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Abstract. In this work we introduce a general combinatorial optimiza-
tion method, based on Monte Carlo Tree search. The method constructs
a tree whose branches are binary schema from which solutions for any
optimization problems could be generated. The Monte Carlo Upper Con-
fidence Policy (UCP) allows the generation of promising schemata allow-
ing the abrupt reduction of the search space, keeping good compromise
in the generation of good solutions. Moreover, the method includes a net
structure that increases the accuracy in the estimations of the schemata,
keeping the number of evaluation unchanged.

The method have been tested in hard binary optimization domains, in-
cluding knapsack problems, multimodal functions and deceptive prob-
lems.

1 Introduction

Monte Carlo Tree search methods have been taken an increasing atten-
tion in the last 15 years. Originally his best success was in the context
of the game of GO [Bru93], where its performance was bigger that any
other automatic player method so far. From that, MCTS have been ex-
tremely successful in designing expert computer players for many others
two players games, like Hex [Arn09,Arn10], Kriegspiel [Cia10], and Poker
[Rub11]. Moreover, MCTS has been shown to outperform classic alpha-
beta search even in games where good heuristic evaluations are difficult
to obtain.

In recent years, some other domains different from games have been
addressed, mainly combining traditional ideas from minimax search with
the construction of the trees to adapt the procedure to planning domains.

Binary combinatorial problems consists in the finding of a binary string
that represents the optimal combination of yes/no alternatives. The diffi-
culty of this problems resides in the weakness of the nature of the binary
representation. The Genetic Algorithm perspective, for instance, tries
to overcome this problem with the implicit parallel evaluation of the
schemata performed by the method.

However this implicit evaluation is not followed of a direct use of the
schemata for generating new solutions, and consequently new and better
schemata.



In this work we follow the idea of evaluating how promising an schema
could be, in terms of its ability to generate good solutions. However, gen-
erating good schemata have many intrinsic problems. First, the space of
schemata is much bigger that those of the solutions. In a binary com-
binatorial problem of size L, the searching space has a size of 2L while
the size of the schemata space is 3L. So finding good schemata must be
much harder than finding good solutions. Second, schemata evaluation
is a difficult task because each schemata contains many examples that
grows up exponentially with the size of the schemata, and they have, as
well, a hierarchical structure that make them to share many examples,
of even being one’s subset of other.
To overcome the above feebleness we propose the use of the potential of
Monte Carlo Tree Search (MCTS) to generate good candidates because:

– They could deal with incomplete information. They not need to have
complete information about the efficiency of the candidates, they
can estimate that efficiency from very few examples, and to improve
those estimations as more information is available.

– They use a tree structure that fits very well the intrinsic nature of
the schemata

Therefore, we propose a method for generating potential good schemata
in terms of their capacity to represent good solutions. The method con-
structs a network whose nodes are binary schema from which solutions
for any optimization problems could be generated. The Monte Carlo
Upper Confidence Policy (UCP) will produce gradually more promising
schemata, allowing the abrupt reduction of the search space, mantaining
a good compromise in the generation of good solutions.
The net structure has been included for increasing the accuracy in the es-
timations of the schemata, keeping the number of evaluation unchanged.

2 Building a schemata network

The construction of the tree is performed selecting and expanding a
node per iteration, making the network growing in a unstructured and
unbalanced way, taking into account the estimation of the nodes as good
candidates to generate good solutions. In each iteration all the nodes
present in the network could be considered for selection, except those
who has been expanded in all their descendants.
The procedure is performed in four phases:

Selection The more promising unexpanded node of the network must
be selected. A tree policy is designed to decide the meaning of being a
promising node. There are many tree policy, in this work we propose the
use of the Upper Confidence Policy (UCP), but any other could be used
without further modifications in the method.

Expansion The selected node is expanded, generating one descendant,
following random expansion policy. Once a descendant is generated, it is
liked with all their parents, those that are less general and matching the
new one, as showed in figure 1



Simulation The new generated node is from a sampling set of individuals
represented by the schema of that node. The solutions in the sampling
set are generated randomly, fitting the rules of the schema, and are not
stored. The value assigned to the schema will be the average of the
evaluation values of its sampling set.

Backpropagation All the evaluation values of all the nodes that are
ancestors to the new created node are updated as showed in figure 1

a) b)

Fig. 1. Expansión and update of nodes in a network structure

3 Results

There are many well known combinatorial problems that could be used
for testing new methods. We decide to present here a extensive used
problem, the knapsack, and a very difficult theorethical function, the
deceptive trap function.
The knapsack problem is one of the 21NP-complete problems established
by Richard Karp [Kar72], and it has been intensively studied since the
mid-twentieth century. It has the advantage of having a simple formula-
tion for a very complex resolution. The formulation is:
Maximize:

n∑
i=1

wixi

Such a:
n∑

i=1

wixi ≤W

x ∈ {0, 1}
On the other hand the deceptive trap, is a theoretical problem used to
frustrate escalade methods.
The function has a continuously growing in some direction until reaching
a maximum value. However this value is a false optimal, because the
function has a real punctual optimal value in the opposite direction. This
is done by making blocks of five bits where de deceptive local maximum
is 4, with all five bits equal to 0, decreasing till 0 with four bits equal to
1, and with the optimal value of 5, for all five bits equal to 1.



Deceptive function

Size Best solution Accuracy (mean, deviation) Evaluations (mean, deviation)

20 0,96 0,94±0,02 154831±152774

25 0,96 0,92±0,01 282726±185339

30 0,91 0,89 ±0,01 404122±269166

35 0,91 0,88±0,01 526249±237347

40 0,9 0,87±0,01 623444±141584

45 0,89 0,86±0,01 754003±146172

50 0,88 0,85±0,008 890116±104346

Knapsack problem

24 1,0 1,0±0,0 368562±93717

Table 1. Results for the testing functions

The results, for 30 runs, are summarized in table 1. For the deceptive
problem, more experiments were performed for sizes below 20. In all the
cases the optimal value was reached, as well as for the knapsack problem,
in a short period of time, so we can argue that 20 is a good threshold for
considering the deceptive problem difficult enough..
For sizes above 20, iIt can be shown how the size of the problem doesn’t
disturb too much the results achieved. Even augmenting the size of the
searching space up to 250, a size of more that 1015, the optimal value
is reached in almost the 50% of the blocks of the trap function, in a
very small proportion of evaluations against search space (8× 1010). We
have to remark that in all the runs, the experiments were limited to not
perform more than a million evaluations. More exhaustive experiments
are needed to verify the potential of the method in larger runs. Based on
preliminary test we can expect even better results for really huge sizes,
where most popular methods performs poorly.
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