
Recommender
Systems
Techniques of AI

Recommender Systems

User ratings

● Collect user preferences (scores,
likes, purchases, views ...)

● Find similarities between items
and/or users

● Predict user scores for new items
● Recommend items with high

predicted scores

The Problem

movie / user Alice Bob Carol Dave

The Dark Knight ? 0 1 4

Die Hard 5 0 ? ?

The Hunt for Red October 5 ? 0 5

Love Actually ? 5 4 0

Bridget Jones Diary 1 5 ? ?

Four Weddings and a Funeral 0 ? 5 1
Fill in ?s

Users

Items

Ratings

Rating Distributions
Movies rated per user # rating received per movie

Recommender Approaches
● Content-Based Recommenders:

Use item descriptions (metadata) to map items to scores

● Collaborative Filtering:
Predict scores by finding similarities between item and/or user scores

● Hybrid Approaches:
Combine above approaches

Content Based Approaches
● Rely on descriptions of items (features)
● Case-Based: find items similar to items user

likes
● Profile-Based: build user profile of

likes/dislikes & match items to profile
● Do not directly rely on similarities between

users

Content Based Systems
movie Director Lead actor Genre Period

The Dark Knight Christopher
Nolan

Christian Bale action 00’s

Die Hard John
McTiernan

Bruce Willis action 80’s

The Hunt for Red October John
McTiernan

Sean Connery action 90’s

Love Actually Richard
Curtis

Hugh Grant romance 00s

Bridget Jones Diary Sharon
Maguire

Renée Zellweger romance 00s

Four Weddings and a Funeral Mike
Newell

Hugh Grant romance 90s

Case Based Reasoning
See Mitchell book section 8.5 for details on CBR
Lazy learning - based on querying stored data, rather than
explicit model:
1. Store samples of the form <item features, rating>
2. Define a similarity between items. (e.g. simple similarity

for the movie example: how many features match)
3. To make a prediction, simply retrieve unrated items

similar to items that have high ratings

Case-Based
● Bob likes:

 recommend Four Weddings and a Funeral
(same genre & lead actor =similarity 2)

● Dave Likes:

 recommend Die Hard (same director & genre = similarity 2)

Love Actually Richard
Curtis

Hugh Grant romance 00s

The Hunt for Red October John
McTiernan

Sean Connery action 90’s

Profile Based Recommendations

Main idea:
1. Aggregate rated items to build user taste

profile
2. Match unrated items to user’s profile
3. recommend best matches

Profile Based
Alice Likes:

Profile for Alice: < John McTiernan,?, action,? >
-> Recommend action movies by John McTiernan

movie / user Director Lead actor Genre release

Die Hard John
McTiernan

Bruce Willis action 80’s

The Hunt for Red October John
McTiernan

Sean Connery action 90’s

Vector Space Model
● Each item is represented as high-dimensional boolean

or real valued vector
Die Hard: [0,0,0,1, ….,1,0,0]

● Boolean vectors indicate presence absence of feature
(e.g. is Bruce Willis in the movie?, is it action?, etc.)

● Real values can be used to indicate strength of feature,
e.g. frequency of a tag, frequency of a word in a text

-> More info see Text Mining slides

Building User Profiles
● User profiles can be

created by averaging
vectors of items they
have rated

● Ratings can be used to
get a weighted average

● Each user profile is
now also a vector with
the same features

...

N

item 1 item 2 item 3 item N

Example
Alice’s profile:
(weighted) feature “action”:
(5*1+5*1+1*0+0*0)/11 = 0.9
(weighted) feature “romance”:
(5*0+5*0+1*1+0*1)/11 = 0.09
(weighted) feature “Bruce
Willis”:
(5*1+5*0+1*0+0*0)/11 = 0.45
...

movie Director Lead
actor

Genre Period Alice
Score

Die Hard John
McTiernan

Bruce
Willis

action 80’s 5

The Hunt for Red
October

John
McTiernan

Sean
Connery

action 90’s 5

Bridget Jones
Diary

Sharon
Maguire

Renée
Zellweger

romance 00s 1

Four Weddings and
a Funeral

Mike
Newell

Hugh
Grant

romance 90s 0

Similarity
● Items and users can now

be represented as
vectors in the same
space

● Angle between vectors
indicates how well they
match

● cosine similarity :
sim(item1,user1) = cos(α) Feature 1

Feature 2

Item 1

Item 2
user 1

user 2

α

β

Advantages
● Simple approach, easy to implement
● Explainable to users:

○ recommended because you liked Die Hard
○ recommended because you enjoyed action movies

● Case Based approaches are suitable for short term
interactions (e.g. looking for a hotel, buying a camera,
…)

● No need for input from other users to start making
recommendations

Disadvantages
● Need description of every item (often labor

intensive for large item sets)
● Items need good set of attributes to

distinguish between items (difficult for some
classes)

● Mainly finds similar items, can’t discover new
things

Collaborative Filtering
● Find similarities between users or items

based on the score matrix:
○ user/user: find users who give similar scores
○ item/item: find items that get similar scores
○ dimensionality reduction: learn features to find both

similar users and similar items
● Does not need external information sources,

only ratings

User - User CF: Idea
To get a prediction for rating of user u on item i P(u,i):

1. select a set of n users who have rated i
2. average their ratings on item i:

3. recommend items with highest predictions

User - User CF: Normalization
● One issue with this approach is that users might use different rating scales

(i.e. one user might consider 6/10 good while another thinks 9/10 is good)
● This can be solved by normalizing the scores, i.e. do not look at the raw

ratings, but rather at the difference between the item’s rating and the
average rating given by that user:

where is the average rating given by user k

User - User CF: weights
● To get better personalized predictions, ratings can be

weighted according to how similar user k is to user u:

where w(k,u) is a similarity between users k and u
● Multiple possibilities to select neighborhood of users:

○ n users with highest w(k,u)
○ all users with w(k,u) over a given threshold

Calculating user similarity
● User similarity is calculated based on items

both users have rated
● Multiple approaches are possible. Simplest

is to use the Pearson Correlation Coefficient:

User-User CF
Combining weighting and normalization we get:

where the sum is taken over n neighboring
users

Example
w(k,Carol):

Alice Bob Dave

-1 1 -0.9

Alice Bob Carol Dave

2.75 2.5 2.5 2.5

P(Carol,Die Hard):
2.5+1/2(-1(5-2.75)+1(0-2.5))= 0.1

P(Carol,Bridget Jones):
2.5+1/2(-1(1-2.75)+1(5-2.5))= 4.6

movie / user Alice Bob Carol Dave

The Dark Knight ? 0 1 4

Die Hard 5 0 ? ?

The Hunt for Red October 5 ? 0 5

Love Actually ? 5 4 0

Bridget Jones Diary 1 5 ? ?

Four Weddings and a Funeral 0 ? 5 1

Weaknesses
● Not scalable, calculating correlations is

costly
● Issues with sparsity: with large item sets or

few customer ratings, no predictions might
be possible.

● technical issues: out of bound predictions,
Pearson coefficient not always suitable

Item-Item CF
● Calculate rating based similarities between

items
● Often more suitable for cases where

#users >> #items
example: 1K items, 100K users, 50 ratings/user
-> ~5000 ratings / item
-> easier to find similar items than similar users

Item-Item CF (2)
We can calculate predictions as before:

but now averages are taken over item ratings, w(i,j)
calculates similarity between items i and j
and the sum is taken over neighboring items

Advantages
● Item similarities tend to be more stable than user

similarities (a single user adding ratings, can change user
similarities a lot, but typically won’t change item
similarities)

● Stable similarities allow offline computation
● Number of similarities to compute can often be limited to

fixed value (e.g only consider 1000 most similar items)
● Precomputed similarities can be used to generate

immediate recommendations for items user is looking at

Dimensionality Reduction CF

Instead of directly comparing users or items,
we can first calculate features from the ratings
that describe users and items.

These features can then be used to make
predictions and compare items or users.

Learning user preferences
If we had features describing the movie content, we could learn user weights
describing their preferences:

movie / user x1
(action)

x2
(romance)

The Dark Knight 0.8 0.2

Die Hard 0.9 0.1

The Hunt for Red October 1.0 0

Love Actually 0 1.0

Bridget Jones Diary 0.1 0.9

Four Weddings and a Funeral 0.2 0.8

Make predictions for a user by
learning user weights for each
feature:

P(u,i) = θu1 * xi1 + θu2 * xi2

How much
user likes
action (x1)

How much
user likes
romance (x2)

Preferences optimization
We can now learn the preferences of users by
minimizing following error:

This problem can be solved by gradient
descent

Example
The calculated features for Bob are:

This gives following predictions:

P(The Hunt for Red October,Bob)= 1*(-0.8846)+0*(5.2692) = -0.8846
P(Four Weddings and a funeral,Bob)= 0.2*(-0.8846)+0.8*(5.2692) = 4.03844

user θ1
(action)

θ2
(romance)

Bob -0.8846 5.2692

Learning movie features
If we have the features θ describing user
preferences, we can move in the other direction
and calculate features xi for a movie i by
minimizing following objective:

Example
Results in following
features:

user θ1
(action)

θ2
(romance)

Alice 0.9 0.1

Bob 0 1.0

Carol 0.2 0.8

Dave 0.9 0.2

Movie x1
(action)

x2
(romance)

The Hunt for
Red October

5.7939 -1.4368

P(The Hunt for Red October,Bob)= 5.7939*(0)-1.4368*(1.0) = -1.4368

Learning all features
It is possible to learn user preferences and movie features
at the same time. Idea:

- randomly initialize user preferences θ
- use θ to compute movie features X
- use X to recompute θ
- repeat

Perform cross-validation to find a good number of features

Rating Decomposition
Learning user & movie features decomposes
the ratings matrix into the product of a user
feature matrix θ and a movie feature matrix X:

 R = θ * XT

(n_movies x n_users) (n_users x k) (n_movies x k)T

Example
First normalize
ratings matrix, so
each movie has
mean rating 0

movie / user Alice Bob Carol Dave

The Dark Knight ? -1.6 -0.6 2.3

Die Hard 2.5 -2.5 ? ?

The Hunt for Red October 1.6 ? -3.3 1.6

Love Actually ? 2.0 1.0 -3.0

Bridget Jones Diary -2.0 2.0 ? ?

Four Weddings and a
Funeral

-2.0 ? 3.0 -1.0

Example

We now have features describing each movie and each user preference

movie x1 x2 x3

The Dark Knight 0.7 -0.2 -0.9

Die Hard 1.2 0.4 -0.7

The Hunt for Red October 0.5 1.2 -0.8

Love Actually -0.8 0.2 1.2

Bridget Jones Diary -1.0 -0.3 0.6

Four Weddings and a
Funeral

-0.8 -1.2 0.4

user θ1 θ2 θ3

Alice 1.3 0.5 -0.6

Bob -1.2 -0.2 0.9

Carol -0.7 -1.7 0.7

Dave 0.9 -0.2 -1.5

Making Predictions
We can now predict ratings by multiplying movie feature
vectors with user preference vectors (and adding the mean
we used to normalize):
● Bob’s score for The Hunt for Red October:

 (Hunt) + Xhunt * θBob ~= 1.7

● Bob’s score for Four Weddings and a Funeral:

 (4wedding)+ X4weddings * θBob ~= 3.6
● Bob’s score for Love Actually:

 (LoveActually)+ Xlove_actually * θBob ~= 5

Finding Similar movies
We can now also find similar movies by directly comparing
their features:

difference(movie1,movie2) = ||Xmovie1 -Xmovie2 ||

for Die Hard:
(lower is more similar)

The Dark Knight 0.8

The Hunt for Red October 1.1

Love Actually 2.8

Bridget Jones Diary 2.7

Four Weddings and a Funeral 2.8

Summary
● Dimensionality reduction based CF no longer needs to

directly compare user/item ratings
● Results in features for describing both users and items
● Allows us to compare user and items based on features

(even if they don’t have ratings in common)
● Downside: the features are not easy to interpret or

explain to users

Some Other issues
● Most approaches suffer from cold start (need

initial ratings to get started)
● Binary Ratings (like/dislike)
● Indirect ratings (purchases, page views)
● How to add context information (mobile

recommendations)

