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Abstract

In the Hawk-Dove game, where two individ-
uals compete over a resource, fully cooperat-
ing or “dove”-like behavior is vulnerable to
invasion by defecting or “hawk”-like behav-
ior, a fact also known as the “tragedy of the
commune”. This tragedy can be overcome
by so-called “bourgeois” or “anarchist” play-
ers which conventionally base their behavior
on an external sign. However, it is not a-
priori clear how such behavior could evolve
through natural selection alone. In this pa-
per it is shown, through simulations, that it
can be the result of a more general strategy
by which adaptive agents learn and establish
a globally shared conventional code.

1. Introduction

The Hawk-Dove game (Maynard Smith & Price, 1973),
also known as the snowdrift game or the chicken game,
is used to study a variety of topics, from the evolu-
tion of cooperation (Doebeli et al., 2004) to nuclear
brinkmanship (Russell, 1959). In the game, two play-
ers compete over a resource. They can choose between
two actions named ‘hawk’ and ‘dove’. If both play-
ers play dove then they share the resource. If both
play hawk then they share the resource minus a fight-
ing cost. Hawks receive the complete resource when
playing against doves. Doves can only thrive if the
fighting cost exceeds the reward. In this case they
have the advantage over hawks that they can share
resources without risking a fight. But hawks can also
take advantage of them. In sum, naively cooperative
doves are destined to be exploited by aggressive hawks.
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This ‘paradox of cooperation’ was termed the ‘tragedy
of the commune’ by Doebeli.

The game can be extended with an uncorrelated asym-
metry by informing players about whether they are the
first or the second player. If players have equal chances
of being first, then they may decide to play hawk when
first and dove when second (or vice versa). This strat-
egy was called the ‘bourgeois’ (or ‘anarchist’) strategy
by Maynard Smith, and is an evolutionary stable strat-
egy (it outperforms hawks and doves). This shows that
full cooperation (in the sense of the Hawk-Dove game)
can evolve if players can rely on a fair (but otherwise
arbitrary) external sign.

It is another question how the bourgeois strategy could
evolve. This crucially depends on what it means to
be the first or the second player. An obvious choice
is arriving first at a resource or territory. For exam-
ple, territorial disputes between male speckled wood
butterflies (Pararge aegeria) in England are resolved
according to the bourgeois strategy (Davies, 1978). In
this case, it is conceivable that the behavior is encoded
in the hereditary material and the result of a muta-
tion.1 This is much less so for other arbitrary signs.
Consider for instance a label displaying the letters ‘pri-
vate property’. The meaning of such a sign cannot be
genetically encoded, it is cultural. This means that
it needs to be learned by new (offspring) players from
other (parent) players. Since learning can be costly, it
is not a priori clear if this is possible in an evolution-
ary context. Furthermore, learning presupposes that a
stable cultural convention is established and available
for learning, which requires further explanation.

In this paper it is shown that ‘bourgeois-like’ behav-
ior can evolve as a result of a more general ‘coding’
strategy which allows agents to couple meanings (ac-
tions) to signals through learning. This strategy is

1Although the same butterflies were reported to behave
differently at other locations.
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more general in the sense that it also supports ‘anar-
chistic’ behavior, or any of the other (pure) strategies.
It is also more general because it works for any signal,
not only for those designating ownership or being first.
Therefore it does not require the signals to be encoded
in the hereditary material, but only the capacity to
couple arbitrary signals to meanings, together with an
appropriate learning strategy. As is discussed in this
paper, under certain conditions such a capacity allows
coding players to beat doves and hawks by establish-
ing a cultural convention by which they can coordinate
their actions as a species.

2. The Hawk-Dove game

The payoff matrix for the Hawk-Dove game as consid-
ered in this paper is given in table 1. The symbols r
and c stand for the resource value and fighting cost
respectively, with r ≤ c. These are the same in every
game. Each row (column) in the table corresponds
to a possible action of the first (second) player. For
example, the first entry in the first row and column
indicates that if both players play ‘hawk’, then each of
them receives a payoff of b+ (r − c)/2. If however the
second player plays ‘dove’, then the first player receives
the payoff b+r (first row, second column) whereas the
second player only receives a payoff b (second row, first
column) etc. In the remainder of the paper, the off-
set value b is set to −(r − c)/2 so that all payoffs are
non-negative.

hawk dove
hawk b+ (r − c)/2 b+ r
dove b b+ r/2

Table 1. Payoff matrix for the Hawk-Dove game. The pos-
sible actions of the first player are listed in the first column
of the table. This player will receive a payoff as specified
in the table for each possible action of the second player.

In this section, three types of players (strategies) are
considered: hawks (always playing the action hawk),
doves (always playing the action dove) and bourgeois
(play hawk when first, dove when second). The ex-
pected payoff for a player of a particular type depends
on the strategies used by his opponents in games. Let
ph, pd and pb be the fraction of hawks, doves and bour-
geois in the population respectively.2 It is assumed
that these fractions correspond to the probabilities to
meet an opponent of each type. If all players have
equal chances of being first then the expected payoffs

2Since these are the only strategies considered it holds
that ph + pd + pb = 1.

per game for each strategy are:

〈µd〉 = b+ (1− ph + pd)r/4

〈µh〉 = b+ (3− ph + pd)r/4− (1 + ph − pd)c/4

〈µb〉 = b+ (2− ph + pd)r/4− phc/2

By setting pd = 1 − ph in these expressions, one ob-
tains the standard result that neither the hawk nor
the dove strategy are evolutionary stable strategies
(ESS’s) since both of them can be invaded by the other
until the equilibrium ratio ph = r/c is reached. Both
strategies can also be invaded by the bourgeois strat-
egy, which is an ESS with respect to the others. This
can also be seen from the phase plot of the replicator
system that follows from the expected payoffs as shown
in Figure 1 for r = 2, c = 3 (the offset parameter b
only affects the time scale of the dynamics and hence
does not influence the plot). The state in which there
are only bourgeois type players is marked as ‘Pb = 1’.
It is the only asymptotically stable state.

Figure 1. Phase plot of the Hawk-Dove-Bourgeois game
replicator system for r = 2 and c = 3. Each point in the
triangle corresponds to specific values for ph, pd and pb.
These values are proportional to the distance of the point
to the left, right and bottom sides of the triangle respec-
tively. The arrows indicate the direction of the dynamics
of the replicator system in phase space.

3. The Coding Strategy and The Effect

of Population Turnover

From the previous it follows that if natural selection
acts upon a mixture of hawk, dove and bourgeois play-
ers then the bourgeois strategy prevails. This result,
however, is based on the assumption that offspring of
bourgeois players automatically use the same conven-
tion, that is, play hawk when first and dove when sec-
ond. In other words, it assumes that the bourgeois
strategy is encoded in the hereditary material of play-
ers. It is not obvious how this could be established for
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arbitrary and external signals. Investigating the conse-
quences of relaxing this assumption also is interesting
in its own right. This is the topic of the remainder of
the paper.

If the convention is not passed on to offspring through
the hereditary material, then it must be learned.
We therefore introduce a new strategy, the ‘coding
strategy’. Players endowed with this strategy have
the capacity to code (Barbieri, 2008a), particularly to
connect arbitrary signals (percepts) to meanings (re-
sponses) through learning. We consider Roth-Erev
learning with discounting (Roth & Erev, 1995) because
it is simple and intuitive, and because it was previously
shown to perform well in similar tasks (Catteeuw et al.,
2011).

Concretely, the set of possible signals is {F,S} (for
First and Second) and the available responses or ac-
tions are {H, D} (for Hawk and Dove). For each pos-
sible combination 〈s, a〉 of a signal s and an action a,
coding agents keep a score φ(s, a), initially set to a
fixed (genetically encoded) value φi. When an agent
receives signal s∗ in a game, it chooses action a∗ from
all available actions with probability proportional to
φ(s∗, a∗). If after the game the agent receives payoff
µ, scores are updated as follows:

φ(s∗, a∗)← λφ(s∗, a∗) + µ,

φ(s∗, a 6= a∗)← λφ(s∗, a),

φ(s 6= s∗, a)← φ(s, a),

where the parameter λ > 0 is a discounting factor
which is also encoded in the hereditary material of
coding agents.

Initially, coding agents explore all different actions
with equal probability. As they play more games and
apply the above update rules, the score of one action
per signal will approach the real expected payoff for
that action, while all other scores approach zero. Note
that the action upon which the agent converges is not
necessarily the one yielding the highest expected pay-
off, although the probability that it is approaches one
when the initial score φi approaches infinity and/or the
discounting factor λ approaches zero. However, the
time to converge upon a deterministic behavior then
approaches infinity as well, so that there is a trade-
off between ‘exploration’ and ‘exploitation’ (see also
Figure 2). This trade-off puts a limit on the capacity
of individual agents to learn the optimal behavior. In
consequence, just by playing games, a population con-
sisting solely of coding agents will not necessarily be
able to establish a fully shared convention such as all
agents deterministically playing the bourgeois strat-
egy. This is because, as agents cool down or “grow

old”, there is always a probability that they settle on
different strategies.

It is known that children play a crucial role in the
establishment of new natural languages (see e.g. (Sen-
ghas & Coppola, 2001; Verhoef & de Boer, 2011)). If
a population turnover is added to the model, that is if
“old” coding agents are replaced by new ones, explo-
ration continues. Furthermore, new agents will tend
to pick up and hence reinforce emerging conventions.
This might allow a population of coding agents to es-
tablish a shared convention after all. The effectiveness
of this mechanism was confirmed through simulations
of which the results are shown in Figures 3 and 4. Note
that these results depend on the rate at which agents
are replaced in the population. This is investigated in
more detail in the following.

4. Selection

Selection is brought into the model by replacing agents
based on their success in games instead of randomly.
We consider a finite population of N = 100 agents un-
dergoing natural selection according to a Moran pro-
cess (Moran, 1962; Nowak, 2006). Each simulation
run, the population is initialized to contain a variable
fraction R ∈ {0, 0.2, 0.4, 0.6, 0.8, 1.0} of coding agents.
The rest of the population consists of 100(1 − R)r/c
hawks and 100(1−R)(1− r/c) doves, with r = 2 and
c = 3. Between each replacement step, agents are
randomly selected to play a total of τ games, with
τ ∈ {500, 1000, 2000, 4000} (that is, on average, each
agent plays 2τ/N games before a replacement occurs).

Simulations were run for λ ∈ {0.99, 0.95, 0.9, 0.8} and
φi ∈ {1, 10, 100}. For each combination of parameter
values, 100 simulation runs were performed, and the
fraction of runs that leads to a population consisting
exclusively of coders after a maximum of 2τ104 games
was recorded. Results are shown in Figure 5. From
the figure, it can be seen that coding agents approach
the optimal behavior as defined by the behavior exhib-
ited by bourgeois (or anarchist) agents under a wide
range of conditions, provided that agents have enough
time to learn between successive replacement or selec-
tion steps. Only when learning is too greedy (corre-
sponding to low values of λ and φi –towards the top
right of the figure) coders loose their selective advan-
tage over hawks and doves. Still coders experience no
disadvantage either, as in these cases the probability
that they take over the population simply approaches
the initial relative abundance R.
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5. Discussion and Conclusion

Although it has long been known that the tragedy of
the commune can be overcome by players adopting
a conventional strategy such as ‘bourgeois’ and ‘anar-
chist’ players, to our knowledge it was not investigated
before how such strategies could evolve. The standard
explanation is differential reproduction (mutation and
selection). This implies that the convention is encoded
in the hereditary material. However, because a con-
vention, like language and other cultural phenomena,
is arbitrary, it is not a-priori clear how this is possible.
It was shown that the tragedy of the commune can
also be overcome by “coding” players. Coding players
learn association strengths between signals and actions
that reflect expected payoffs and act accordingly. In-
teraction between such players induces a positive feed-
back loop between their preferences. This results in
the amplification of –otherwise arbitrary– preferences
at the population level, until a globally shared con-
vention emerges with which coding players can coor-
dinate their actions in a nearly-optimal way. In line
with what is proposed in (Barbieri, 2008b), I propose
to refer to this mechanism of evolution as evolution by
natural conventionalization.

Crucially, it is the interplay between evolution by natu-
ral selection and evolution by natural conventionaliza-
tion that determines the outcome of evolution in total.
Without differential reproduction, that is even without
population turnover, evolution stops and no conven-
tionalization takes place. On the other hand, without
conventionalization, the Major Transitions in macro-
evolution might never have occurred. These transi-
tions are characterized by increased degrees of coor-
dination, for instance between cellular agents that be-
came organized into multi-celled organisms (Maynard-
Smith & Szathmáry, 1995). As in the Hawk-Dove
game, coordination requires that a conventional code
is available, and hence that conventionalization mech-
anisms are at work. It should therefore come as no
surprise that the Major Transitions are all accompa-
nied by the appearance of new, arbitrary codes, an
example of which is the genetic code (Maynard-Smith
& Szathmáry, 1995; Barbieri, 1998).

Like Barbieri, I conclude that natural selection and
natural conventionalization are complementary mech-
anisms of evolution, the first accounting for the grad-
ual transformation of existing species through differ-
ential reproduction and the second for the origin and
fixation of absolute novelties at higher levels of organi-
zation. These mechanisms are not independent how-
ever, and their interplay must be taken into account
in order to obtain a full understanding of evolution.
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Figure 2. Sampled behavior of coding agents learning by playing games with dove agents. The point at (x = 1, y = 0)
corresponds to pure hawk-like behavior. The opposite point at (x = −1, y = 0) to pure dove-like behavior. The points
at (x = 0, y = 1) and (x = 0, y = −1) correspond to pure bourgeois- and anarchist-like behavior respectively. Mixed
behaviors are also possible since coder agents are not necessarily deterministic. The different point types correspond to
the amount of games played. The more games played, and depending on the learning parameters λ and φi, the more
deterministic the behavior becomes. The optimal behavior in this case is hawk-like, which is eventually reached when
learning parameters are “favorable”, that is towards the left and bottom of the Figure.
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Figure 3. Same as in Figure 2 but instead of playing against doves, the coding agents now learn by playing against other
(learning) coding agents. Due to the exploration/exploitation trade-off, a convention is not always established, that is
the agents do not always adopt the bourgeois or anarchist strategies, not even when learning parameters are “favorable”
(see fig. 2)
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Figure 4. Same as in Figure 3, but now agents are randomly replaced in the population at some fixed rate. If learning
parameters are favorable, a convention emerges and agents eventually adopt the bourgeois or anarchist strategy. The
reason why convergence never appears to be complete is because new agents are constantly entering in the population
and because these still need to adopt the convention.
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Figure 5. Fraction of simulation runs that lead to an end state of only coders for different values of the learning parameters
λ and φi. The X-axis indicates the initial fraction of coding agents R. Values that are above the bisecting line ‘y=x’
indicate a selective advantage for coding agents over hawks and doves. Each curve is labeled with the number of games
τ in between two successive (Moran) replacement steps. The curves labeled ‘∞’ were obtained with bourgeois agents
instead of coders, and indicate the best attainable behavior. Coding agents approach this optimal behavior if learning
parameters are favorable and if there is enough time to learn between successive replacement events (τ large). The learning
parameters determine the speed of learning which in turn interferes with how much time is available for learning, which
explains why the optimal set of parameters now is no longer found simply towards the bottom left of the Figure.


