Recommender
Systems

Techniques of Al

Recommender Systems

People who |

Customers Who

Foundation (The
Series)

» Isaac Asimov
FoAAA (76

OO

“‘

Paperback
£6.59

iked this also liked...

STARGATE

Add to Watchlist

Next »
Next 6 »

Bought This Item Also Bought

 INSIDE!

Foundation Ender's Game (Ender Saga)

» Orson Scott Card

Yolrolodolt (437)
) Paperback orokok
£5.59
£6.79

Chapter House Dune: The
Sixth Dune Novel

> Frank Herbert

(16)
Paperback

Recommendations

Because you shelved Starfish, a few recommendations

in Science Fiction:

More recommendations...

God Emperor Of Dune: The
Fourth Dune Novel

> Frank Herbert
Yook (28)
Paperback
£6.29

TN AT PO T METSELLE

DAVID AND LEIGH

Neuromancer

> William Gibson
Yorododely (109)
Paperback

£65.59

(hide]

Websitebezoekers die in V-Continent Beijing Parkview Wuzhou Hotel geinteresseerd zijn, keken ook naar:

Beijing Continental Grand

Grand Millennium Beijing

Hotel
PP Beijing Continental Grand Hotel

) ligt op 500 meter van het
< Olympisch Sportcentrum en
het beroemde Nationale

Stadion van Peking, Bird's
Nest.

De meest recente reservering voor dit hotel
was gisteren om 16:34

Totale prijs vanaf

€342,54

» Toon alla hotals in Beiiing

Heretics of Dune (Gollancz
SFS.)

> Frank Herbert

(18)

FOOORY

Paperback
£6.29

Het luxe Grand Millennium in
het Central Business District
van Peking biedt een

r binnenzwembad,

spafacilteiten, 4
estgelegenheden, gratis intemet en gratis
parkeergelegenheid.

De meest recente reservering voor dit hotel
was vandaag om 13:0:

Score uit 406 beoordelingen

Heerlijk - 8,610

Totale prijs vanaf

€462,23

INSIDE!

Do Androids Dream Of
Electric Sheep? ...

> Philip K. Dick
Yool (159)
Paperback

£5.99

Beijing Prime Hotel
Wangfujing
Het Prime Hotel ligt op een
Bl ieale locatie, op 1 km van de
':# beroemde, 700-jaar oude
. Wangfujing Street. Het hotel

heeft 5 eetgelegenheden, een
binnenzwembad en gratis
parkeergelegenheid.

De meest recente reservering voor dit hotel
was 14 minuten geleden

Score uit 199 beoordelingen

Erg goed - 8,110

Totale prijs vanaf

€289,27

INSIDE!
—

Ringworld (S.F.
MASTERWORKS)
> Larry Niven
(34)

PO

Paperback
£6.59

Crowne Plaza Beijing Sun
Palace

Crowne Plaza Sun Palace Beijing
is gevestigd in het Taiyanggong
gebied, op 30 minuten ijden van
het Tiananmenplein en Wangfujing
Street.

De meest recente reservering voor dit hotel
was vandaag om 12:07

Score uit94 beoordelingen

Erg goed - 8,210

Totale prijs vana

€ 535,54

INSIDE!

The Forever War (S.F.
MASTERWORKS)
Joe Haldeman
Yolrohododr (138)
Paperback

£6.99

UNDERSTANDNG ONUNE STAR RATINGS:

WA Ak [HAS ONLY ONE REVIEW]
Yok Al EXCELLENT
Yorrdkyr OK

ok ks |
.8 0 gAgAs
g~ ¢ SpASAS

) 8 RARARAS
Yle Ve vy
KWWV _

CRAP

Collect user preferences (scores,
likes, purchases, views ...)

Find similarities between items
and/or users

Predict user scores for new items
Recommend items with high
predicted scores

The Problem

Users Ratings
movie / user Alice | Bob | Carol | Dave /
The Dark Knight ? 0 1 4 |
o & & & € Excellent
Die Hard 5 0 ? ? Serr 9 Above Average
Items | The Hunt for Red October 5 ? 0 5 A K Average
72 Y W Below Average
Love Actually ? S 4 0 YK Poor
Bridget Jones Diary 1 5 ? ?
] Fill in ?s
Four Weddings and a Funeral 0 ?) 1

Rating Distributions

rating received per movie

Ratras aerauad par Mo

Movies rated per user

Vewrs Raind parliaer

& Mir me

FALELTH

¥.zirsRilzd

YVoAzzRilzd

Recommender Approaches

e Content-Based Recommenders:

Use item descriptions (metadata) to map items to scores

e Collaborative Filtering:

Predict scores by finding similarities between item and/or user scores
e Hybrid Approaches:

Combine above approaches

Content Based Approaches

e Rely on descriptions of items (features)

e Case-Based: find items similar to items user
likes

e Profile-Based: build user profile of
likes/dislikes & match items to profile

e Do not directly rely on similarities between
users

Content Based Systems

movie Director | Lead actor | Genre Period

The Dark Knight Christopher Christian Bale action 00’s
Nolan

Die Hard John Bruce Willis action 80’s
McTiernan

The Hunt for Red October John Sean Connery action 90’s
McTiernan

Love Actua"y Richard Hugh Grant romance 00s
Curtis

Bridget Jones Diary Sharon Renée Zellweger | romance 00s
Maguire
Mike Hugh Grant romance 90s

Four Weddings and a Funeral

Newell

Case Based Reasoning

See Mitchell book section 8.5 for details on CBR

Lazy learning - based on querying stored data, rather than
explicit model:

1. Store samples of the form <item features, rating>

2. Define a similarity between items. (e.g. simple similarity
for the movie example: how many features match)

3. To make a prediction, simply retrieve unrated items
similar to items that have high ratings

Case-Based

e Bob likes:

Love Actua"y gR:icl‘;_ard Hugh Grant romance 00s
urtis

mm)p recommend Four Weddings and a Funeral
(same genre & lead actor =similarity 2)

e Dave Likes:

The Hunt for Red October John Sean Connery action 90’s
McTiernan

mmp recommend Die Hard (same director & genre = similarity 2)

Profile Based Recommendations

Main idea:
1. Aggregate rated items to build user taste
profile

2. Match unrated items to user’s profile
3. recommend best matches

Profile Based

Alice Likes:
movie / user Director | Lead actor | Genre release
Die Hard John Bruce Willis action 80’s
McTiernan
The Hunt for Red October John Sean Connery action 90’s
McTiernan

Profile for Alice: < John McTiernan,?, action,? >
-> Recommend action movies by John McTiernan

Vector Space Model

e Each item is represented as high-dimensional boolean
or real valued vector

Die Hard: [0,0,0,1,,1,0,0]
e Boolean vectors indicate presence absence of feature
(e.g. is Bruce Willis in the movie?, is it action?, etc.)
e Real values can be used to indicate strength of feature,

e.g. frequency of a tag, frequency of a word in a text
-> More info see Text Mining slides

Building User Profiles

e i e User profiles can be
created by averaging
+H+Hs =+ vectors of items they
have rated
e Ratings can be used to
N get a weighted average
e Each user profile is

now also a vector with
the same features

movie Director Lead Genre Period Alice
actor Score

Die Hard John Bruce action 80’s 5
McTiernan | Willis

The Hunt for Red John Sean action 90’s 5

October McTiernan | Connery

Bridget Jones Sharon Renée romance | 00s 1

Diary Maguire Zellweger

Four Weddings and | Mike Hugh romance | 90s 0

a Funeral Newell Grant

Alice’s profile:
(weighted) feature “action”:
(5*1+5*1+1*0+0*0)/11 =0.9
(weighted) feature “romance”:
(5*0+5*0+1*1+0*1)/11 = 0.09

(weighted) feature “Bruce
Willis™:

(5*1+5*0+1*0+0*0)/11 = 0.45

Similarity

e |tems and users can now
be represented as
vectors in the same
space

Feature 2 wem2 @ Angle between vectors

o iIndicates how well they
match

e cosine similarity :
sim(item1,user1) = cos(q)

Item 1

Feature 1

Advantages

e Simple approach, easy to implement

e Explainable to users:
o recommended because you liked Die Hard
o recommended because you enjoyed action movies

e (Case Based approaches are suitable for short term
interactions (e.g. looking for a hotel, buying a camera,
...)

e No need for input from other users to start making
recommendations

Disadvantages

e Need description of every item (often labor
intensive for large item sets)

e |tems need good set of attributes to
distinguish between items (difficult for some

classes)
e Mainly finds similar items, can’t discover new

things

Collaborative Filtering

e Find similarities between users or items

based on the score matrix:

o user/user: find users who give similar scores
o item/item: find items that get similar scores

o dimensionality reduction: learn features to find both
similar users and similar items

e Does not need external information sources,
only ratings

User - User CF: Idea

To get a prediction for rating of user u on item i/ P(u,i):

1. select a set of n users who have rated i
2. average their ratings on item i:
1
Plu.i) — — .
(uy) = = (k1)
k=1
3. recommend items with highest predictions

User - User CF: Normalization

e One issue with this approach is that users might use different rating scales
(i.e. one user might consider 6/10 good while another thinks 9/10 is good)

e This can be solved by normalizing the scores, i.e. do not look at the raw
ratings, but rather at the difference between the item’s rating and the
average rating given by that user:

where 7(k) is the average rating given by user k

User - User CF: weights

e To0 get better personalized predictions, ratings can be
weighted according to how similar user k is to user u:

N 2opeq (ki) xw(k,u)
Pl = = o)

where w(k,u) is a similarity between users k and u

e Multiple possibilities to select neighborhood of users:
o n users with highest w(k,u)
o all users with w(k,u) over a given threshold

Calculating user similarity

e User similarity is calculated based on items
both users have rated

e Multiple approaches are possible. Simplest
Is to use the Pearson Correlation Coefficient:

2 i (r(k, §) — 7(k))(r(u, 5) — 7(u))

wik,u) = o (k)0 ()

User-User CF

Combining weighting and normalization we get:

r(k,1) —7(k)) xw(k,u)
ZZ:l |w(k7 u)l

P(u,i) = 7(u) + 2k=1

where the sum is taken over n neighboring
users

movie / user Alice | Bob | Carol | Dave
w(k,Carol):

The Dark Knight ? 0 1 4

Alice | Bob Dave
Die Hard 5 0 ? ?

-1 1 -0.9
The Hunt for Red October 5 ? 0)
Love Actually ? 5 |4 0 P(Carol,Die Hard):

2.5+1/2(-1(5-2.75)+1(0-2.5))= 0.1

Bridget Jones Diary 1 5 ? ?
Four Weddings and a Funeral 0 ? 5 1

3 i P(Carol,Bridget Jones):
7: | Alice | Bob | Carol | Dave |, 5,40 112 751+1(5-2.5))= 4.6

275 |25 |25 2.5

Weaknesses

e Not scalable, calculating correlations is
costly

e Issues with sparsity: with large item sets or
few customer ratings, no predictions might
be possible.

e technical issues: out of bound predictions,
Pearson coefficient not always suitable

ltem-ltem CF

Calculate rating based similarities between
items
Often more suitable for cases where

#users >> #items

example: 1K items, 100K users, 50 ratings/user
-> ~5000 ratings / item

-> easier to find similar items than similar users

Iltem-Iltem CF (2)

We can calculate predictions as before:

> i1 (r(u,) = 7(7)) * w(i, 5)

P(u,d) = 7(3) + == S w(i,)l

but now averages are taken over item ratings, w(i))
calculates similarity between items / and

and the sum is taken over neighboring items

Advantages

ltem similarities tend to be more stable than user
similarities (a single user adding ratings, can change user
similarities a lot, but typically won’t change item
similarities)

Stable similarities allow offline computation

Number of similarities to compute can often be limited to
fixed value (e.g only consider 1000 most similar items)
Precomputed similarities can be used to generate
immediate recommendations for items user is looking at

Dimensionality Reduction CF

Instead of directly comparing users or items,
we can first calculate features from the ratings
that describe users and items.

These features can then be used to make
predictions and compare items or users.

Learning user preferences

If we had features describing the movie content, we could learn user weights
describing their preferences:

movie / user x1 x2 Make predictions for a user by
(action) | (romance) learning user weights for each
feature:
The Dark Knight 0.8 0.2
P(u,i)=6,1*x1+62*x.2
Die Hard 0.9 0.1
The Hunt for Red October 1.0 0
Love Actually 0 1.0
Bridget Jones Dia 0.1 0.9 How much
9 i user likes How Ir_Tl‘(”Ch
Four Weddings and a Funeral | 0.2 0.8 action (x1) UsSer fixes

romance (x2)

Preferences optimization

We can now learn the preferences of users by
minimizing following error:

. T, N
I%in;(ﬁuxz r(u,1))

This problem can be solved by gradient
descent

"he calculated features for Bob are:

user 01 02
(action) | (romance)
Bob -0.8846 | 5.2692

P(The Hunt for Red October,Bob)= 1*(-0.8846)+0*(5.2692) = -0.8846
P(Four Weddings and a funeral,Bob)= 0.2%(-0.8846)+0.8*(5.2692) = 4.03844

"his gives following predictions:

Learning movie features

If we have the features 0 describing user
preferences, we can move in the other direction

and calculate features x. for a movie i by
minimizing following objective:

min Z(GE:{:Z —r(u,1))?
' u=1

Results in following

user 81 82
(action) | (romance)
Alice 0.9 0.1
Bob 0 1.0
Carol 0.2 0.8
Dave 0.9 0.2

features:
Movie x1 x2
(action) | (romance)
The Hunt for 5.7939 -1.4368
Red October

P(The Hunt for Red October,Bob)= 5.7939%(0)-1.4368%(1.0) = -1.4368

Learning all features

It is possible to learn user preferences and movie features
at the same time. ldea:

- randomly initialize user preferences 6
- use O to compute movie features X
- use X to recompute 6
- repeat
Perform cross-validation to find a good number of features

Rating Decomposition

Learning user & movie features decomposes
the ratings matrix into the product of a user
feature matrix 8 and a movie feature matrix X:

R =06 * X

(n_movies x n_users) (n_users x k) (n_movies x k)T

movie / user Alice | Bob | Carol | Dave
The Dark Knight ? -1.6 |-0.6 2.3
Die Hard 2.5 25 |? ?
The Hunt for Red October | 1.6 ? -3.3 1.6
Love Actually ? 20 |1.0 -3.0
Bridget Jones Diary -20 |20 ? ?
Four Weddings and a 20 |7 3.0 -1.0

Funeral

First normalize
ratings matrix, so
each movie has
mean rating O

movie x1 X2 x3 user 01 82 83
The Dark Knight 0.7 -0.2 |-0.9 Alice 1.3 0.5 |-06
Die Hard 1.2 04 |-0.7 Bob -1.2 | -0.2 | 0.9
The Hunt for Red October | 0.5 1.2 |-0.8 Carol -0.7 | 1.7 |07
Love Actually -0.8 |0.2 1.2 Dave 0.9 -0.2 |-15
Bridget Jones Diary -1.0 [-03 |0.6

Four Weddings and a -0.8 -1.2 104

Funeral

We now have features describing each movie and each user preference

Making Predictions

We can now predict ratings by multiplying movie feature
vectors with user preference vectors (and adding the mean
we used to normalize):

@® Bob’s score for The Hunt for Red October:
T (Hunt) + X *6, ~= 1.7

hunt

e Bob’s score for Four Weddings and a Funeral:

T (4wedding)+ X "9, ~= 36

) 4weddings Bob
e Bob’s score for Love Actually:

Tr(LoveActually)+ X *6,, ~= 5

love_actually

Finding Similar movies

We can now also find similar movies by directly comparing
their features:

difference(movie1,movie2) = ||[X__ .. -X_ . ||
The Dark Knight 0.8
The Hunt for Red October 1.1
for Die Hard. Love Actually 2.8
(lower is more similar)))
Bridget Jones Diary 2.7
Four Weddings and a Funeral 2.8

Summary

Dimensionality reduction based CF no longer needs to
directly compare user/item ratings

Results in features for describing both users and items
Allows us to compare user and items based on features
(even if they don’t have ratings in common)

Downside: the features are not easy to interpret or
explain to users

Some Other issues

e Most approaches suffer from cold start (need
initial ratings to get started)

e Binary Ratings (like/dislike)

e [ndirect ratings (purchases, page views)

e How to add context information (mobile
recommendations)

