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Abstract

In multi-objective problems, it is key to find compromising solutions that balance different objectives.
The linear scalarization function is often utilized to translate the multi-objective nature of a problem into
a standard, single-objective problem. Generally, it is noted that such as linear combination can only find
solutions in convex areas of the Pareto front, therefore making the method inapplicable in situations where
the shape of the front is not known beforehand. We propose a non-linear scalarization function, called the
Chebyshev scalarization function in multi-objective reinforcement learning. We show that the Chebyshev
scalarization method overcomes the flaws of the linear scalarization function and is able to discover all
Pareto optimal solutions in non-convex environments.

1 Introduction
Formally, multi-objective reinforcement learning (MORL) is the process of simultaneously optimizing mul-
tiple objectives which can be complementary, conflicting as well as independent. So deciding a priori on the
importance of the different criteria might be difficult. The goal of MORL is to search the policy space and
eventually find policies that simultaneously optimize one or more objectives.

A popular approach consists of transforming the multi-objective problem into a single-objective problem
by employing scalarization functions. These functions provide a single score indicating the quality over a
combination of objectives, which allows a simple and total ordering. In many cases, a linear combination
of the objectives is utilized, but as noted in [1], this mechanism only allows Pareto optimal solutions to be
found amongst convex areas of the Pareto front.

2 Scalarization functions
The linear scalarization function. In single-objective learning, the agent’s table is used to store the
expected reward for the combination of state s and action a, i.e. Q̂(s, a). In a multi-objective setting, the
Q-table is extended to incorporate objectives, i.e. Q̂(s, a, o). Thus, the expected rewards for each state,
action and objective can be stored, retrieved and updated separately.

An important aspect of multi-objective optimization consists of how the actions are selected, based on
different objectives. A scalarization function transforms a multi-objective problem into a single objective
problem by performing a function over the objectives to obtain a combined score for an action a for different
objectives o. This single score can then be used to evaluate the particular action a. Given these scores,
one can utilize the standard action selection strategies of single-objective reinforcement learning, such as ε-
greedy and Boltzmann, to decide which action to select. Most scalarization functions imply that an objective



o is associated with a weighted coefficient, which allows the user some control over the nature of the policy
found by the system, by placing greater or lesser emphasis on each of the objectives. In a multi-objective
environment, this trade-off is parametrized by wo ∈ [0, 1] for objective o and

∑m
o=1 wo = 1. The most

common function is the linear scalarization function because of its simplicity and straightforwardness. More
precisely, a weighted-sum is performed over each Q̂(s, a, o) with o = 1 . . .m and their corresponding
weights to obtain the score of x, i.e. As a result of applying the scalarization, scalarized Q-values or SQ-
values are obtained: SQ(s, a) =

∑m
o=1 wo · Q̂(s, a, o).

The Chebyshev scalarization function. Our novel alternative as a mechanism to evaluate actions with
multiple objectives consists of using Lp metrics. In detail, Lp metrics measure the distance between a point
in the multi-objective space and a utopian point z∗. In our setting, we measure this distance to the value
of the objective functions f for each objective o of the multi-objective solution x, i.e. minx∈Rn Lp(x) =(∑m

o=1 wo|fo(x)−z∗o |p
)1/p

, where 1 ≤ p ≤ ∞. In the case of p =∞, the metric is also called the weighted
L∞ or the Chebyshev metric and is of the form: minx∈Rn L∞(x) = maxo=1...m wo|fo(x)− z∗o | In terms of
action selection mechanism, the objective function values f are replaced by Q̂(s, a, o)-values to obtain the
scalarized Q-value or SQ-value, for state s and action a: SQ(s, a) = maxo=1...m wo · |Q̂(s, a, o)− z∗o | The
reference point z∗ is a parameter that is being constantly adjusted during the learning process by recording
the best value so far for each objective o, plus a small constant τ , i.e. z∗o = f besto (x) + τ .

3 Experiments
We evaluated the two scalarization functions on two benchmark environments, called the Deep Sea Treasure
world and the multi-objective Mountain Car world with two and three objectives respectively [1]. The
policies found are evaluated by the hypervolume metric which measures the distance to the set of Pareto
optimal solutions and the spread of the policies. The hypervolume measures in Fig. 1 teach us that the
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Figure 1: The learning curve of the Q-learners using the linear and Chebyshev scalarization functions as
their action evaluation methods on the DST world. The Pareto optimal set is depicted in black.

non-linear Chebyshev function is able to attain a greater part of set of Pareto optimal solutions, while the
linear scalarization function was limited to only obtaining a restricted set of policies. Other experiments also
showed us that the Chebyshev function attained a much more diverse set of policies than the linear function
in non-convex environments [2].
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