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Abstract— Multi-objectivization is the process of transform-
ing a single objective problem into a multi-objective problem.
Research in evolutionary optimization has demonstrated that
the addition of objectives that are correlated with the original
objective can make the resulting problem easier to solve
compared to the original single-objective problem. In this
paper we investigate the multi-objectivization of reinforcement
learning problems. We propose a novel method for the multi-
objectivization of Markov Decision problems through the use
of multiple reward shaping functions. Reward shaping is a
technique to speed up reinforcement learning by including addi-
tional heuristic knowledge in the reward signal. The resulting
composite reward signal is expected to be more informative
during learning, leading the learner to identify good actions
more quickly. Good reward shaping functions are by definition
correlated with the target value function for the base reward
signal, and we show in this paper that adding several correlated
signals can help to solve the basic single objective problem
faster and better. We prove that the total ordering of solutions,
and by consequence the optimality of solutions, is preserved in
this process, and empirically demonstrate the usefulness of this
approach on two reinforcement learning tasks: a pathfinding
problem and the Mario domain.

I. INTRODUCTION

A COMMON PROBLEM in reinforcement learning is
that the naive algorithms require too many interactions

with the environment to be useful in complex domains [1],
[2]. The goal in reinforcement learning is to maximize the
expected return of a reward signal that indicates how well
the solver is performing, but this reward signal is often very
sparse, e.g. a flat landscape with a single peak value when
the goal is achieved. Learning in such a context is very hard,
and for such situations, reward shaping [3] was proposed as a
way to speed up learning. Reward shaping is the addition of
an extra reward signal that encodes some heuristic knowledge
of the system designer or domain expert, that can encourage
the learning agent to explore parts of the state space that
are believed to contain good solutions. Reward shaping has
been successfully applied to speed up reinforcement learning
techniques in complex domains [4], [5]. However, with the
exception of one paper [4], all work on reward shaping has
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only considered the addition of a single shaping signal.1

In this paper, we explicitly formulate the addition of
multiple reward shaping signals to a single-objective rein-
forcement learning problem as the multi-objectivization of
this problem, and prove that this process does not alter
the optimality of policies from the original problem. We
start by giving some background knowledge in the next
section on reinforcement learning, reward shaping and multi-
objective reinforcement learning. We discuss related work
on multi-objectivization in Section III. Then we formulate
the multi-objectivization of a reinforcement learning problem
by reward shaping in Section IV, and discuss some the-
oretical properties thereof. We discuss solution techniques
in Section V. After that, we introduce two problem do-
mains (a pathfinding problem and the Infinite Mario domain)
in Section VI, after which we evaluate how the multi-
objectivization of these problems can result in much faster
learning in Section VII. We conclude and give directions for
future work in Section VIII.

II. BACKGROUND KNOWLEDGE

A. Reinforcement Learning

Reinforcement learning (RL) [6] is a framework that
allows an agent to optimize its behaviour by interacting with
its environment and learning from these interactions. The
environment is typically described as a Markov Decision
Process (MDP), which is formulated as follows. Let S =
{s1, s2, . . .} be the (potentially infinite) set of states, and
A = {a1, a2, . . .} the action set available to the learning
agent. Each combination of current state s, action choice a ∈
A and next state s′ has an associated transition probability
T (s′|s, a) and immediate reward R(s, a, s′). The goal is to
learn a policy π that probabilistically maps states to actions in
such a way that the expected accumulated future discounted
reward Jπ is maximized:

Jπ ≡ E

[ ∞∑
t=0

γtR(st, at, st+1)

]
where γ ∈ [0, 1] is the discount factor and expectations
are taken over stochastic rewards, transitions and action

1At least explicitly. Some make the reward signal itself richer by adding
auxiliary goals, e.g. a bonus for an agent bicycling towards a goal for
actually driving in the direction of the goal, without realizing they are
applying reward shaping. Care must be taken with such additions to the
reward signal itself, as these can change the optimal policy, e.g. resulting
in the agent never arriving at the goal, but making circles to collect the
extra reward for driving towards the goal over and over [2]. Reward shaping
signals must always be potential-based to guarantee no change in the optimal
policy [3], see Section II-B.



selection, with t representing timesteps. This goal can also be
expressed using Q-values which explicitly store the expected
discounted reward for every state-action pair. The optimal
Q∗-values are defined as:

Q∗(s, a) = R(s, a, s′) + γ
∑
s′

T (s′|s, a) max
a′

Q∗(s′, a′)

One of the best known RL algorithms is Q-Learning [7],
proposed by Watkins to iteratively approximate Q∗. In the
Q-learning algorithm, a Q-table containing state-action pairs
is stored. Each entry contains a value for Q̂(s, a), which is
the learner’s current estimate for the actual value of Q∗(s, a).
The Q̂-values are updated according to the following update
rule:

Q̂t(s, a)← (1− αt)Q̂t−1(s, a)

+αt[R(s, a, s′) + γmaxa′ Q̂t−1(s′, a′)]

where αt is the learning rate at time step t and R(s, a, s′)
is the reward received for performing action a in state
s, resulting in state s′. Provided that all state-action pairs
are visited infinitely often, and a suitable schedule for the
learning rate is chosen, the estimates, Q̂, will converge to
the optimal values, Q∗ [8].

A greedy policy can easily be derived from these estimates
by taking the action with highest Q̂-value in every state. But,
as these estimates may not yet be correct during learning,
a trade-off needs to be found between exploring unknown
states and actions, and exploiting known good (partial)
policies. Therefore, an exploration mechanism such as ε-
greedy is often used. With a probability ε, a random action
is chosen during operation, while with probability 1− ε, the
greedy action with respect to the current estimates is chosen.

Many practical reinforcement learning problems have very
large state spaces and/or continuous state variables, making
basic tabular learning methods impractical or impossible to
use. A very popular way to overcome this problem is to use
tile-coding as function approximator [9]. This overlays the
state space with multiple axis-parallel tilings, allowing for a
discretization of the state-space, while the overlapping tilings
guartantee a certain degree of generalization. The Q-function
can then be approximated by learning weights that map the
tiles activated by the current state s to an estimated Q-value:

Q̂t(s, a) = θTt,aφs

φs is the feature vector representing state s, i.e. the tiles
activated by this state, and θ is the parameter vector that
needs to be learned to approximate the actual Q-function.

Eligibility traces [10] are records of past occurrences of
state-action pairs, which can be used to speed up learning,
by not only updating the Q-value of the current state-action
pair, but also past state-action pairs, rewarding these inversely
proportional to the time since they were experienced. A
replacing eligibility trace [11] et(s, a) for state s and action
a is updated as follows:

et+1(s, a) =

{
1 s = st, a = at

γλet(s, a) otherwise

It is set to 1 if (s, a) is the current state-action pair (st, at),
and otherwise it is decayed by γλ, with γ the discounting
factor and λ the specific eligibility trace decay. This update
is performed after every action, and thus traces decay over
time. The trace is then included in the Q update rule:

Q̂t(s, a)← (1− αt)Q̂t−1(s, a)
+αtet(s, a)[R(s, a, s′)

+γmaxa′ Q̂t−1(s′, a′)]

Instead of only updating Q(s, a), we update the Q-value
of every state-action pair where the elibility trace is non-zero.
This effectively allows us to immediately propagate reward
into the past, rewarding actions that led to the current reward,
significantly reducing the learning time. Otherwise, this
reward propagates only by means of the γmaxa′ Q̂t−1(s′, a′)
part in the update-rule.

B. Reward Shaping

With reward shaping, an RL agent is given an extra
reward F (s, a, s′) on top of the reward from the environment
R(s, a, s′). This reward is aimed at steering the explo-
ration behaviour of the learning agent, incorporating heuristic
knowledge of the system designer on the problem domain.
The shaping function F is included in the Q-learning update
rule as follows:

Q̂t(s, a)← (1− αt)Q̂t−1(s, a)
+αt[R(s, a, s′) + F (s, a, s′)

+γmaxa′ Q̂t−1(s′, a′)]

If F is implemented as the difference of some potential
function Φ over the state space, and incorporates γ, the
discount factor, as follows, then the shaping function is
guaranteed to not alter the optimality of policies [3]:

F (s, a, s′) = γΦ(s′)− Φ(s) (1)

For example, if one wants to make an agent learn to
traverse a crowd without bumping into other agents, one
possible potential function Φ(s) to incorporate in a shaping
could be the distance to the nearest agent. Encouraging the
agent to maximize this distance will help him avoid running
into other agents.

Potential-based reward shaping has been successfully ap-
plied in such complex domains as RoboCup KeepAway
soccer [4] and StarCraft [5], improving agent performance
significantly.

C. Multi-Objective Reinforcement Learning

Multi-objective reinforcement learning [12] (MORL) is
an extension to standard reinforcement learning, where the
environment is a multi-objective MDP, or MOMDP, and the
feedback signal returns a vector rather than a single scalar
value, i.e.:

R(s, a, s′) = (R1(s, a, s′), . . . , Rm(s, a, s′))

where m represents the number of objectives. In MORL,
the solution concept is also a policy π, which is evaluated



by its expected return Jπ , a vector containing the expected
discounted return for each objective:

Jπ ≡

[
E [

∑∞
t=0 γ

tR1(st, at, st+1)] , . . . ,

E [
∑∞
t=0 γ

tRm(st, at, st+1)]

]
Since the environment now consists of multiple objectives,
and conflicts may exist between them, there is typically
no total order over policies. Hence the notion of Pareto-
optimality. A policy x1 is said to strictly Pareto dominate
another policy x2, i.e. x1 � x2, if for each objective, x1
performs at least as well as x2, and it performs strictly better
on at least one objective. In the case where x1 improves over
x2 on some objective, and x2 improves over x1 on some
other objective, the two solutions are said to be incomparable.
The set of non-dominated policies is referred to as the Pareto
optimal set or Pareto front.

In such an environment, Q-values can be learned for every
objective in parallel, storing Q̂-vectors, with a Q̂-value for
each objective [13], [14]:

Q̂(s, a) =

[
Q̂1(s, a), . . . , Q̂m(s, a)

]
The most commonly used techniques in MORL are scalar-

izations of the multi-objective problem [12], [14], [15], either
before the fact by reducing the dimensionality of the problem
to a single scalar objective, or after the fact, by applying
them to Q̂-vectors. Scalarization functions typically assign a
weight to each objective, allowing the user to put more or less
emphasis on each of the objectives, giving him some control
over the trade-off policies the learner will converge upon.
This trade-off is parametrized by wo ∈ [0, 1] for objective o,
with

∑m
o=1 wo = 1. In most cases, a linear combination of

the objectives is employed, i.e.
∑m
o=1 wo ·Q̂o(s, a), although

setting these weights a priori to achieve a particular trade-off
is hard and unintuitive [16], often requiring a lot of parameter
tuning.

III. MULTI-OBJECTIVIZATION

To reiterate, the multi-objectivization of a problem is
the conversion of a single-objective problem into a multi-
objective problem in order to improve performance on the
original objective, as measured by solution quality, time to
solution, or some other measure [17]. This idea has mainly
been studied in the evolutionary computation literature, and
there exist two main approaches for the multi-objectivization
of a single-objective problem: either by decomposing the
single objective [17], [18], [19], or by adding extra ob-
jectives [20], [21]. Examples are training decision trees
using the misclassification of each individual class separately
instead of the total misclassification [22], using the number
of recursive calls to a procedure and the number of iter-
ations in loops to optimize running time when generating
programming competition tasks [23], or turning a constrained

problem into an unconstrained one with extra objectives
encoding those constraints [24], [25].

The approach we propose in this paper falls in the second
category, i.e. it adds extra objectives to the problem. Such
additional objectives often encode heuristic information or
expert knowledge of the problem. Since the only goal is
to optimize the single problem-inherent objective, the extra
objectives should not introduce conflicts, but rather, they
should correlate with the original objective. Ideally, the
Pareto front of the multi-objective problem should be a single
point, corresponding to the optimal solution(s) of the original
problem. Some theoretical results exist on exact auxiliary
functions for evolutionary algorithms, which are additional
objectives whose optimal solutions coincide with those of
the target objective [26].

Furthermore, if the additional objectives are to improve
solution quality, they should possess some properties that
make their function landscape easier to navigate, e.g. smooth-
ing out local optima, or providing gradient where there is
none in the original objective. Empirical results, again from
the evolutionary computation literature, show that using the
Pareto operator can help in genetic algorithms [27], and
that additional objectives can reduce the number of local
optima in the search space [17], but also that search can
become harder [21], as the additional objectives can make
solutions incomparable when the extra objectives do not
correlate well with the main objective for those solutions.
Some interesting work on multi-objectivization shows how
one can improve performance on multi-objectivized problems
by making every optimization decision based on feedback
from only a single of the correlated objectives [20]. In [23],
[28], Buzdalova et al. show how this choice can be made
adaptively using reinforcement learning, trained on feedback
from the actual target objective.

From this brief literature survey, we identify two require-
ments for a good multi-objectivization:

1) The optimality of solutions is preserved; no con-
flicts are introduced, no suboptimal solutions in the
original problem become Pareto-optimal in the multi-
objectivized problem.

2) The search space becomes easier to navigate; more
information is present in the multi-objective problem,
such that optimization becomes easier.

IV. MULTI-OBJECTIVIZATION BY SHAPING

In this section, we describe the multi-objectivization of
a single-objective MDP by using multiple reward shaping
functions, and show how the requirements for a good multi-
objectivization can be satisfied. Importantly, we theoretically
prove that the first requirement, namely that the optimality
of policies is preserved, is always satisfied if the shaping
functions are potential-based.

To turn MDP M into MOMDP M’ using m reward shaping
functions Fi, the reward vector R of M’ is constructed as
follows:



R(s, a, s′) = (R(s, a, s′) + F1(s, a, s′), . . . ,
R(s, a, s′) + Fm(s, a, s′))

(2)

where R is the reward function of M. Thus, we copy the
base reward of M several times, and add a different shaping
function to each.

We will prove that this formulation preserves the total
ordering, and thus also the optimality, of policies between
M and M’, provided the shapings are potential-based. That
is, that multi-objectivization by reward shaping does not
introduce conflicts.

Theorem 1 Let M be a given (finite, discrete) MDP, M =
(S,A, T,R). We say that the MOMDP M’ is a shaping-based
multi-objectivization of M, iff M ′ = (S,A, T,R) with

R(s, a, s′) = (R(s, a, s′) + F1(s, a, s′), . . . ,
R(s, a, s′) + Fm(s, a, s′))

If all shaping functions Fi, i = 1, . . . ,m are potential-
based, as defined in Equation 1, we have the following
properties:

• Any policy π∗ which is an optimal policy for M, is a
Pareto optimal policy for M’.

• No other Pareto optimal policies for M’ exist, i.e. if π
is not an optimal policy for M, π is not Pareto optimal
in M’.

Proof: The proof follows from the results in [3]. There,
Ng et al. proved that if a policy is optimal for an MDP
with reward function R, it is also optimal for the shaped
MDP with rewards R + F (and vice versa), provided that
F is a potential-based shaping function. So, any policy π∗

that is optimal for MDP M will also be optimal for each
of the shaped rewards R + Fi. Since π∗ maximises the
returns for all objectives, no policy which Pareto dominates
π∗ can exist (since such a policy would have to perform
strictly better on at least one objective) and π∗ must be
part of the Pareto front for M’. Now suppose a policy π
exists, which is part of the Pareto front of M’, but which is
not optimal in M. Since π is suboptimal in M, according
to [3] it must also be suboptimal for each of the R + Fi
objectives. However, this means that any policy π′, that is
optimal in M,2 will achieve a strictly higher return for all
objectives. Thus, π′ Pareto dominates π and π cannot be
part of the Pareto optimal set for M’, which contradicts our
original assumption.

Corollary. Since all optimal policies of M’ (and thus also
of M) achieve the highest expected return for each objective
in M’, the Pareto front of M’ consists of a single point.
Moreover, since Ng et al. [3] actually prove that the total
order of policies is preserved when using potential-based
shaping, and not just optimality, MOMDP M’ also has a
total order over all policies. These all lie on a single line

R R+F0

R+F1

MDP M MOMDP M’
Fig. 1. An example of the quality of policies given their return in MDP
M, and it’s multi-objectivized version M’. The total order over policies is
preserved.

in the multi-objective space, see Figure 1.

This shows that the first important requirement for a good
multi-objectivization is always satisfied if the shaping func-
tions are potential-based. The second requirement, namely
that it makes the search space easier to navigate, depends
on the formulation of the shaping functions themselves.
Good shaping functions correlate with V ∗, the value function
of the problem.3 The more they correlate with V ∗, the
more they will help solve the problem. While it is unlikely
that the system designer can define a single shaping that
correlates well with V ∗ throughout the search space (which
would amount to solving the problem), it is more likely
that he can define several shapings that correlate well with
V ∗ in different parts of the state space, i.e. several rules
of thumb for different situations,4 or rules of thumb that
weakly correlate with V ∗ throughout the state space. If these
shapings are used to multi-objectivize an MDP, one can
then attempt to strategically combine these signals, e.g. by
identifying when which signal is most informative [30].

Now, this multi-objectivization of course opens up the
possibility to use multi-objective techniques to find solu-
tions to a single-objective problem. For example, given the
convergence guarantees of tabular Q-learning, learning on
any linear scalarization of this MOMDP will converge to an
optimal policy. In such a case, the only improvement multi-
objectivization can yield lies in the speed of convergence. For
learning algorithms not guaranteed to converge to an optimal
policy, or settings where the necessary assumptions are
violated, as in the case of Q-learning with function approxi-
mation for example, both speed of convergence and solution
quality may be improved through multi-objectivization.

2At least one such optimal policy must exist, see e.g. [29]
3V ∗(s) = maxaQ∗(s, a).
4E.g. shaping using kinetic (speed) or potential energy (height) in the

Mountain Car domain [11], a problem where an underpowered car needs
to build up momentum to climb a hill. These are opposite forces in this
domain, as the car trades speed for height and vice versa, yet each is useful
in a different situation: the car needs to focus on gaining speed when it can
no longer gain height, and focus on gaining height when speed is already
high.



V. SOLUTION METHODS

Although we could use any technique that solves general
multi-objective MDPs, not all techniques will actually be use-
ful. Multi-objective optimization techniques typically focus
on finding trade-offs between the different objectives, with
as goal a specific trade-off, or finding a diverse set of Pareto
optimal trade-offs which can then be presented to the user.
The multi-objective problem we have constructed here on
the other hand does not require trade-offs to be found; the
optimal solutions for each objective are the same. It is a
specific sub-class of multi-objective problems that we believe
requires a different type of techniques. That is, techniques
that can combine the different correlated signals in such a
way that optimization is sped up, and/or the optimal solutions
are better approximated.

In this paper, we illustrate the usefulness of this multi-
objectivization by applying a linear scalarization of the
objectives, i.e. scaling the reward vector back down to a
single scalar signal, which can then be solved by regular
single-objective techniques. Of course, this is equivalent to
creating a single super shaping F ′ that is a weighted sum of
the different shapings defined (if

∑
i wi = 1).∑

i

wi(R+ Fi) = R+
∑
i

wiFi = R+ F ′

This is the same approach Devlin et al. [4] used. Yet,
we believe better techniques can be constructed that actually
benefit from keeping the signals separate, since dimension-
ality reduction techniques such as a scalarization always
lose information. For example, useful information that would
be thrown away is the amount of agreement between the
shapings, something which could be used to make more
informed action selection decisions. A set of techniques
that does exactly this is ensemble systems for reinforcement
learning [31], [32]. These will likely prove to be good
solution methods for this kind of problem, as they are
built to combine the suggestions of different RL algorithms
learning the same task. That is, these combine different
predictors for the same signal. Another candidate solution
technique is adaptive objective selection [30], which is a
technique developed specifically for multi-objective MDPs
with correlated objectives. It determines for every state,
during learning, which of the objectives to use for action
selection, based on a measurement of confidence in its own
estimates.

We leave the evaluation of these more advanced techniques
for future work, and only focus on the basic scalarization
techniques in this paper.

VI. PROBLEM DOMAINS

In this section, we describe the two problem domains we
consider in this paper to illustrate how a learning agent may
solve a problem faster and better by multi-objectivizing it.
The first domain is a simple gridworld in which an agent
needs to find the quickest path to the goal location. The
second problem is the much more complex domain of Infinite
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Fig. 2. The pathfinding gridworld. The start-state is top-left, the goal state
is bottom-right.

Fig. 3. A screenshot of Mario during the level used in this paper.

Mario Bros, a public reimplementation of Nintendo’s Super
Mario Bros R©, where the agent controls Mario, who needs
to traverse a level while collecting coins and avoiding to get
killed.

A. Pathfinding

The pathfinding problem is situated in a 20×20 gridworld,
with a starting location at (0, 0) and goal location at (19, 19),
see Figure 2. The agent needs to find the goal location as
fast as possible by moving in the four cardinal directions,
only receiving a reward of 1000 when arriving at the goal
location. Otherwise, the agent receives a reward of 0. This is
a very sparse signal, without gradient throughout the search
space, except for the single peak at the goal location.

B. Mario

The Mario benchmark problem [33] is based on Infinite
Mario Bros, which is a public reimplementation of the
original 80’s game Super Mario Bros R©. In this task, Mario
needs to collect as many points as possible, which are



attributed for killing an enemy (10), devouring a mushroom
(58) or a fireflower (64), grabbing a coin (16), finding a
hidden block (24), finishing the level (1024), getting hurt
by a creature (−42) or dying (−512). The actions available
to Mario correspond to the buttons on the NES controller,
which are (left, right, no direction), (jump, don’t jump), and
(run, don’t run). One action from each of these groups can
be taken simultaneously, resulting in 12 distinct combined or
‘super’ actions. The state space in Mario is quite complex,
as Mario observes the exact locations of all enemies on the
screen and their type, he observes all information pertaining
to himself, such as what mode he is in (small, big, fire), and
furthermore he is surrounded by a gridlike receptive field in
which each cell indicates what type of object is in it (such
as a brick, a coin, a mushroom, a goomba (enemy), etc.).

VII. EXPERIMENTS

Here we describe experimental results that demonstrate the
usefulness of multi-objectivization by reward shaping.

A. Setup

1) Pathfinding: The learning algorithm used for this prob-
lem is regular tabular ε-greedy Q-learning. The state of the
agent consists only of its x and y coordinates. We define two
shaping functions, Fx and Fy , that respectively encourage
increasing the x and y coordinates. Their potential functions
are:5

Φx(s) =
x

100

Φy(s) =
y

100

These shapings provide gradient information that is not
present in the actual problem.

The parameters for Q-learning are ε = 0.1, α = 1.0 and
γ = 0.99.

2) Mario: The learning algorithm used for the Mario
domain is Q(λ), which is Q-learning with eligibility traces.
We use tile-coding for function approximation, as the full
state information of Mario is far too complex to condition
an RL agent on. We take a very simple approach and give the
agent only information on (1) the relative x and y coordinates
of the closest enemy, so that he can avoid or kill it, (2) the
height of the obstacle right in front of Mario, so he knows
he has to jump over it, and (3) the time left in the level, so
that he can know when to hurry up to finish the level. These
are discretized using tile-coding, height with uniform tiles
of width 3, the x and y with logarithmic tiles, symmetric
around 0 (sgn(x)log(|x|)), and time also with logarithmic
tiles (log(time)). We use logarithmic tiles for x and y

5How to optimally set the scaling of a shaping function with respect to
the reward function remains an open question. It should not overpower the
reward function such that the learner gets distracted from its actual goal
in states where the shaping function is not fully correlated with the V ∗

function (which is possible given suboptimal learning parameters). On the
other hand, if too small, the shaping function becomes negligible and has
no effect on exploration. We tuned the magnitude of the shapings to achieve
best performance.

because enemies only have a large impact close to Mario,
so we generalize more when an enemy is further away. We
do the same for time, since Mario does not need to hurry
too much when a lot of time is left, while seconds start to
matter when time is running out. Additional binary features
are: (4) whether or not Mario is able to shoot fireballs, (5) the
direction he is facing, and (6) whether he is on the ground,
making for 6 variables in total.

We implement two shaping functions. Fr, to encourage
moving to the right, as the level unfolds from left to right,
and Fh, to encourage gaining height, as being higher up can
help overcome obstacles and killing enemies by dropping on
them. Their potentials are:

Φr(s) = 100× x

Φh(s) = 100× y

The parameters for Q(λ) are ε = 0.1, α = 0.01
32 , λ = 0.9

and γ = 1.0, with 32 tilings for tile coding.
The Mario levels are generated procedurally, and we use

the level generated with seed 0 and difficulty 0 in our
experiments.

B. Results

We show the results of a comparison between using
no shaping, using a single of the shapings, and multi-
objectivizing the problem and subsequently solving this
MOMDP by scalarizing it using uniform weights (w0 =
w1 = 0.5).

1) Pathfinding: For the pathfinding problem, we ran 100
experiments, each 104 episodes long. The performance of the
learning agent is measured by the number of steps to goal,
and the average performance over all these experiments is
shown in Figure 4. Table I summarizes these results. Using
either the x shaping or y shaping alone already yields a
dramatic improvement compared to without shaping, but the
combination of the two shapings yields even faster learning.
Note that the final performance can not be improved as Q-
learning is guaranteed to converge to the optimal policy in
this case.

2) Mario: Since the pathfinding problem is a trivial prob-
lem, we perform a similar experiment in the Mario domain,
which is much more complex. We ran 100 experiments of
1000 episodes each. Figure 5 and Table II show the average
results of this experiment. Both right and height shaping
result in worse final performance compared to without shap-
ing, although the right shaping does show faster learning
initially. Height shaping has a surprisingly catastrophic effect
on performance, resulting in the agent not advancing in the
level. Even more surprisingly, the multi-objectivization of the
problem using these two shapings, each separately resulting
in worse performance, does yield better performance, with
very fast learning initially, and convergence to similar final
performance as without shaping.
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Fig. 4. Results for the pathfinding problem. Using a single shaping function
already dramatically imrpoves performance, and the combination of both
shapings improves performance even more. Error bars indicate the 95%
confidence interval.

Variant Cumulative performance Final performance
No shaping 105038.05± 1847.869 42.07± 0.624
X shaping 45049.3± 127.445 41.7± 0.516
Y shaping 45053.03± 116.567 42.27± 0.601
Linear combination 43825.69± 64.139 41.83± 0.554

TABLE I
RESULTS FOR THE PATHFINDING PROBLEM. THE COMBINATION OF

SHAPINGS RESULTS IN MUCH BETTER CUMULATIVE PERFORMANCE

(MEASURED FOR THE FIRST 1000 EPISODES), I.E. FASTER LEARNING,
THAN WITH A SINGLE SHAPING OR WITHOUT SHAPING. THE BEST

RESULTS AND THOSE NOT SIGNIFICANTLY DIFFERENT FROM THE BEST

ARE INDICATED IN BOLD (STUDENT’S T-TEST, α = 0.05). 95%
CONFIDENCE INTERVAL IS INDICATED.

VIII. CONCLUSIONS AND FUTURE WORK

We propose the multi-objectivization of reinforcement
learning problems by reward shaping, a process that turns
a single-objective problem into a multi-objective problem,
in order to speed up learning and improve performance.
We prove that the optimality of solutions is preserved in
the process, and empirically show that learning with a
scalarization of this multi-objectivized problem can improve
learning a lot.

In the experimental section of this work, we confined our-
selves to solving a multi-objectivized problem using a simple
scalarization with uniform weights, which is equivalent to not
multi-objectivizing and combining the shapings into a single
super shaping. The following step in this line of research is
to consider more advanced techniques for the combination
of correlated objectives, i.e. techniques that benefit from
keeping these signals apart. Adaptive objective selection [30],
a technique introduced specifically for the combination of
correlated objectives, and ensemble systems for reinforce-
ment learning [31], [32] are promising candidates for this.
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Fig. 5. Results for the Mario domain. Using either the right or height
shaping alone does not improve performance compared to no shaping. It is
only with the combination of shapings that performance (especially early
performance) can significantly be improved. Error bars indicate the 95%
confidence interval.

Variant Cumulative performance Final performance
No shaping 1579780.6± 91824.2 1670.3± 130.2
Right shaping 1197782.3± 75215.3 1395.2± 105.3
Height shaping −414637.4± 44596.2 −462.1± 29.8
Linear combination 1765874.5± 56815.5 1780.2± 79.7

TABLE II
RESULTS FOR THE MARIO DOMAIN. THE COMBINATION OF SHAPINGS

RESULTS IN MUCH BETTER CUMULATIVE PERFORMANCE, I.E. FASTER

LEARNING, AND SIMILAR FINAL PERFORMANCE AS WITHOUT SHAPING.
THE BEST RESULTS AND THOSE NOT SIGNIFICANTLY DIFFERENT FROM

THE BEST ARE INDICATED IN BOLD (STUDENT’S T-TEST, α = 0.05).
95% CONFIDENCE INTERVAL IS INDICATED.
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[4] S. Devlin, M. Grześ, and D. Kudenko, “An empirical study of
potential-based reward shaping and advice in complex, multi-agent
systems,” Advances in Complex Systems, vol. 14, no. 02, pp. 251–
278, 2011.

[5] K. Efthymiadis and D. Kudenko, “Using plan-based reward shaping
to learn strategies in starcraft: Broodwar,” in Conference on Compu-
tational Intelligence in Games, IEEE CIG, 2013.

[6] R. Sutton and A. Barto, Reinforcement learning: An introduction.
Cambridge Univ Press, 1998, vol. 1, no. 1.

[7] C. J. C. H. Watkins, “Learning from delayed rewards,” Ph.D. disser-
tation, King’s College, 1989.

[8] J. N. Tsitsiklis, “Asynchronous stochastic approximation and Q-
learning,” Machine Learning, vol. 16, no. 3, pp. 185–202, 1994.

[9] J. Albus, Brains, behavior and robotics. McGraw-Hill, Inc., 1981.
[10] A. H. Klopf, “Brain function and adaptive systems: a heterostatic

theory,” Air Force Cambridge Research Laboratories, Bedford, MA,
Tech. Rep. AFCRL-72-0164, 1972.

[11] S. P. Singh and R. S. Sutton, “Reinforcement learning with replacing
eligibility traces,” Machine learning, vol. 22, no. 1-3, pp. 123–158,
1996.

[12] D. M. Roijers, P. Vamplew, S. Whiteson, and R. Dazeley, “A survey
of multi-objective sequential decision-making,” Journal of Artificial
Intelligence Research, vol. 48, pp. 67–113, 2013.
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