Schemata Bandits

A novel approach in Genetic algorithms

Madalina M. Drugan, Pedro Isasi, and Bernard Manderick

Overview

- Motivation
- Background
- A baseline schemata bandits
- Experimental results
- Conclusions
- Future work

Motivation

- The synergy of two machine learning areas
 - Evolutionary Computation
 - Schema theorem
 - Multi-armed bandits
 - Hierarchical bandits

 Efficient evolutionary algorithms that replace the usage of recombination with hierarchical bandits

Schemata theorem

- Binary coded combinatorial optimization problems, e.g. knapsack problem
- Population of bit strings that are successively selected and recombined to generate new fit individuals
- Schema theorem (Holland, 1975)
 - Mechanism to explaining / study the success of genetic algorithms
 - Implicit and parallel processing of information about parts of the search space (schemata)
 - Building blocks the interesting schemata those combination lead to fit individuals

Multi-armed bandits (MAB)

- A machine learning paradigm used to study and analyze resource allocation in stochastic and noisy environments.
- It is the problem a gambler facing a row of <u>slot machines</u> and deciding
 - which machines to play,
 - how many times to play each machine
 - in which order to play them
- When played, each machine provides a reward generated from an unknown distribution specific to that machine.
- The goal of the gambler is to maximize the sum of rewards earned through a sequence of lever pulls.

Monte Carlo tree search (MCTS)

- Builds a search tree using a search policy selecting the most probable node to expand
- A top down approach, i.e. root to leaves
- Used to play complicated games like Go with huge search spaces
- Selection of the most promising children
- Expansion → creates new nodes using a tree policy
- Simulation → plays at random from the current node to the end of the game
- Backpropagation → update the information on the explored path

Monte Carlo Tree Search (MCTS)

A schemata net structure

- L dimensional hypercube, 2^L bitstrings
- Schema H is represented as $H \in \{0,1,*\}$
 - 3^L schemata
 - o(H) the order of schemata is the nr of 0s or 1s
 - d(H) the dimension of the schema H (nr of * symbol)
- Schemata net
 - root the most general schema **...*,
 - the leaves each * is replaced with 0 or 1
 - Each node has:
 - Value the mean over the individual belonging to the schema and sampled
 - 2 * d(H) children → replace a * symbol with 0 or 1
 - o(h) parents → replace of 0 or 1 with * symbol

An example of schemata net

A baseline schemata algorithm

- Initialize the algorithm with n random individuals
- FOR a fixed number of schemata net iterations DO
 - Select the root schemata
 - WHILE a leaf node is NOT reached DO
 - Select the most promising child of the current schemata using UCB1

$$argmax_i \overline{f}(H_i) + C \cdot \sqrt{\frac{2\log(t)}{t_i}}$$

- Update counters $t \leftarrow t + 1, \ t_i \leftarrow t_i + 1$
- Update the current schema $H \leftarrow H_i$
- IF the leaf node was not expanded before THEN
 - Expand all the individual solutions in the leaf node
 - Update nodes on the expanded path

A baseline schemata net algorithm

- Parameter free optimization algorithm
- Schemata net is densely connected

 computationally infeasible for large L
 - use schemata net
 - expand only a part of the schemata net
 - hybrid between the two approaches
- The multi-armed bandits algorithm
 - Select a different MAB algorithm
 - Tune the exploration term of UCB1

Schemata bandits

Schemata nets vs other GAs

- Schemata net vs Monte Carlo tree search
 - MCTS is a graph not a net
 - Schemata has strong overlap
 - the rewards are strongly correlated
 - in few iterations, we have a completely connected graph
- Schemata net vs Estimation Distribution Algorithms (EDAs)
 - No genetic operator is needed to generate new individuals
 - Schemata bandits could offer theoretical guaranties on the convergence to the optimal value and convergence performance

Experimental results

- Deceptive trap functions
- Several deceptive blocks
- Difficult test problems for GAs

00000 11111

Nr bl.	L	Found solution / best solution	Mean solutions / best solution	Nr schema	Funct evaluat	Regret
1	5	100%	34%	210	32	58
2	10	100%	34%	35870	1024	3598
3	15	100%	34%	171104	31818	169063
4	20	95%	34%	127019	276017	1926978
5	25	92%	34%	179329	318433	2786122
6	30	88%	34%	230715	319954	3312440
7	35	86%	34%	281795	319998	3865973

Contributions

- Schemata net structure
- Schemata bandits
 - A synergy between
 - Schemata Theory and
 - Monte Carlo tree search
 - Genetic algorithms that do not use the genetic operators to generate new individuals
 - Current version → computational challenging

An alternative schemata algorithm with 2^L search space

