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Recommender Systems



User ratings

● Collect user preferences (scores, 
likes, purchases, views ...)

● Find similarities between items 
and/or users

● Predict user scores for new items
● Recommend items with high 

predicted scores



The Problem

movie / user Alice Bob Carol Dave

The Dark Knight ? 0 1 4

Die Hard 5 0 ? ?

The Hunt for Red October 5 ? 0 5

Love Actually ? 5 4 0

Bridget Jones Diary 1 5 ? ?

Four Weddings and a Funeral 0 ? 5 1
Fill in ?s

Users

Items

Ratings



Rating Distributions
# Movies rated per user # rating received per movie



Recommender Approaches
● Content-Based Recommenders:

Use item descriptions (metadata) to map items to  scores

● Collaborative Filtering:
Predict scores by finding similarities between item and/or user scores

● Hybrid Approaches:
Combine above approaches



Content Based Approaches
● Rely on descriptions of items (features)
● Case-Based: find items similar to items user 

likes 
● Profile-Based: build user profile of 

likes/dislikes & match items to profile
● Do not directly rely on similarities between 

users



Content Based Systems
movie Director Lead actor Genre Period

The Dark Knight Christopher 
Nolan

Christian Bale action 00’s

Die Hard John 
McTiernan

Bruce Willis action 80’s

The Hunt for Red October John 
McTiernan

Sean Connery action 90’s

Love Actually Richard 
Curtis

Hugh Grant romance 00s

Bridget Jones Diary Sharon 
Maguire

Renée Zellweger romance 00s

Four Weddings and a Funeral Mike 
Newell

Hugh Grant romance 90s



Case Based Reasoning
See Mitchell book section 8.5 for details on CBR
Lazy learning - based on querying stored data, rather than 
explicit model:
1. Store samples of the form <item features, rating>
2. Define a similarity between items. (e.g. simple similarity 

for the movie example: how many features match)
3. To make a prediction, simply retrieve unrated items 

similar  to items that have high ratings



Case-Based
● Bob likes:

 recommend Four Weddings and a Funeral 
(same genre & lead actor =similarity 2)

● Dave Likes:

 recommend Die Hard (same director & genre = similarity 2)

 

Love Actually Richard 
Curtis

Hugh Grant romance 00s

The Hunt for Red October John 
McTiernan

Sean Connery action 90’s



Profile Based Recommendations

Main idea:
1. Aggregate rated items to build user taste 

profile
2. Match unrated items to user’s profile
3. recommend best matches



Profile Based
Alice Likes:

Profile for Alice: < John McTiernan,?, action,? >
-> Recommend action movies by John McTiernan

movie / user Director Lead actor Genre release

Die Hard John 
McTiernan

Bruce Willis action 80’s

The Hunt for Red October John 
McTiernan

Sean Connery action 90’s



Vector Space Model
● Each item is represented as high-dimensional boolean 

or real valued vector
Die Hard: [0,0,0,1, ….,1,0,0 ]

● Boolean vectors indicate presence absence of feature 
(e.g. is Bruce Willis in the movie?, is it action?, etc.)

● Real values can be used to indicate strength of feature, 
e.g. frequency of a tag, frequency of a word in a text

-> More info see Text Mining slides



Building User Profiles
● User profiles can be 

created by averaging 
vectors of items they 
have rated

● Ratings can be used to 
get a weighted average 

● Each user profile is 
now also a vector with 
the same features

...

N

item 1 item 2 item 3 item N



Example
Alice’s profile:
(weighted) feature “action”:
(5*1+5*1+1*0+0*0)/11 = 0.9
(weighted) feature “romance”:
(5*0+5*0+1*1+0*1)/11 = 0.09
(weighted) feature “Bruce 
Willis”:
(5*1+5*0+1*0+0*0)/11 = 0.45
...

movie Director Lead 
actor

Genre Period Alice 
Score

Die Hard John 
McTiernan

Bruce 
Willis

action 80’s 5

The Hunt for Red 
October

John 
McTiernan

Sean 
Connery

action 90’s 5

Bridget Jones 
Diary

Sharon 
Maguire

Renée 
Zellweger

romance 00s 1

Four Weddings and 
a Funeral

Mike 
Newell

Hugh 
Grant

romance 90s 0



Similarity
● Items and users can now 

be represented as 
vectors in the same 
space

● Angle between vectors 
indicates how well they 
match 

● cosine similarity :
sim(item1,user1) = cos(α)  Feature 1

Feature 2

Item 1

Item 2
user 1

user 2

α

β



Advantages
● Simple approach, easy to implement
● Explainable to users:

○ recommended because you liked Die Hard
○ recommended because you enjoyed action movies

● Case Based approaches are suitable for short term 
interactions (e.g. looking for a hotel, buying a camera,
…)

● No need for input from other users to start making 
recommendations



Disadvantages
● Need description of every item (often labor 

intensive for large item sets)
● Items need good set of attributes to 

distinguish between items (difficult for some 
classes)

● Mainly finds similar items, can’t discover new 
things



Collaborative Filtering
● Find similarities between users or items 

based on the score matrix:
○ user/user: find users who give similar scores
○ item/item: find items that get similar scores
○ dimensionality reduction: learn features to find both 

similar users and similar items
● Does not need external information sources, 

only ratings



User - User CF: Idea
To get a prediction for rating of user u on item i P(u,i):

1. select a set of n users who have rated i
2. average their ratings on item i:

3. recommend items with highest predictions



User - User CF: Normalization
● One issue with this approach is that users might use different rating scales 

(i.e. one user might consider 6/10 good while another thinks 9/10 is good)
● This can be solved by normalizing the scores, i.e. do not look at the raw 

ratings, but rather at the difference between the item’s rating and the 
average rating given by that user:

where         is the average rating given by user k



User - User CF: weights
● To get better personalized predictions, ratings can be 

weighted according to how similar user k is to user u:

where w(k,u) is a similarity between users k and u
● Multiple possibilities to select neighborhood of users:

○ n users with highest w(k,u)
○ all users with w(k,u) over a given threshold



Calculating user similarity
● User similarity is calculated based on items 

both users have rated
● Multiple approaches are possible. Simplest 

is to use the Pearson Correlation Coefficient:



User-User CF
Combining weighting and normalization we get:

where the sum is taken over n neighboring 
users



Example
w(k,Carol):

Alice Bob Dave

-1 1 -0.9

Alice Bob Carol Dave

2.75 2.5 2.5 2.5

P(Carol,Die Hard):
2.5+1/2(-1(5-2.75)+1(0-2.5))= 0.1

P(Carol,Bridget Jones):
2.5+1/2(-1(1-2.75)+1(5-2.5))= 4.6

movie / user Alice Bob Carol Dave

The Dark Knight ? 0 1 4

Die Hard 5 0 ? ?

The Hunt for Red October 5 ? 0 5

Love Actually ? 5 4 0

Bridget Jones Diary 1 5 ? ?

Four Weddings and a Funeral 0 ? 5 1



Weaknesses
● Not scalable, calculating correlations is 

costly
● Issues with sparsity: with large item sets or 

few customer ratings, no predictions might 
be possible.

● technical issues: out of bound predictions, 
Pearson coefficient not always suitable



Item-Item CF
● Calculate rating based similarities between 

items
● Often more suitable for cases where 

#users >> #items
example: 1K items, 100K users, 50 ratings/user
-> ~5000 ratings / item
-> easier to find similar items than similar users



Item-Item CF (2)
We can calculate predictions as before:

but now averages are taken over item ratings, w(i,j) 
calculates similarity between items i and j
and the sum is taken over neighboring items



Advantages
● Item similarities tend to be more stable than user 

similarities (a single user adding ratings, can change user 
similarities a lot, but typically won’t change item 
similarities)

● Stable similarities allow offline computation
● Number of similarities to compute can often be limited to 

fixed value (e.g only consider 1000 most similar items)
● Precomputed similarities can be used to generate 

immediate recommendations for items user is looking at



Dimensionality Reduction CF

Instead of directly comparing users or items, 
we can first calculate features from the ratings 
that describe users and items.

These features can then be used to make 
predictions and compare items or users.



Learning user preferences
If we had features describing the movie content, we could learn user weights 
describing their preferences:

movie / user x1
(action)

x2
(romance)

The Dark Knight 0.8 0.2

Die Hard 0.9 0.1

The Hunt for Red October 1.0 0

Love Actually 0 1.0

Bridget Jones Diary 0.1 0.9

Four Weddings and a Funeral 0.2 0.8

Make predictions for a user by 
learning user weights for each 
feature:

P(u,i) = θu1 * xi1 + θu2 * xi2

How much 
user likes 
action (x1)

How much 
user likes 
romance (x2)



Preferences optimization
We can now learn the preferences of users by 
minimizing following error:

This problem can be solved by gradient 
descent



Example
The calculated features for Bob are:

This gives following predictions:

P(The Hunt for Red October,Bob)= 1*(-0.8846)+0*(5.2692) = -0.8846 
P(Four Weddings and a funeral,Bob)= 0.2*(-0.8846)+0.8*(5.2692) = 4.03844 

user θ1
(action)

θ2
(romance)

Bob -0.8846 5.2692



Learning movie features
If we have the features θ describing user 
preferences, we can move in the other direction 
and calculate features xi for a movie i by 
minimizing following objective:
 



Example
Results in following 
features:

user θ1
(action)

θ2
(romance)

Alice 0.9 0.1

Bob 0 1.0

Carol 0.2 0.8

Dave 0.9 0.2

Movie x1
(action)

x2
(romance)

The Hunt for 
Red October

5.7939 -1.4368

P(The Hunt for Red October,Bob)= 5.7939*(0)-1.4368*(1.0) = -1.4368
 



Learning all features
It is possible to learn user preferences and movie features 
at the same time. Idea:

- randomly initialize user preferences θ 
- use θ to compute movie features X
- use X to recompute θ
- repeat

Perform cross-validation to find a good number of features



Rating Decomposition
Learning user & movie features decomposes 
the ratings matrix into the product of a user 
feature matrix θ and a movie feature matrix X:

 R                  =    θ      *    XT

(n_movies x n_users)    (n_users x k)   (n_movies x k)T



Example
First normalize 
ratings matrix, so 
each movie has 
mean rating 0

movie / user Alice Bob Carol Dave

The Dark Knight ? -1.6 -0.6 2.3

Die Hard 2.5 -2.5 ? ?

The Hunt for Red October 1.6 ? -3.3 1.6

Love Actually ? 2.0 1.0 -3.0

Bridget Jones Diary -2.0 2.0 ? ?

Four Weddings and a 
Funeral

-2.0 ? 3.0 -1.0



Example

We now have features describing each movie and each user preference

movie x1 x2 x3 

The Dark Knight 0.7 -0.2 -0.9

Die Hard 1.2 0.4 -0.7

The Hunt for Red October 0.5 1.2 -0.8

Love Actually -0.8 0.2 1.2

Bridget Jones Diary -1.0 -0.3 0.6

Four Weddings and a 
Funeral

-0.8 -1.2 0.4

user θ1 θ2 θ3 

Alice 1.3 0.5 -0.6

Bob -1.2 -0.2 0.9

Carol -0.7 -1.7 0.7

Dave 0.9 -0.2 -1.5



Making Predictions
We can now predict ratings by multiplying movie feature 
vectors with user preference vectors (and adding the mean 
we used to normalize):
● Bob’s score for The Hunt for Red October:

    (Hunt) + Xhunt * θBob ~=  1.7

● Bob’s score for Four Weddings and a Funeral:

              (4wedding)+  X4weddings * θBob   ~=  3.6
● Bob’s score for Love Actually:

     (LoveActually)+  Xlove_actually * θBob  ~=  5



Finding Similar movies
We can now also find similar movies by directly comparing 
their features: 

difference(movie1,movie2) = ||Xmovie1 -Xmovie2 ||

for Die Hard:
(lower is more similar)

The Dark Knight 0.8

The Hunt for Red October 1.1

Love Actually 2.8

Bridget Jones Diary 2.7

Four Weddings and a Funeral 2.8



Summary
● Dimensionality reduction based CF no longer needs to 

directly compare user/item ratings
● Results in features for describing both users and items
● Allows us to compare user and items based on features 

(even if they don’t have ratings in common)
● Downside: the features are not easy to interpret or 

explain to users



Some Other issues
● Most approaches suffer from cold start (need 

initial ratings to get started)
● Binary Ratings (like/dislike) 
● Indirect ratings (purchases, page views)
● How to add context information (mobile 

recommendations)


