
PRIMING THROUGH CONSTRUCTIONAL DEPENDENCIES
A CASE STUDY IN FLUID CONSTRUCTION GRAMMAR

PIETER WELLENS, JOACHIM DEBEULE

AI-Lab,Vrije Universiteit Brussel, Pleinlaan 2,
Brussels, 1050, belgium

pieter@arti.vub.ac.be, joachim@arti.vub.ac.be

According to recent developments in (computational) Construction Grammar, language pro-
cessing occurs through the incremental buildup of meaning and form according to construc-
tional specifications. If the number of available constructions becomes large however, this
results in a search process that quickly becomes cognitively unfeasible without the aid of addi-
tional guiding principles. One of the main mechanisms the brain recruits (in all sorts of tasks)
to optimize processing efficiency is priming. Priming in turn requires a specific organisation
of the constructions. Processing efficiency thus must have been one of the main evolutionary
pressures driving the organisation of linguistic constructions. In this paper we show how con-
structions can be organized in a constructional dependency network in which constructions are
linked through semantic and syntactic categories. Using Fluid Construction Grammar, we show
how such a network can be learned incrementally in a usage-based fashion, and how it can be
used to guide processing by priming the suitable constructions.

1. Introduction

According to Construction Grammar, linguistic knowledge is captured in a con-
structicon, which is an assembly of form-meaning pairings called constructions
(Goldberg, 1995). Processing (i.e. producing or parsing) a sentence amounts to
the successive application of constructions, gradually augmenting and transform-
ing an initial meaning to a final form or vice versa.

In each step during processing out of tens of thousands of constructions only a
few constructions can apply and of these even less will be correct thus pressuring
both efficiency and accuracy. Acknowledging this, most flavors of Construction
Grammar adopt a taxonomy of constructions capturing relations of schematicity,
but other relations like polysemy, meronomy, inheritance have been proposed as
well (see Croft and Cruse (2004) for an overview). Such relations are based on
intrinsic properties that hold between the form or meaning of the connected con-
structions. But constructions can also be related by usage-based properties (i.e.
properties that follow first and foremost from their actual use in processing). For
example in (Saffran, 2001) it was shown that children are capable of tracking co-
occurrence relations not only for word boundaries but also for syntactic patterns.

Such co-occurrence relations can also be captured in a network of constructions,
linking them according to conventional usage patterns. Obviously learning these
relations can be used to guide and optimize later processing. In addition, if these
principles are operating continuously (i.e. at every usage event) this will have a
major impact not only on the internal organisation of the constructicon but also
on the way the language evolves and changes since it gives rise to self-enforcing
loops entrenching patterns more quickly than they otherwise would.

In this paper we operationalize two usage-based construction networks, the
second being an extension of the first. Operationalizing requires (1) a learning
component that gradually builds and shapes the network on every use and (2) op-
timized language processing in terms of efficiency and accuracy by utilizing this
network. First we introduce a network capturing the fact that certain constructions
tend to precede others and show how this can be learned from a series of usage
events given a pre-defined set of constructions in Fluid Construction Grammar.
We also show how the acquired co-occurrence network combined with language
processing capable of priming improves processing performance significantly. A
second type of network, the dependency network, is based on more subtle and
often intricate processing dependencies instead of simple co-occurrences. Such
networks allow for an even greater improvement in performance by making the
priming much more accurate. We thereby provide the basis for further investi-
gating the influence of conventional constructional usage patterns on the further
evolution of language in a computational fashion (e.g. in language game experi-
ments).

2. Learning and using Causal Co-occurrences

In order to capture usage-based dependencies between constructions, we first need
to specify in more detail how constructions are used during processing. We use
Fluid Construction Grammar (FCG) (De Beule & Steels, 2005; Steels & De Beule,
2006), arguably one of the most advanced formalisms presently available for
doing computational construction grammar. FCG has been developed primarily
for investigating the emergence and evolution of artificial grammars among au-
tonomous robots. Furthermore, FCG is not a theory of any particular language in
that it remains neutral towards what kinds of semantic or syntactic features consti-
tute constructions. As such, it provides the ideal skeletal substrate for implement-
ing and testing a wide variety of empirical and theoretical findings in evolutionary
linguistics.

In FCG language processing amounts to finding the correct chain of construc-
tions so that applied in that sequence they will lead to a correct interpretation
or production. Determining the appropriate sequence of constructions involves
searching through a vast space of possible sequences. If however one construc-
tion is often observed to trigger another construction, it makes sense to record this
information and use it in later processing. It is important to understand that we are

tracking these co-occurrences at the level of such application sequences and not
for example at the surface form.

We kept track of causal co-occurrences between constructions as they were
applied while processing a thousand randomly generated but valid sentences ac-
cording to an FCG grammar based on the one documented in (Micelli, Trijp, &
De Beule, 2009). The grammar contains 64 lexical constructions for 39 nouns,
18 adjectives, 4 verbs and 3 prepositions, and 16 grammatical constructions, in
total amounting to a constructicon of 80 constructions suitable for parsing and
producing sentences into and from their Frame Semantic meaning according to
FrameNet (Fillmore, 1982; Baker, Fillmore, & Lowe, 1998).

After each sentence is processed, co-occurrences are recorded between the
constructions involved, and a constructional causal co-occurrence network is grad-
ually built up. A fragment of the resulting network is shown in Figure 1.

!"#$!%&

'()!*(

("&$%&

+,$ +,"-

.!*/*0($1*++!"0)+$

-'*+"*(1',!*-$

(23*+$/1!$4$!$&+

0*((%&

!$"456$&+"+5

&2!+,%*

&$7+1+2%'!$' 2&%'!$'

3"+5%&-2)+,%* &*+)!*(%*

Figure 1. A fragment of the learned causal co-occurrence network. Diamond shaped nodes represent
constructions that appeared to be applicable without reliance on other constructions, i.e. only requiring
initial meaning and form. Egg-shaped constructions on the other hand were observed to have a causal
co-occurrence with other constructions, namely with those connected to them by incoming edges. For
example, it was recorded that the plural construction causally co-occurs often with nouns like “ball”
and “river”, but not yet with other nouns like “line”.

As the network is being improved after each new sentence, it is also used to
reduce the number of constructions tried for processing the next sentence thus
improving efficiency. Figure 2 shows the average number of grammatical con-
structions considered before an applicable one was found for each sentence.

As the first 300 sentences were processed, the network was being built up, and
the number of constructions tried steadily decreased. After this, the average num-
ber of tried constructions stabilizes around seven, resulting in a vast improvement
compared to the baseline case.

3. Constructional dependencies

Constructional dependencies are a more refined form of causal co-occurrence re-
lationships and build on two related observations. First, in an application chain of
constructions most of them can only apply when certain constraints are met. This

 0

 10

 20

 30

 40

 50

 0 100 200 300 400 500 600 700 800 900 1000

Av
er

ag
e

nu
m

be
r o

f c
on

st
ru

ct
io

ns
 tr

ie
d

pe
r g

ra
m

m
at

ic
al

 c
on

st
ru

ct
io

n

Number of produced utterances

no priming (random order)
causal co-occurrence priming

dependency priming with categories

Figure 2. Evolution of the average number of grammatical constructions considered per construction
applied while processing a new sentence. The top curve represents the baseline case correspond-
ing to random search, amounting to on average about half of all constructions being tried each time.
The middle curve shows how this can be improved by priming constructions according to a causal
co-occurrence network. The bottom curve shows another improvement by using dependency based
priming, amounting to an additional drop from around seven to around two constructions. This perfor-
mance is also more stable and learned faster due to generalisation.

holds especially true for grammatical constructions in which these constraints can
become quite abstract. For example, in English, the intransitive constructions
will, during parsing, only be triggered if a Noun Phrase (NP) is observed directly
preceding a Verb. During production, it expresses the fact that the subject NP in
a ’Subject Verb’ syntactic pattern fills the agentive participant role of the event
evoked by the verb. The second and related observation is that these semantic
and syntactic constraints are supplied by previously applied constructions. For
example whether a constituent is a Noun Phrase or can play the agentive role in
an event, and hence whether the intransitive construction will apply, depends on
the constructions making up that constituent.

In more general terms, whether construction X should trigger doesn’t just de-
pend on what constructions applied before, but more specifically on the semantic
and syntactic categories supplied by these previously applied constructions. In

this view constructions are thus “communicating” with each other during pro-
cessing through the categories that they require (from previous constructions) and
supply (to later constructions). Categories thus become the main regulators of lin-
guistic processing. This way, dependencies specify a constructional dependency
network among the constructions in the constructicon.

In FCG the application of a construction involves a match phase in which
its preconditions are verified and a merge phase in which the linguistic feature
structure that is being built is modified. It is exactly the interplay of merges of
earlier constructions and matches of later constructions that makes the tracking of
dependencies possible. Indeed, when a construction matches with the linguistic
feature structure only because of an earlier modification by another construction
the matching construction is dependent on the earlier one. In pseudocode this is
computed as follows:

Function LearnDependencies(applicationChain)

Loop
ForEach laterConstruction in Reverse(applicationChain) do
// We loop backwards over the applied constructions
applicationChain ← Remove(laterConstruction, applicationChain);
dependencyFound ← false;
ForEach previousConstruction in Reverse(applicationChain) do
matchedOnByLaterConstruction ← MatchedOn(laterConstruction);
mergedByPreviousConstruction ← MergedBy(previoudConstruction);
matchMergeIntersection ← Intersection(matchedOnByLaterConstruction,

mergedByPreviousConstruction);
If matchMergeIntersection
then
// laterConstruction is dependent on previousConstruction
// either the intersection is already a category or we create it
category ← FindOrCreateCategory(matchMergeIntersection,

knownCategories);
AddOrEntrenchDependencyLink(previousConstruction, category);
AddOrEntrenchDependencyLink(category, laterConstruction);
dependencyFound ← true;

End ForEach;
If dependencyFound == false
then
// laterConstruction is INdependent and gets marked as such
AddOrEntrenchIndependencyLink(laterConstruction);

End ForEach;
End Loop;

End LearnDependencies

The above code loops in reverse order over the applied constructions (i.e. the
last one first) and checks for this construction what it matched on (i.e. its precon-
ditions). Then it loops again over all constructions applied before this construction
and checks how these construction applications modified the feature structure by
their merge. If an intersection is found between this match and merge then a de-
pendency is found. Essentially it means the later construction would not have been
able to apply if it was not for the modifications of the earlier construction. When
such a dependency is found either a new edge is added between the constructions
or if there already is one it entrenches it more by incrementing its score. If no

dependency is found then this is also recorded because it means the construction
could be applied without any previous construction modifying the initial feature
structure.

Capturing these sort of dependencies requires that not only the constructions
are explicitly represented in the network but also the semantic and syntactic cate-
gories that constitute the dependencies. This is illustrated in Figure 3.

!"#$%!&'()(*+#,(--'.*/-#"%!0(--'.*/-#123%04(+/#123555

!"67%!!89"%(555

&'()(*+#,(--'.*/-#

!"#$%!+9:(-.9755

!"67%!"8(-.(+,8;'("#%!89"%8'#8555

+9:(-#),'#<#'#7-

!"#$%7.+5

!"67%!!89"%75%!7/$*#'%".7&/+('555

'#.<61#7-.-6

-;." 8+/'(+

!"#$%7.+5

!"67%!!89"%75%!7/$*#'%0(7617/$*#'1=>?555

-;#

!"#$%!+9:(-.4#,'#+(-.9755

!"67%!!89"%8'#8555

"8(-.(+,8;'("#

!"#$%!'#<#'#7-55

!"67%!'#<1#@8'#"".9755

+.7#A7

7(-/'(+A(

*(++A7

97A8'#8

"9/-;A(

'.4#'A7

79'-;A(

7#@-,-9A8'#8

:.-6A7

Figure 3. Fragment of the constructional dependency network learned from the exact same usage
history as in Figure 1, but this time also capturing more subtle inter-dependencies between construc-
tions besides causal co-occurrences. Square nodes hold semantic and syntactic categories as provided
or required by constructions.

Explicitly representing the categories has the advantage that it makes priming
of constructions much more accurate and at the same time more general. Consider
for example the GRADABLE ATTRIBUTES construction in Figures 1 and 3. It re-
quires an adjective and a noun and assembles them in an Adjective-Noun phrase.
In the simpler network of Figure 1, all nouns and adjectives that occurred together
prime the construction, meaning that on the one hand it is primed too often (be-
cause it is primed whenever one of these nouns is observed, even if no adjective
is observed yet), but on the other hand also that it is not primed often enough,
because only previously encountered nouns and adjectives prime it. In the aug-
mented network of Figure 3 however, the GRADABLE ATTRIBUTES construction
is primed only if both a noun and an adjective are observed, and even if they were
not encountered before with this particular construction; as long as they are known
in the network to be a noun and an adjective. The same effect is also observed in
children when they cue in on syntactic information to produce novel utterances

with nonce words (Tomasello, Akhtar, Dodson, & Rekau, 1997).
In the current model, the effect can also be illustrated by comparing the linkage

of the LINE.N construction with the PLURAL construction in both networks. In
the simple network, LINE.N and PLURAL are not yet connected, meaning that
no sentence was ever encountered containing the plural form “lines”. LINE.N
is however linked to the THE construction, meaning that the phrase “the line”
was observed. In the augmented network, observing “the line” connects LINE.N
to THE through the intermediate noun-like category node. This node is in turn
connected to PLURAL due to another observation not involving LINE.N. This
way, the dependency between the LINE.N and the PLURAL constructions has also
been captured without having observed it.

Dependency based priming allows an additional improvement of processing
performance as can be seen in Figure 2. This time, on average only two out
of eighty constructions need to be considered before a good one is found. This
number is also more stable compared to a co-occurrence network.

4. Discussion and conclusion

There is a growing body of evidence supporting the hypothesis that acquiring a
language involves the learning of usage-based dependency patterns among con-
structions (Tomasello, 1992; Saffran et al., 2008). There is also evidence that
acquired patterns of constructional usages influence language processing, for ex-
ample through the priming of frequently co-occurring constructions (Tomasello
et al., 1997; Saffran, 2001).

In this paper we have shown how these two observations can be operational-
ized by performing a case study in Fluid Construction Grammar involving the
learning of constructional dependency networks from randomly generated but
valid sentences according to an FCG grammar documented in (Micelli et al., 2009).
It was shown that such networks can be learned and allow to reduce the amount
of processing required for parsing or producing a sentence. In addition, we have
proposed to explicitly include semantic and syntactic categories in the network,
providing the glue between constructions, and have shown how this leads to a
powerful capacity to generalize from observations and an associated further re-
duction of processing load.

The processing efficiency and accuracy in humans is nothing short of amazing
and the mechanisms regulating our capacity for language must have been under
these evolutionary pressures at all times. If not it would have become to slow to
use or could not expand to more than a limited lexicon. The model and results
presented here show that language does indeed contain structure that allows one
to build and shape a constructional dependency network which can be used to
optimize both efficiency and accuracy. Moreover there is a non trivial connec-
tion between the dependencies we tracked in our networks and the hierarchical
structure of language thus hinting that recruitment of these general cognitive ca-

pabilities might be a necessary requirement to learn and process hierarchical large
scale language systems (Steels, 2007).

Moreover, if learning a language involves learning dependency patterns, and
if using language involves employing the learned patterns, then language trans-
mission, and hence language evolution, will also be influenced by dependency
patterns. By operationalizing the learning and usage of dependency patterns, we
have therefore provided a basis for investigating the role of dependency patterns
in the evolution of language.

References

Baker, C. F., Fillmore, C. J., & Lowe, J. B. (1998). The Berkeley FrameNet
Project. In Proceedings of the 17th international conference on computa-
tional linguistics. Morristown, NJ, USA: Association for Computational
Linguistics.

Croft, W., & Cruse, A. (2004). Cognitive linguistics. Cambridge: Cambridge
University Press.

De Beule, J., & Steels, L. (2005). Hierarchy in Fluid Construction Grammar. In
U. Furbach (Ed.), Ki 2005: Advances in artificial intelligence. proceedings
of the 28th german conference on ai (Vol. 3698, pp. 1–15). Berlin: Springer.

Fillmore, C. J. (1982). Frame semantics. In Linguistics in the morning calm (pp.
111–137). Seoul.

Goldberg, A. (1995). Constructions: A construction grammar approach to argu-
ment structure. Chicago: University of Chicago Press.

Micelli, V., Trijp, R. van, & De Beule, J. (2009). Framing fluid construction
grammar. In N. Taatgen & H. van Rijn (Eds.), the 31th annual conference
of the cognitive science society (p. 3023-3027). Cognitive Science Society.

Saffran, J. (2001). The use of predictive dependencies in language learning.
Journal of Memory and Language, 44, 493-515.

Saffran, J., Hauser, M., Seibel, R., Kapfhamer, J., Tsao, F., & Cushman, F.
(2008). Grammatical pattern learning by human infants and cotton-top
tamarin monkeys. Cognition, 107, 479-500.

Steels, L. (2007). The recruitment theory of language origins. In C. Lyon, C. Ne-
haniv, & A. Cangelosi (Eds.), Emergence of communication and language
(p. 129-151). Berlin: Springer Verlag.

Steels, L., & De Beule, J. (2006). Unify and merge in Fluid Construction Gram-
mar. In P. Vogt, Y. Sugita, E. Tuci, & C. Nehaniv (Eds.), Symbol grounding
and beyond. (pp. 197–223). Berlin: Springer.

Tomasello, M. (1992). First verbs: A case study of early grammatical develop-
ment. Cambridge: Cambridge University Press.

Tomasello, M., Akhtar, N., Dodson, K., & Rekau, L. (1997). Differential pro-
ductivity in young children’s use of nouns and verbs. Journal of Child
Language, 24, 373-87.

