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Abstract. We introduce the schema bandits algorithm to solve binary combina-
torial optimisation problems, like the trap functions and NK landscape, where
potential solutions are represented as bit strings. Schema bandits are influenced
by two different areas in machine learning, evolutionary computation and multi-
armed bandits. The schemata from the schema theorem for genetic algorithms
are structured as hierarchical multi-armed bandits in order to focus the optimi-
sation in promising areas of the search space. The proposed algorithm is not a
standard genetic algorithm because there are no genetic operators involved. The
schemata bandits are non standard schemata nets because one node can contain
one or more schemata and the value of a node is computed using information
from the schemata contained in that node. We show the efficiency of the designed
algorithms for two binary encoded combinatorial optimisation problems.

1 Introduction

A recent trend is to transfer expertise between machine learning (ML) areas, i.e. multi-
armed bandits (MAB) and evolutionary computation algorithms (ECs) [15]. There are
many similarities between multi-armed bandits and evolutionary computation mainly
because they are both optimisation algorithms. The main difference between the two
techniques is that MAB is used to optimise stochastic environments [5], whereas the
majority of EC based methods are for optimisation of very large but deterministic envi-
ronments. We want to use the similarities and differences between the two techniques
to design new efficient hybrid optimisation algorithms.

Schema theorem. Genetic algorithms (GAs) [11] are powerful optimisation and
search techniques that have been applied with great success to a wide range of appli-
cations [6, 1]. Let’s consider the standard GAs with a binary string encoding of length
` for each solution. There are 2` possible strings. The GA processes a population of
individuals by the successive application of fitness evaluation, selection of the better
individuals followed by recombination of the genotypes of the selected individuals.

The common part in the representation of several individuals is called a schema [7,
11]. According to John Holland, the schema theorem [7] explains the success of genetic
algorithms in general. It basically states that although the GA operates at the level of in-
dividuals, GA implicitly and in parallel processes information about schemata, subsets



2

of the search space. Moreover, it samples the most interesting schemata called build-
ing blocks in a near-optimal way using the analogy between schemata and arms in the
bandit problem. That is schemata with the fitness mean above the average are grouped
as a bandit arm and the schemata with the fitness below the average are considered to
be a second arm. The schema theorem shows that selection increasingly focuses on the
schemas with the fitness average above the mean. This brings us to the multi-armed
bandit problem (MAB).

The exploration (the search for new useful solutions) versus exploitation (the use
and propagation of such solutions) trade-off is an attribute of successful adaptation.
The exploration implies the evaluation of new solutions that could have low fitness and
the exploitation means the usage of already known good solutions. Holland modelled
the exploration vs exploitation trade-off in ECs with multi-armed bandits. The higher
fitness solutions are considered (or grouped) as an arm, and the lower fitness solutions
are considered as a second arm. Mixing of good building blocks in GAs, i.e. the propa-
gation of good schema in GAs, was studied in [14].

Multi-armed bandits (MAB) problems [4] have been studied since the 1930s and
they arise in diverse domains, like the online profit-seeking automated market mak-
ers [13] and yahoo recommendation system [10]. In the stochastic MAB-problem, there
areK arms and each time an arm i, where the set of arms in 1, · · · , i, · · · ,K is selected,
a reward ri is drawn according to the probability distribution with fixed but unknown
mean µi. The goal is to maximise the total expected reward r̂i. If the true means of
all arms where known, this task would be trivial. One selects the arm with the highest
mean reward all the time. A MAB algorithm starts by uniformly exploring the K-arms,
and, then, gradually focuses on the arm with the best observed performance. Since, the
means are unknown one has to allocate a number of trials over the different arms so
that, based on the obtained rewards, the optimal arm is identified as soon as possible
and this with (very) high confidence.

To reach this goal, a tradeoff between exploration and exploitation has to be found.
Exploration means that one tries a suboptimal arm to improve the estimate its mean
reward while exploitation means that one tries the best observed arm which is not nec-
essary the true best one. An arm selection policy determines what arm is selected at
what time step based on the rewards obtained so far. The research question is what
are (near)-optimal arm selection policies for the MAB-problem. An important heuristic
that has emerged is that good policies, e.g. variants of the upper confidence bound (or
UCB) policy, are optimistic in the face of uncertainty [12].

Thus, the trade-off between exploitation and exploration is important for both MAB
and EC algorithms. MAB should pull all arms using an exploration strategy, to estimate
their performance and it returns feasible, close to optimal, solutions using an exploita-
tion strategy. Exploration in EC means to generate solutions in unexplored regions of
the search space, and exploitation means to generate new solutions in promising regions
of the search space using structural information about the current solutions. Selecting
and using these strategies are not trivial and actually, the trade-off between them can
increase the time needed to find an acceptable solution.

One MAB variant is the hierarchical bandit approach where the reward of one arm
in the hierarchy is the reward of another one at one level deeper in the hierarchy [12].
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Monte Carlo Tree Search (MCTS) is a recently proposed search method that
builds a search tree in an incremental and asymmetric manner accordingly to a tree pol-
icy that selects the node with the highest priority to expand [3]. The tree policy needs to
balance exploration versus exploitation, which for MCTS methods resembles the same
trade-off in ECs. Exploration means to search in areas not sampled yet, whereas ex-
ploitation means to search in promising areas. Each round in MCTS consists of four
steps: selection, expansion, simulation, and back-propagation.

Selection starts from the root, it selects successive expandable child nodes down to
a leaf node. It selects child nodes that expand the tree towards most promising moves,
which is the essence of MCTS. A node is expandable if it represents a non-terminal
state and is unvisited. Expansion: unless a stopping criteria is met, MCTS creates one
or more child nodes and choses from them a node, designated as the current node, using
a tree policy. If no child was created, the simulation starts from a leaf node. Simulation
plays at random from the current node using a default policy. Backpropagation uses the
results from the previous steps to update the information in the nodes on the path from
the current node to the root. MCTS is a statistical anytime algorithm for which more
computing power means better results.

MCTS using upper confidence bound (UCB1) [2] as arm selection policy is called
Upper Confidence Trees (or UCT). UCB1 is a very simple and efficient stochastic MAB
with appealing theoretical properties, i.e. UCB1 is upper bounds the lost in choosing
non-optimal arms. Each promising node of MCTS is evaluated accordingly to the UCB1
policy. UCT builds incrementally a search tree using random samples in the search
space by expanding the nodes selected by the arm selection policy [3]. This approach
is largely responsible for the success of Monte Carlo Tree Search (MCTS) where other
methods fail, e.g. the game of GO [3].

The designed algorithms. We want to steer the optimisation in ECs using MCTS
by making an analogy with schemas representation of solutions. In Section 2, the search
space of ECs is structured as a schemata net with 3` possible schemata. We reveal some
of the properties of the schemata net. Section 3 presents a baseline schemata bandits
algorithm where each node in the net, thus each schema, is an arm. This bandit searches
in a 3` dimensional search space for the optimal solution.

Section 4 proposes a condensed representation of the net for the schemata bandits
that searches over a reduced search space of 2`. Each node is itself a bandit of schemata
and we denote this algorithm as the bilevel schemata bandits.

Experimental results. Section 5 tests the performance of the proposed schemata
bandits on two binary encoded problems: i) a deceptive trap function, and ii) a version
of NK landscape that uses the deceptive trap functions and has best known solution.
We show that the baseline schemata bandits performs better in terms of best found so
far solution but the bilevel schemata bandits perform better in terms of minimising the
expected regret and the computational efficiency. Alternative parameters are considered
for the UCB1 algorithms in the schemata nets. Section 6 concludes the paper.

2 A schemata net structure

In this section, we present a schemata net structure and its properties.
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Fig. 1. An example of schemata net for a 5 dimensional strings.

We focus on search spaces that are `-dimensional hypercubes, i.e. B` where B =
{0, 1} is the set of booleans and ` is the length of the bitstrings in the search space. A
schema H represented as H ∈ {0, 1, ∗} is a subspace of B` that is also a hypercube.
The don’t care symbol ∗ can take on any value in B. The order o(H) of a schema H is
the number of instantiated values, i.e. either 0 or 1. Here, we will also use the dimension
d(H) of a schema H: it is the number of don’t care symbols and d(H) = ` − o(H).
There are in total 3` schemata of which the most general schema ∗∗· · ·∗∗ has dimension
` and of which all the 2` fully instantiated schemata, i.e. bit strings of the search space,
have dimension 0. Note that the intersection of 2 schemata is again a schema.

Example 1. Let B5 be the 5-dimensional hypercube, see Figure 1. Then the schema
H1 = 11 ∗ ∗∗ has order 2 and represents the 3-dimensional hypercube of all bit strings
of length 5 starting with 11, i.e. H1 contains 8 elements including 11001. And, H2 =
1 ∗ ∗ ∗ ∗ has dimension 4 and the schemata H1 and H2 share the element 11001.

Each node in the schemata net has the following attributes: i) a value, ii) children,
and iii) parents. Let H be a schema of dimension d = d(H), where d are the number of
symbols ∗, and order o(H) = `− d(H), where o(H) is the number of positions where
the value of bits is fixed to either 1 or 0.

Children: If we replace any don’t care symbol ∗ by either 0 or 1 then we obtain one
of the 2 · d children of schema H . Each child has dimension d − 1. The leave nodes
have no children.

In Example 1, schemaH2 = 1∗∗∗∗ has 2 ·4 = 8 children, that are 10∗∗∗, 11∗∗∗,
1 ∗ 0 ∗ ∗, 1 ∗ 1 ∗ ∗, 1 ∗ ∗0∗, 1 ∗ ∗1∗, 1 ∗ ∗ ∗ 0 and 1 ∗ ∗ ∗ 1. The schema H1 = 11 ∗ ∗∗ that
has dimension d− 3 has 2 · 3 = 6 children, that are 110 ∗ ∗, 111 ∗ ∗, 11 ∗ 0∗, 11 ∗ 1∗,
11 ∗ ∗0 and 11 ∗ ∗1.

Parents: A parent for the schemaH has one fixed position replaced with the symbol
∗. If we replace any of the instantiated values 0 or 1 by a don’t care ∗ then we obtain
one of the o parents of H . Each parent has the order o − 1. The fully uninstantiated
schemata have no parents.

For example, the schema H2 has 1 parent, that is the fully uninstantiated schema,
because it has the order o = 1, and the schema H1 has two parents, i.e. 1 ∗ ∗ ∗ ∗ and
∗1 ∗ ∗∗ with the order 1.

The value of a node: Let b1, · · · , bi, · · · , bn ∈ H be the bit strings, or individuals,
evaluated for their common schema H . The values of function f (to be optimised) for
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the set of bitstrings bi are f(bi), where i = 1, · · · , n. Then

f(H) =
1

n

n∑
i=1

f(bi) (1)

is the estimated mean value of f on the hypercube H , or simpler the value of H , and
depends on the samples bi used. The variance of f(H) on H will depend on its dimen-
sion d(H): the higher the dimension the higher the variance and if the dimension is 0
then the variance is also 0.

There are two special types of nodes: i) the root, and ii) leaves.
The root is the fully uninstantiated schema, i.e. with the symbol ∗ everywhere. This

node has no parents and it has 2 · ` children corresponding with the replacement of each
position with a fixed value, 1 or 0.

A leaf is the node H that instantiate all its children, where each leaf has a fixed
dimensionality d← |leaf |. There are 2d bitstrings for leaf schema corresponding with
the d symbols ∗. The value of a leaf is fixed to the mean fitness values of the bitstrings
generated for that schema. Let b1, · · · , bi, · · · , b2d ∈ H be the bitstring evaluated for
the leaf schema H . Then

f(H) =
1

2d

2d∑
i=1

f(bi) (2)

is the value of the leaf node on the hypercube H .
Because the size of a complete net is usually two large to be of a practical use,

we expand the net given new solutions up to a given dimension d > threshold. The
schemata with a higher dimension d ≤ threshold are structured in a tree where only
the children but not the entire set of parents are further investigated and stored. For
threshold � `, there are considerable more schemas in a schemata bandits, 3`, than
total number of individual solutions, 2`. If threshold is close to 1 the schemata net is
small and the learning properties of the algorithm, e.g. generate bits strings from the
best schema, are limited.

3 A baseline schemata bandits algorithm

The baseline schema bandits algorithm builds a tree where each node is a schema. The
starting point for each iteration of this algorithm is the root that is the most general
schema. The pseudo-code for this algorithm is presented in Algorithm 1.

Considering the steps specific for the Monte Carlo tree search algorithm, cf MCTS,
the schemata bandits algorithm consists of three steps:

Selection: Starting from the root, select successively child nodes down to a leaf
node. As in UCT , we select each time the child node that expands the tree towards
the most promising parts of the search space. A node is expandable if it is unvisited. A
popular policy to select the next node to expand is UCB1 [2] that upper bounds the loss
resulting from choosing non-optimal arms. The UCB1 goal is to play often the optimal
arm, in our case the optimal schema.

Let H be the selected node. The reward corresponding with each schema H , the
arms or bandits in UCT , is the estimated mean f(H) over H based on all bitstrings
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Algorithm 1: A baseline schemata bandits algorithm
Initialise the schemata bandits algorithm with n random individuals
for a fixed number of schemata net iterations do

Select the root schemata, H ← root
while a leaf node is NOT reached do

Select the most promising child Hi of the current schema H using the UCB1 algorithm,

cf. argmaxif(Hi) + C ·
√

2 log(t)
ti

Update the counters of the current and selected child schemata, cf t← t+ 1,
ti ← ti + 1
Update the current schema H ← Hi

end while
if the leaf node L was not expanded before then

Expand all the individual solutions 2d(L) in the leaf node L
Update value of the parents of the schemata on the path between the root and the leaf
node with the 2d(L) bitstrings

end if
end for
return the best found solution

b ∈ H generated so far as in Equation 1. If a schema H has dimension d, then H has
2 · d child schemata denoted as Hi, i = 1, · · · , 2 · d, and ti is the number of times that
Hi was evaluated so far. In order to play UCB1, we initialise the child schemata Hi as
follows: for each child schema Hi the number of trials is set to one, ti ← 1, and the
estimated mean value is set to its minimum value, f(Hi)← 0.01. Thus, the number of
trials t of the parent schema H is set to t←

∑2d
i=1 ti. UCB1 selects the child node Hi

with the maximum index

f(Hi) + C ·

√
2 log(t)

ti
(3)

where the second term C ·
√

2 log(t)
ti

represents the confidence term and encourage
exploration of suboptimal schemata, and C is a constant scalar value, C > 0, usually
set to 1. A larger value for C > 1 would encourage the exploration of new (possible)
suboptimal schemata, and a smaller value C < 1 would promote almost exclusively the
schema with the optimal expected mean even though this expected mean depends on
the already generated bitstrings.

In the beginning, all children will be played equally often. As the number of samples
t increase towards ∞, the confidence term increases and the suboptimal schemas that
were not visited for a long time will attain the maximum value. The schema with the
maximum expected mean is played the most. Note that the mean value of a more general
schema will vary less than the mean value of a less general one.

Expansion: If in the selection step, a child node Hi that is not in the schemata
graph is selected, i.e. ti ← 1, a node in the net is created. If the selected child node
Hi is already in the schemata graph, the counters are incremented, ti ← ti + 1 and
t ← t + 1, and a child of this schema is selected. The expansion finishes with the
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generation of a leaf node L. When a leaf node is reached, all the corresponding 2d(L)

bitstrings are generated and evaluated. Thus, the set of bitstrings {b1, . . . , b2d(L)} is
evaluated to {f(b1), . . . , f(b2d(L))}. These bitstrings update the expected mean of each
matching child and parent of the schemata on the path between the root and the leaf L
schemata.

Propagation: Using each of the generated solutions, bi where 1 ≤ i ≤ 2d(L), we
update the mean values of all the schemata in the schemata graph that contain that
solution. Thus, if bi belongs to the schemaH , bi ∈ H , than its expected mean is updated
f(H)← nf(H)+f(bi)

n+1 and the sample counter n is also updated, n← n+1. This means
that, in the propagation step, the schemata (and thus the inner nodes) that contain an
individual solution are created if they do not already exists in the schemata bandits
and if their dimension is smaller than threshold. The root schema is updated for all
bitstrings. A higer dimensional schema is updated more often than a lower dimensional
schema because there are more bitstrings that match to a higher dimensional schema
than to a lower dimensional schema.

Related work. There are some important differences between the schema bandits
algorithm and the standard UCT -algorithm [8, 3]. We actually define a graph where
each node is the child of several parents. Because of the strong overlap between some
of the schemata, the rewards of the corresponding nodes are strongly correlated while
UCT assumes that the rewards independent. The creation of a schema can occur both
during expansion and propagation. Therefore one way to improve the performance of
the proposed algorithm is to prune the unpromising branches of the graph.

The schema bandits algorithm also relates to Estimation Distribution Algorithms [9]
since no genetic operator is needed to generate new individuals. In addition, the schema
bandits approach could offer theoretical guaranties on the convergence to the optimal
solution.

Discussion. The version of schemata bandits introduced here is designed for bistrings.
The extension of this algorithm to a representation with k-valued strings is straightfor-
ward, where k ≤ 2. However, the dimensionality of such schemata net would grow
exponentially to k`, where ` is the size of the string as before. Although the number of
schemata in the net increases, the sparsity of the net decreases because a schema will
have the same number of children regardless of the value of k.

Note that, in principle this algorithm is a parameter free optimisation algorithm.
However, to increase the practical implications of this algorithm, we consider several
parameters that decrease the computational complexity of the algorithm or tune the ex-
ploration / exploitation trade-off of the UCB1 algorithm. To decrease the search space of
the schemata net, we have introduced the parameter threshold that separates schemata
net, which is very densely connected, to the schemata tree that is sparse. The param-
eter d(L) decreases the computational time to run a schemata net by generating more
that one bitstrings from a good schemata. This problem is also recognisable in the stan-
dard UCT algorithms with alternative solutions proposed in [12]. The constant value
C gives the exploration / exploitation component of the UCB1 algorithm, but in the
standard setting of UCB1 is set to 1.

A alternative version of this algorithm could select a random schemata from the
net to start the net iteration. UCB1 could be again considered to select a schemata, but
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Fig. 2. An example of a bilevel schemata net for a 5 dimensional strings.

this time the number of arms is much larger means that the algorithm would require
a longer time to learn the good schemata. New schemata added recently to the net are
more often selected than the schemata that were created close the initialisation of the
net even though the initial schemata have a good expected mean compared with the
newly generated schemata. Note that in this case we have two UCB1 algorithms, one
UCB1 algorithm over all schemata in the net and another UCB1 algorithm only for the
children of a schemata.

4 A bilevel schemata bandits algorithm

The dimensionality of the schemata net, i.e. the number of total schemata in the net,
is a problem to a search algorithm as it is much larger than the dimensionality of the
problem itself, i.e. a schemata net has a 3` search space whereas the search space of the
initial problem is only 2`. The reduction of the dimensionality of the schemata net could
mean the increase in this algorithm efficiency. In this section, we propose a version of
the schemata bandits that groups the schemata with the same indifferent ∗ positions
such that the search space of this schemata bandits is 2`.

The group schemata net. Consider G a set of schemata with dimension g ← d(G)
corresponding the number of symbols ∗. There are o(G)← 2`−g schemata contained in
this node corresponding to the all schemata where the fixed positions are assigned one
of the values 0 or 1. The root node contains only one schema, the most general schema
with only symbols ∗. The root’s children contains 2 schemata corresponding with one
fixed position, and the children for the root children contains 4 schemata corresponding
with the 2 fixed positions.

Example 2. Figure 2 shows with a simple example of such schemata bandits. A schemata
group of order o(G)← 2, i.e. there are two bits that can be fixed, has 22 = 4 component
schemata. Thus 00∗∗∗, 01∗∗∗, 10∗∗∗, and 11∗∗∗ are schemata in the same schemata
group. Similarly, the schemata ∗0 ∗ ∗0, ∗0 ∗ ∗1, ∗1 ∗ ∗0 and ∗1 ∗ ∗1 also belong to the
same schemata group.

There are fundamental differences between the two schemata bandits approaches.
With this approach, each bit string will match exactly one schema from a schemata
group. Thus all the bitstrings match all schemata group. Each schema has an expected
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mean value given in Equation 1. The value of a schemata group is given by the best
expected mean value for that group of schemata. Each group schemata of dimension g
has g children and g parents.

Note that the leaf nodes contains 2`−L schemata, which for L = 1 means 2`−1

schemata where only one position has the symbol ∗. Therefore, for computational ef-
ficiency reasons, we set L > 2 on a high value. The variance in the expected mean
values of schemata is larger for the leaf nodes than for the root node. In general, a
group schemata with a higher dimension has a larger variance then a group schemata
from a lower dimension.

The algorithm. In the following, we introduce the bilevel schemata bandits algo-
rithms that has only two steps unlike the baseline schemata bandits introduced in Sec-
tion 3 which has three steps. The expansion step is not necessarily in this implemen-
tation because each bitstring matches each node in the net. We then generate upfront
all the nodes of the net up to leaves. There will be

∑L
i=0 g

i group nodes, each node
containing 2i schemata. Thus, in total, there will be a fixed number of

∑L
i=0 g

i · 2i
schemata in the net.

Selection: Each iteration, the search in the net starts with the root node. Using an
UCB1 algorithm, a child is selected from the current node and the selection process
continues until a leaf node. When a leaf node is reached, there are sampled 2th bitstrings
from that leaf node proportional with the expected mean value of each schemata, where
th > 0 is a constant.

Propagation: We update the matching schemata in each node with each generated
bitstring, and the expected mean value for the matching schema is updated.

Performance of schemata bandits. The goal of the schemata bandits algorithms
is to generate the optimal solution. The schemata bandits is a combination of evolu-
tionary algorithms and multi-armed bandits thus measuring the performance of these
algorithms is a complex task. To assess the quality of an schemata bandits algorithm,
we evaluate the number of times each algorithm found the optimal solution and the
mean of the generated solutions. Since storing and generating a schemata net is compu-
tational expensive, we need adequate performance metrics to compare the standard GAs
and the schemata bandits algorithms. To measure its computational complexity, we take
into account the number of schemas generated and the number of function evaluations.

To measure the performance of the UCB1-algorithm, we evaluate the expected
regret of each schema that is the loss resulting from selecting suboptimal children of
that schema. Each schema s has a regret that is calculated as

Rs =

g∑
i=1

E[Ti(N)] · (f∗(N)− f i(N))

where Ti(N) is the number of times the child node i was selected in N tree iterations
and f i(N) is the performance of a child node as before. We denote with f

∗
(N) the

performance of the optimal child node, i.e. the node with the maximum expected mean
value. We argue that the performance of the schema bandits algorithms is an issue that
needs further investigation.
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Nr block ` best sol mean nr schema fun eval regret
1 5 1.00 ± 0 0.34 ± 0 210 ± 0 32 ± 0 58 ± 0
2 10 1.00 ± 0 0.34 ± 0 35870 ± 70 1024 ± 0.45 3598 ± 0
3 15 1.00 ± 0 0.34 ± 0 171104 ± 0 31818 ± 0 169063 ± 0
4 20 0.95 ± 0.05 0.34 ± 0.01 127019 ± 5 276017 ± 46 1926978 ± 8507
5 25 0.92 ± 0.04 0.34 ± 0.01 179329 ± 32 318433 ± 54 2786122 ± 10451
6 30 0.88 ± 0.02 0.34 ± 0.01 230715 ± 6 319954 ± 4 3312440 ± 31333
7 35 0.86 ± 0.03 0.33 ± 0.01 281795 ± 0 319998 ± 0 3865973 ± 35264
8 40 0.85 ± 0.05 0.33 ± 0.01 332736 ± 20 320000 ± 0 4434108 ± 35609
9 45 0.76 ± 0.01 0.34 ± 0.01 383740 ± 14 320000 ± 0 5025488 ± 26731
10 50 0.73 ± 0.01 0.34 ± 0.01 434779 ± 9 320000 ± 0 5483765 ± 48880

Table 1. Performance of the schema bandits for 10 deceptive trap functions where the block size
is 5.

5 Experimental results

In this section, we experimentally compare the performance of the two versions of
schemata bandits on two binary encoded functions: i) deceptive trap functions and ii)
an NK problem.

Deceptive trap functions. As test functions, we concatenate deceptive trap func-
tions of 5 bits. The maximum value is for all bits 1s is 5, and the deceptive local max-
imum for all bits 0s is 4. If there is only a single bit 1, the value is 3, for two bits 1,
the value is 2, for three bits 1 the value is 1, and for four bits 1 the value is 0. Let b be
a bitstring, where b = b1, b2, . . . , b` and ` is a multiple of 5. We have that f(1) = 3,
f(2) = 2, f(3) = 1, f(4) = 0, the deceptive optimum is f(0) = 4 and the global opti-
mum for 5 bits is f(5) = 5. Let b is the number of deceptive blocks and b ∈ {1, . . . , 10}
and the size of a deceptive block k = 5. Then, the normalised value of the fitness func-
tion is

f(b) =
1

b ∗max1≤j≤kf(j)

b−1∑
i=0

f(

k∑
j=1

bi·b+j)

The trap functions are considered a difficult test problem for GAs because the large
basin of attraction of the deceptive local optimum.

Table 1 gives the values of the above enumerated performance measures for the de-
ceptive trap function. We run each experiment for 30 times and the schema bandits is
iterated, i.e. selection, expansion and propagation, for 104 times. A leaf node evaluates
25 = 32 solutions, i.e. leaf ← 32. Because of computational reasons related to mem-
ory usage, we set threshold← 3. For example, for ` = 30, there are (2·30)3 = 216000
schemata in the net to be stored and evaluated in the propagation step. A value 0.8 of
mean fitness means that the algorithm reaches the deceptive optima, and value 0.9 of
mean fitness means that 50% of the component tap functions found the global opti-
mum. Note that the deceptive optimum is (almost always) reached in less than 320.000
function evaluations, and for ` ≤ 40 at least a quarter of the trap functions reach their
optimal value.

For the bilevel schemata bandits, we set th ← 5 and leaf ← 5. We repeat each
experiment 30 times and we iterate each schemata bandits for 103 times. In Table 2,
the results in terms of finding the global optimum are not drastically deteriorated by the
10 times less iterations of the bilevel schemata bandits. Furthermore, the mean fitness
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Nr block ` best sol mean nr nodes fun eval regret
3 15 0.98 ± 0.03 0.61 ± 0.05 2523 ± 10 32000 ± 0 162305 ± 9551
4 20 0.94 ± 0.02 0.59 ± 0.05 6957 ± 11 32000 ± 0 341496 ± 19586
5 25 0.92 ± 0.04 0.49 ± 0.01 16128 ± 10 32000 ± 0 635886 ± 40376
6 30 0.86 ± 0.02 0.44 ± 0.01 32824 ± 10 32000 ± 0 3312440 ± 31333
7 35 0.79 ± 0.02 0.44 ± 0.01 60465 ± 9 32000 ± 0 3865973 ± 35264
8 40 0.73 ± 0.05 0.42 ± 0.01 103039 ± 3 32000 ± 0 2752405 ± 401730

Table 2. Performance of the bilevel schema bandits for the deceptive trap function where the
block size is 5.

Alg ` best sol mean nr nodes fun eval regret
Baseline 15 1.0 ± 0.0 0.35 ± 0.0 114426 ± 15 32000 ± 0 184406 ± 4140
schemata 20 0.84 ± 0.03 0.35 ± 0.00 560380 ± 12 32000 ± 0 245091 ± 9037
Bilevel 15 0.99 ± 0.03 0.63 ± 0.01 2434 ± 5 32000 ± 0 141655 ± 12068

schemata 20 0.83 ± 0.03 0.65 ± 0.01 8295 ± 10 32000 ± 0 374702 ± 41451

Table 3. Performance of the baseline (top half) and bilevel (bottom half) schemata bandits for the
deceptive NK problem where the block size is 5 and for 103 schemata net iterations.

value, which is computed over the best mean fitness value for all the schemata in a
node, is much higher than the mean fitness value of the baseline schemata bandits. Also
the regret is smaller and a reason might be the smaller number of children arms for a
single node. The number of fitness evaluation is also 10 smaller than in Table 1 and the
number of nodes is about three times smaller.

The deceptive NK problem. We propose to use a NK problem that overlaps several
deceptive trap functions. The fitness function is a sum of deceptive trap functions that
overlap in k − 1 positions, here k = 5. Let b be a bitstring, where b = b1, b2, . . . , b`.
Then, the fitness function of the deceptive NK problem is

f(b) =
1

(`− k) ·max1≤j≤kf(j)

`−k∑
i=1

f(

k∑
j=1

bi+j)

Note that the resulting NK problem is more complex that the initial deceptive trap func-
tions since all the bits should be set at once in order to obtain the global maximum. This
fact is reflected in the experimental results by seldom identifying the optimal solution,
see Table 3. Comparing the two algorithms, the performance is similar, but the num-
ber of nodes generated is 2 orders smaller for the bilevel schemata bandits than for the
standard algorithm.

In conclusion, the baseline and the bilevel schemata bandits have a similar perfor-
mance on the two tested combinatorial problems. The advantage of baseline schemata
bandits is the good performance in terms of the best found solution, but the bilevel
schemata bandits have the advantage of grouping similar schemata and thus of a more
compact net structure.

6 Conclusions

We combine techniques from evolutionary computation and Monte Carlo Tree Search
paradigms in order to create new efficient optimisation algorithms. The schemata ban-
dits algorithm combines the schemata theory with multi-armed bandits and its goal is to
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generate the optimum solution. The baseline schemata bandits algorithm considers that
each schema is a node in the schemata net which is connected both with schemata that
are more general that the current schema, denoted as parents, and with schemata that
are more specialised than the current schema, denoted as children. The main drawback
of this schemata bandits is the dimensionality of the net, i.e. 3` where ` is the size of
the bitstrings, for a smaller search space 2`. The bilevel schemata bandits is the sec-
ond proposed algorithm with a reduced dimension net of 2` nodes, where each node
is the group of schemata with the same positions for the symbol ∗. We test and com-
pare the two proposed algorithms on two binary combinatorial optimisation problems.
The experimental showed that the baseline schemata bandits is better in finding opti-
mal solutions whereas the bilevel schemata bandits are performing better in terms of
optimising the regret. We conclude that schemata bandits is a viable alternative for the
genetic algorithms that deserve further investigation towards a very efficient optimisa-
tion algorithm.
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