

Mihail "Mike" Mihaylov

Aim?

to give the <u>intuition</u> just how complex decentralized coordination is to give the <u>tools</u> necessary to address decentralized coordination problems

to give <u>examples</u> of real-world decentralized coordination problems Frameworks:

- Multi-agent systems
- Reinforcement Learning
- Collective Intelligence
- Mechanism Design

Agent

<u>Autonomous</u>

- has control over own actions
- able to act without human intervention

Pro-active

- takes initiative
- is opportunistic

Responsive

- perceives its environment
- responds to changes

"Objects do it for free. Agents do it for money."

<u>Social</u>

- interacts when appropriate
- helps others

Multi-Agent Systems Framework

Agents have:

- incomplete information
- restricted capabilities

Communication is:

- costly
- delayed
- unreliable

System properties:

- decentralized control
- asynchronous computation

Context

Constraints:

- limited battery
- communication is expensive
- low processing capabilities
- limited knowledge
- decentralized control

e.g. Reinforcement learning

Decentralized

 central control is <u>unavailable</u> or costly to set up

(e.g. WSNs, Swarm robotics)

<u>reduce complexity</u> of centralized problems

(e.g. Scheduling, Planning)

- address privacy, self-interest

(e.g. Smart grids, Transportation logistics)

Coordination

- highly constrained agents
- with limited knowledge
- must work together to solve problems
- learn from repeated interactions

meet
 interact
 learn

Agents

- inexpensive
- multi-purpose
- System
 - scalable
 - adaptive

Decentralized Coordination in Multi-Agent Systems

Coordination and Anti-Coordination

Coordination and Anti-Coordination in time

Problem:

enable decentralized coordination

- highly constrained agents \rightarrow no complex algorithms
- local interactions
- limited knowledge
- autonomous

- \rightarrow no centralized control
- \rightarrow no global awareness
- \rightarrow no human guidance

<u>Objective</u>:

- implement a coordination mechanism
 - adaptive
 - decentralized
 - minimal requirements
 - minimal overhead

- → perform well in wide range of settings
- → few parameters, little memory usage

Decentralized coordination

(Anti-)coordination e.g. traffic lights

Pure coordination

Problem: How to coordinate?

- b/n highly constrained agents
- via local interactions
- with limited knowledge

e.g. select the same joint task in robot swarms

1. meet

3. learn

2. interact

<u>Approach</u>: Win-Stay Lose-probabilistic-Shift <u>e.g. select the same</u> joint task in robot

task in robo swarms

- decentralized mechanism
- minimal requirements & overhead
- guaranteed full convergence
- absorbing state

Coordination Game:

Conclusions (pure coordination)

• Pure coordination \rightarrow difficult, but always possible

Convergence time → exponential in number of agents and actions

• Denser networks \rightarrow faster convergence

Decentralized coordination

(Anti-)coordination e.g. traffic lights

Anti-coordination

Problem: How to anti-coordinate?

(select an action different than others')

e.g. select different channels for parallel communication in WSNs

Conclusions (anti-coordination)

• Pure anti-coordination \rightarrow easy but not always feasible

- Convergence time \rightarrow faster with more actions
- WSLpS: applicable in wide range of scenarios

	topology:		ri	ng			gr	id			fu	ıll	
$\operatorname{algorithm}$	actions:	2	3	4	5	2	3	4	5	20	30	40	50
WSLpS		\checkmark											
QL	renager	\checkmark											
Freeze $\int e^{i\theta}$	t al. '02									\checkmark	\checkmark	\checkmark	\checkmark
GaT }N	amatame '06	\checkmark				\checkmark							

Decentralized coordination

Coordination and Anti-Coordination

Coordination and Anti-Coordination in time

(Anti-)coordination in time: WSNs

(Anti-)coordination in time: WSNs

Agents learn by only observing outcome of own actions!

action	outcome	payoff	
Transmit	ACK received no ACK received	1 0	
Listen	DATA received communication overheard nothing received messages collided	1 0 0 0	1. meet 2. interact 3. learn
Sleep	saved energy	?	

DESYDE

- decentralized approach
- minimal requirements
- no communication overhead

Conclusions (WSNs)

- Coordination emerges rather than is agreed upon
- Clever coordination mechanism is required to save energy

Coordination in Time?

Synchronization

Desynchronization

1. meet 2. interact 3. learn

Firefly (Photuris lucicrescens)

Japanese tree frog (Hyla japonica)

Here agents are able to <u>observe</u> actions of <u>all others</u>!

Graphical games (Network games)

Normal form

- any agent interacts with any other agent
- payoffs depend on actions <u>of all agents</u>
- representation:
 exponential in the number of players

Graphical form

- <u>only neighbors</u> in the graph can interact
- payoffs depend on actions <u>of neighbors</u>
- representation:
 <u>exponential in size of</u> <u>largest neighborhood</u>

Outlook

Covered topics	Other topics	Framework
Common interest game	Conflicting interest game	Cooperative game theory
Fully cooperative agents	Self-interested agents	Mechanism design
Static topology	Dynamic topology	Evolutionary game theory
Wireless sensor networks	Collaborative platforms	Collective intelligence

Collective Intelligence Framework

Components:

- private utility → measures performance of individual agents
- world utility → measures performance of the entire system

<u>Objective</u>:

 align private utility with world utility

e.g.: optimizing the routing of internet traffic

Challenges:

 compute world utility in a decentralized manner

[Wolpert and Tumer, 2003]

Mechanism Design Framework

Agents:

- are self-interested
- have private information
- maximize utility functions

Objective:

implement a protocol that achieves designer's goals, despite agents' self interest

e.g.: designing an

electronic auction

[Conitzer and Sandholm, 2003]

Game theory:

- "Given a game, what is a rational strategy for an agent?"

Mechanism design:

- "Given that agents are rational, how should we design the game?"

Conclusions

<u>Simple learning techniques</u> work surprisingly well.

- + less parameters to tune
- + quite generic, wider application
- lower representational power

Decentralized solutions are a powerful paradigm.

- + lower computational complexity & communication overhead
- + no single-point-of-failure problems
- difficult to organize

<u>Multi-agent systems</u> is a quite useful framework.

- + suitable representation of decentralized problems
- + scalable, fault-tolerant
- easy to overdo