or weighted sum is the
simplest example (Devlin, Grześ, and Kudenko 2011).

This insight – that any MDP can be framed as a
CMOMDP – significantly increases the importance of this
problem class, as well as techniques developed for it, as
these could potentially be used to solve regular MDPs faster
and better, provided several meaningful shaping rewards can
be devised. The remainder of this paper is devoted to propos-
ing and evaluating such a technique, which introduces a way
to measure confidence in learned estimates, and uses this
confidence measure to combine the correlated signals.

Adaptive Objective Selection
Some authors working on multi-objectivization in evolution-
ary computation propose to make every optimization deci-
sion based on feedback from only a single of the objectives.
Before every decision, they select one objective and use that
to measure solution quality and accept/reject candidate so-
lutions. This is possible since the objectives should strongly
correlate with the original one. Jensen (2005) makes this ob-
jective selection decision uniformly at random, while Buz-
dalova and Buzdalov (2012) treat this selection as a dynamic
multi-armed bandit problem, solving it with Q-learning.

We propose a similar approach for temporal-difference
learners in CMOMDPs, called adaptive objective selection,
see pseudocode in Algorithm 1. The learner estimates the
Q-function for every objective o in parallel (thus learning
Q(s, a, o) values), and decides before every action selec-
tion decision which objective’s estimates to use. To make
this objective selection decision, we introduce the concept

o0
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a0 a1a2
o0

o1
a0 a2a1

a0 a1a2

Q(s, a, o)-values only (s, a, o) distributions

Figure 1: Showing estimates for two objectives (top and bot-
tom respectively). Determining which objective’s estimates
an agent can be most confident about is impossible based
on the estimated Q-values alone (left). Extra information is
necessary (right). In this example, the second objective’s es-
timates are deemed to be more reliable, as the actions’ dis-
tributions are more significantly different/show less overlap.

of confidence in learned estimates. We define confidence as
an estimation of the likelihood that the estimates are correct.
Higher-variance reward distributions will make any estimate
of the average reward less confident, and always selecting
the objective whose estimates are most likely to be correct
will maximize the likelihood of correctly ranking the ac-
tion set. This is related to the use of confidence intervals in
UCB (Auer, Cesa-Bianchi, and Fischer 2002). To measure
confidence in estimates, the agent needs more information
than simply the Q-values – how can one say whether the
estimated Q-values for one objective are more likely to be
correct than those for another objective, based only on those
Q-values? If every (s, a, o)-triplet is modelled as a distribu-
tion on the other hand, and not just a mean (Q-value), then it
becomes possible to determine how well each objective can
differentiate between the actions based on common statisti-
cal tests. See Figure 1 for an illustration of this concept.

Key design decisions are then how to represent the
(s, a, o)-triplets as meaningful distributions, and, depending
on that representation, how to measure confidence.

Representation Distributions can be represented in a
parametric form, or by keeping a number of samples from
that distribution. An example of the former is to assume a
normal distribution, with the value of Q(s, a, o) as its mean,
and to incrementally keep track of the variance of that dis-
tribution using the temporal-difference error (van Hasselt
and Wiering 2007). An example of the latter is to store
the n most recent r(s, a, s′, o) + maxa′ Q(s′, a′, o) samples
(which represent the target being tracked).

Measurement Depending on the representation of the
distribution, we can use a number of statistical tests to esti-
mate confidence. Continuing with our examples, given mean
and variance of two (assumed) normal distributions, we
can calculate the Bhattacharyya coefficient (Bhattacharyya
1943), which indicates the percentage of overlap between
given distributions. The less overlap between distributions,
the better the agent can differentiate between the actions rep-
resented by those distributions. As this test can only be ap-
plied to two distributions, we suggest applying it to the es-
timated best and worst actions (according to the objective
being evaluated), giving an indication of how well the agent
can pull the action set apart.



For the latter example, differences for distributions repre-
sented by samples can be tested for statistical significance
using such tests as the Student’s t-test, the Wilcoxon signed-
rank test, ANOVA, etc. These tests calculate a p-value which
indicates how likely it is that the given estimates come from
the same distribution. The smaller the p-value, the more
likely it is the distributions are different, and that the agent
can differentiate correctly between the actions.

Adaptive objective selection has several interesting prop-
erties. It makes its decisions a function of the state-space,
which can account for different objectives being more or less
reliable in different parts of the state space. Furthermore,
it uses the objectives in a scale-invariant way. That is, its
workings do not depend on the relative scalings of the objec-
tives, since all statistical tests proposed are scale-invariant,
and thus no parameters are introduced. This is a significant
improvement over scalarization techniques (the most com-
mon approach to multi-objective problems), which usually
require weight tuning, if only to align the magnitudes of the
different correlated objectives in CMOPs. The optimality of
the approach depends on the problem and the RL algorithm
it is plugged into. For example, if a multi-objectivized prob-
lem is solved using Q-learning with adaptive objective se-
lection, then the Q-learning guarantees make sure the esti-
mates for every objective converge to the true values, and
given the shaping guarantees, the greedy policies for each
objective will be the same, and thus optimal.

The main disadvantage of the variants proposed above, is
that extra memory is required to represent the (s, a, o) dis-
tributions, either for keeping track of variance, or for storing
a set of samples for each triplet. In the following section,
we introduce another variant that overcomes this disadvan-
tage by exploiting the inherent Q-value decomposition of
tile-coding function approximation to represent the distribu-
tions.

Adaptive Objective Selection using
Tile-Coding Confidence

Many practical reinforcement learning problems have very
large and/or continuous state spaces, making basic tabular
learning methods impossible to use. A very popular way to
overcome this problem is to use tile-coding function approx-
imation (Albus 1981), which overlays the state space with
multiple axis-parallel tilings. This allows for a discretization
of the state-space, while the overlapping tilings guarantee
a certain degree of generalization. The Q-function can then
be approximated by learning weights that map the tiles acti-
vated by the current state s to an estimated Q-value:

Q̂(s, a, o) = θTo,aφs

φs is the feature vector representing state s, i.e. the tiles ac-
tivated by this state, and θ is the parameter vector that needs
to be learned to approximate the actual Q-function.

Recall that to apply adaptive objective selection, we need
to represent (s, a, o) triplets as a distribution. Tile-coding
provides a very natural way to do this, without requiring
the storage of extra information. For a triplet (s, a, o), the
agent can simply take the weights in θo,a activated by s

Algorithm 2 Adaptive Objective Selection using
Tile-Coding Confidence
Require: State s

for each objective o do
//θo,a(φs): the elements of θo,a activated by φs
po = paired test (θo,a1

(φs), ..., θo,an
(φs))

end for
obest = arg mino po
actionSelection(θTobest,a1

φs, ..., θ
T
obest,an

φs)

as samples representing the distribution of that triplet. Then
we can estimate confidence by applying a paired statistical
test to the samples of every action (or of the estimated best
and worst actions), see pseudocode in Algorithm 2. We can
use a paired test, such as the paired Student’s t-test or the
Wilcoxon signed-rank test, because the weights for differ-
ent actions and objectives will come from the same tiles, i.e.
locations, in the same tilings, although stored in different
weight vectors. This way, no extra memory is required to
represent the distributions.

Test Domains
To demonstrate the potential of adaptive objective selection,
we experimentally validate the variant that uses tile-coding
and the paired Student’s t-test to measure confidence on two
CMOMDPs: the first represents problems that naturally fall
into this problem class and the second is a multi-objectivized
problem, illustrating how this technique can potentially be
used to solve any MDP. We show results both for on-policy
and off-policy learning.

Traffic Light Control
The problem of Traffic Light Control (Bazzan and Klügl
2013) consists of optimizing the timing schedules of a set
of traffic lights in order to achieve (near-) optimal traffic
flow. The two metrics most commonly used to measure
performance are throughput and average delay. The former
describes the number of cars passing through the system
(to be maximized), the latter is the average delay experi-
enced by the cars in the system (to be minimized). Given
the strong correlation found between these two objectives
in (Brys, Pham, and Taylor 2014), we classify this problem
as a CMOMDP, and follow the same experimental setup.
The experiments were implemented in the real-time AIM
micro simulator (Dresner and Stone 2008), setup with a four
intersection Manhattan grid. Each of the four lights is con-
trolled by a separate SARSA(λ) agent, which has only local
information, i.e. information about its own intersection. The
agents act every two seconds, with two actions available:
leaving the lights as they are, and changing the green direc-
tion (with a short period of yellow in between). The state
space consists of three variables: 1) the time since the last
‘change’ action, 2) the time since the second to last ‘change’
action, and 3) a measure of the relative queue lengths in the
green and red directions. Tile-coding is used to discretize the
state space and all parameters are the same as in the original
study, except ε = 0.05, for better on-line performance.



Pursuit Domain
The Pursuit domain, or Predator/Prey, was proposed by
Benda, Jagannathan, and Dodhiawala (1986) to investigate
coordination mechanisms in a multi-agent system. The ba-
sic idea of pursuit is that a number of predators must cap-
ture a (number of) prey(s) by moving through a simple grid-
world. Stone and Veloso (2000) identify many variants of
the problem, and our implementation is as follows. There
are two predators and one prey, and these can move in the
four cardinal directions as well as choose to stay in place.
The prey is caught when a predator moves onto the same
gridworld cell as the prey; predators are not allowed to share
the same cell. The prey takes a random action 20% of the
time, with the rest of the time devoted to moving away from
the predators. To do that, it takes the action that maximizes
the summed distance from both predators, making the prob-
lem harder than with a fully random prey.1 The predators
are controlled by Q(λ)-learning agents, and both receive a
reward of 1 when the prey is caught by one of them, and a
reward of 0 the rest of the time. The predators observe the
relative x and y coordinates of the other predator and the
prey. Tile-coding is used to discretize the state-space, with
32 tilings, and tile-width 10, hashed down to 4096 weights.
Action selection is ε-greedy, with ε = 0.1. Further parame-
ters are γ = 0.9, λ = 0.9 and α = 1

10×32 .
We formulate a CMOMDP by multi-objectivizing the

problem using three potential-based shaping functions:2

Proximity encourages a predator to move closer to the
prey. Its potential function is defined as ΦP (s) =
−d(pred, prey), with d the manhattan distance.

Angle encourages the predators to move to different sides
of the prey, encircling it. It is defined to maximize
the angle between them and the prey to π: ΦA(s) =
arccos( x·y

|x||y| ), with x and y vectors pointing from the
prey to the two predators respectively.

Separation encourages the predators to move away from
each other. Its potential function is defined as ΦS(s) =
d(pred1, pred2) with d again the manhattan distance.
We will investigate both normalized and non-normalized

shaping functions, as the magnitude of a shaping relative
to the basic reward can have a significant impact on learn-
ing. Proximity and Separation are normalized by dividing by
2 × size, with size = 20 both the width and height of the
world; Angle is normalized by dividing by π. Furthermore,
Proximity is implemented as 2 × size − d(pred, prey), so
that all shaping functions are positive, and thus optimistic.3

Results and Discussion
Traffic Light Control
The first CMOMDP we study is the traffic light control prob-
lem. We compare performance of single-objective learn-

1Results of our experimental validation are omitted for space.
2It has been proven that potential-based shaping in multi-agent

RL does not alter the Nash Equilibria (Devlin and Kudenko 2011).
3The code used to run experiments in the pursuit domain

can be downloaded at http://ai.vub.ac.be/members/
tim-brys
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Figure 2: Comparison of two single objective approaches
with linear scalarization and adaptive objective selection.
Errorbars indicate the 95% confidence interval (but are of-
ten too small to be seen). Adaptive objective selection learns
faster and more consistently than the other variants.

Final reward Delay Throughput

Delay reward 38.91± 0.53 1.72± 0.062

Throughput reward 55.32± 10.08 1.46± 0.063

Linear scalarization 38.84± 0.69 1.72± 0.016

Ad. objective selection 38.56± 0.64 1.73± 0.016

Cumulative reward Delay Throughput

Delay reward 21747± 147 851± 2.86

Throughput reward 32617± 6483 703± 33.74

Linear scalarization 21154± 146 859± 3.09

Ad. objective selection 20927± 201 862± 4.58

Table 1: Final and cumulative performance achieved by the
two single objective approaches, linear scalarization and
adaptive objective selection. The best results and those not
significantly different from the best (Student’s t-test, p >
0.05) are indicated in bold.

ers learning on either delay or throughput as reward sig-
nal alone, on a linear scalarization of these two signals us-
ing tuned weights (wd = 0.04, wt = 0.96), and multi-
objective learners employing adaptive objective selection.
Figure 2 and Table 1 summarize the results of 100 runs of
3× 104 in-simulation seconds each, with a 100 minute slid-
ing average. Using the delay signal alone yields much better
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Figure 3: The frequency with which the throughput objective
is selected, given specific queue-ratios during a single run of
learning. x = 0 means equal queue lengths in the green and
red directions, x = 1 means the queue length of the green
direction is double that of the red, and x = −1 means the
queue length of the red direction is double that of the green.

performance in this setup than using the throughput signal
alone, which takes much longer to start improving. Adap-
tive objective selection automatically combines these two
signals, outperforming the base signals and a scalarization
with tuned weights in terms of final and cumulative perfor-
mance, a measure of the speed of learning.

In Figure 3, we plot the fraction of times y throughput
is selected as a function of the queue lengths in red and
green directions, after learning has converged (> 104s). De-
lay is selected the rest of the time (1− y). We can infer from
this plot how reliable each reward signal is estimated to be
depending on the traffic distribution. Surprisingly, through-
put most often yields the highest confidence, being selected
over 70% of the time overall. Contrast this with the erratic
learning behaviour displayed when using throughput alone;
it performed the worst of all techniques. This graph suggests
that throughput is the best predictor when the queue in the
green direction is longer (selected up to 100% of the time),
while estimates for delay are relatively more reliable when
the queues are balanced, or unbalanced4 with the queue in
the red direction being longer, as these cars are then quickly
accumulating delay.

Note that this single state variable (queue ratio) does not
represent the whole state space, and that the other state vari-
ables also influence objective selection. However, this graph
shows that, in practice, the relative reliability of delay and
throughput can be correlated with the red-green queue ratio.

Pursuit Domain
This section demonstrates how adaptive objective selection
can be used to solve a single-objective MDP, framed as a
CMOMDP. We compare learning on the original reward, the
original reward with the addition of a single shaping func-
tion, the original reward with a linear scalarization of the
three shaping functions, and using adaptive objective selec-

4Unbalanced queues is not indicative of suboptimal policies. In
that respect, balancing traffic is like pole balancing: it is impossible
to keep it perfectly balanced all the time, but you can keep circling
around the unstable equilibrium.
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(b) Non-normalized shaping functions

Figure 4: Comparison of no shaping, single shaping func-
tions, a linear scalarization and adaptive objective selection,
where the functions are either normalized or non-normalized
(top and bottom respectively). Errorbars indicate the 95%
confidence interval (but are often too small to be seen).
Adaptive objective selection is always significantly better
than the other variants, without requiring parameterization.
It is also more robust with respect to the scaling (normaliza-
tion) of the shaping functions themselves.

Final reward Normalized Non-normalized

No shaping 117± 2.67 117± 2.49

Proximity shaping 90± 2.11 452± 10.46

Angle shaping 110± 2.42 111± 2.37

Separation shaping 102± 2.15 1257± 44.95

Linear scalarization 94± 1.85 103± 2.11

Ad. objective selection 88± 1.94 88± 1.44

Cumulative reward Normalized Non-normalized

No shaping 211637± 2067 211581± 1985

Proximity shaping 131136± 1855 480046± 6493

Angle shaping 210428± 2117 242694± 3017

Separation shaping 251679± 3636 1368830± 31205

Linear scalarization 151763± 1189 202852± 2440

Ad. objective selection 125668± 1494 134494± 901

Table 2: Final and cumulative performance achieved by the
single objective approaches, a linear scalarization of shaping
functions, and adaptive objective selection. The best results
and those not significantly different from the best (Student’s
t-test, p > 0.05) are indicated in bold.
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Figure 5: Selection of shaping functions as a function of the state space, with blue indicating 0% and red 100%. Results are
averaged over 100 runs. Note that the blue region in the top right of the state space is such because it is simply never visited.

tion. We performed 1000 runs of 1000 episodes each, with
a maximum number of steps per episode of 5000. Figure 4
and Table 2 summarize these results, using a sliding window
of 25 episodes to smooth the graphs.

In the case of normalized shaping functions, using only
the proximity shaping already gives great performance com-
pared to the other variants, but adaptive objective selection
is able to improve over these results still, learning even faster
early on (statistically significant better cumulative perfor-
mance). A linear scalarization with uniform weights yields
performance in between the single shaping functions’ per-
formance, and tuning those weights yields no better perfor-
mance than with the proximity shaping alone (results not
included). Adaptively selecting which objective to use, or
in this case which shaping, allows a learner to exploit the
knowledge encoded in the shaping functions better than
by simply combining them using global weights (i.e. the
same scalarization weights for the whole state space). Global
weights are in this case not enough to improve over single
shaping functions, and weights should be defined as a func-
tion of state, which is even harder to do a priori than tuning
a single set of global weights. Adaptive objective selection
can be said to do this implicitly (and automatically), if we
consider it to be a dynamic, greedy, state-dependent weight
function applied at the action selection stage.

In the case of non-normalized shaping functions, the prox-
imity and separation shaping functions are of too large a
magnitude compared to the base reward and drown it, re-
sulting in very bad performance. This indicates that these
shaping functions do not completely correlate with the value
function V ∗. Using weights that equalize the magnitudes of
the shaping functions5 results in better performance, since
the magnitude of the scalarized signal is not as large relative
to the basic reward function. Despite the dramatic impact
of the scaling of shaping functions on these other variants,
adaptive objective selection barely suffers from this change,
and has only slightly slower learning than with the normal-
ized shaping functions. Because adaptive objective selection
measures confidence, it can detect where a shaping function
correlates less well with the basic reward, and select another
for action selection. Note that we could not discover a better
set of scalarization weights by tuning them.

In Figure 5, we show how often a predator selects each

5wi =
∏

j 6=i sj∑
j

∏
k 6=j sk

, with si the size of the domain of shaping i.

of the objectives (shaping functions) as a function of the dis-
tance to the prey, and the angle between the predators and the
prey (0 meaning both predators are on the same side of the
prey, π meaning predators are on opposite sides of the prey).
The proximity shaping is selected most when a predator is
far from the prey, the angle shaping (encouraging encircling)
is selected most when the predator is close to the prey, and
especially when it’s on the same side of the prey as the other
predator. The separation shaping is selected most at mid-
range distances from the prey. This mapping between state
and shaping makes a lot of intuitive sense, yet defining this
manually a priori would be very hard to do. Adaptive ob-
jective selection on the other hand automatically discovered
this mapping.

Conclusions
We identified and formally defined a new class of multi-
objective problems, called correlated multi-objective prob-
lems (CMOP), whose set of solutions optimal for at least
one objective is so restricted that the decision maker does not
care about which of these is found, but rather how fast one is
found, or how well one is approximated. Such reinforcement
learning problems (CMOMDPs) include traffic light control,
with the delay and throughput objectives being strongly cor-
related, and, more significantly, any single-objective prob-
lem that has been multi-objectivized using multiple reward
shaping functions.

After identifying this class of problems, we introduced
a novel, parameterless and scale-invariant technique, called
adaptive objective selection, that helps temporal-difference
learners solve CMOMDPs faster and better. The variant we
experimentally validated exploits the natural decomposition
of Q-values by tile-coding to measure confidence in the es-
timates of each objective, using then only those estimates
for an action selection decision. We validated the technique
in traffic light control and in the pursuit domain, showing
significantly improved learning. Additionally, the objective
selection decisions yield intuitive insights into the problems.

We believe many more techniques exist (in potentia) to
solve CMOMDPs. E.g., ensemble techniques for RL (Wier-
ing and van Hasselt 2008) combine different learners for the
same signal in order to create a learner that is better than any
of its constituting parts. “The same signal” can be relaxed to
the condition described in this paper for CMOPs, allowing
their application to this type of problem.
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Bone, C., and Dragićević, S. 2009. Gis and intelligent agents
for multiobjective natural resource allocation: a reinforce-
ment learning approach. Transactions in GIS 13(3):253–
272.
Brys, T.; Harutyunyan, A.; Vrancx, P.; Taylor, M. E.; Ku-
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